×

\(p\)-adic analogues of Ramanujan type formulas for \(1/\pi\). (English) Zbl 1296.11058

Summary: Following Ramanujan’s work on modular equations and approximations of \(\pi\), there are formulas for \(1/\pi\) of the form \[ \sum\limits_{k=0}^\infty\frac{(\frac{1}{2})k(\frac{1}{d})k(\frac{d-1}{d})k}{k!^3}(ak+1)(\lambda_d)^k=\frac{\delta}{\pi} \] for \(d=2,3,4,6\), where \(\lambda d\) are singular values that correspond to elliptic curves with complex multiplication, and \(a,\delta\) are explicit algebraic numbers. In this paper we prove a \(p\)-adic version of this formula in terms of the so-called Ramanujan type congruence. In addition, we obtain a new supercongruence result for elliptic curves with complex multiplication.

MSC:

11G05 Elliptic curves over global fields
11F11 Holomorphic modular forms of integral weight
44A20 Integral transforms of special functions
11F33 Congruences for modular and \(p\)-adic modular forms
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ramanujan, Modular equations and approximations to {\(\pi\)}, Quart. J. Math. 45 pp 350– (1914)
[2] DOI: 10.1515/crll.1859.56.101 · ERAM 056.1478cj
[3] Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts pp xvi+414– (1987)
[4] Chudnovsky, Approximations and complex multiplication according to Ramanujan, Ramanujan Revisited (Urbana-Champaign, Ill., 1987) pp 375– (1988) · Zbl 0647.10002
[5] DOI: 10.4169/193009709X458555 · Zbl 1229.11162
[6] Zudilin, Ramanujan-type formulae for 1/{\(\pi\)}: A second wind?, Modular Forms and String Duality Volume 54 pp 179– (2008) · Zbl 1159.11053
[8] van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, p-adic Functional Analysis (Nijmegen, 1996) Volume 192 pp 223– (1997)
[9] DOI: 10.1090/S0002-9939-08-09389-1 · Zbl 1171.11061
[10] DOI: 10.1016/j.jnt.2009.01.013 · Zbl 1231.11147
[11] DOI: 10.1007/s00013-008-2828-0 · Zbl 1175.33004
[12] DOI: 10.2140/pjm.2011.249.405 · Zbl 1215.33002
[14] Selberg, On Epstein’s zeta-function, J. Reine Angew. Math. 227 pp 86– (1967) · Zbl 0166.05204
[15] DOI: 10.1090/S0002-9939-2011-10950-X · Zbl 1276.11027
[16] Shioda, On singular K3 surfaces, Complex Analysis and Algebraic Geometry pp 119– (1977)
[17] DOI: 10.1353/ajm.2002.0007 · Zbl 1065.14023
[19] Andrews, Special Functions, Encyclopedia of Mathematics and its Applications Volume 71 pp xvi+664– (1999)
[20] Yoshida, Fuchsian Differential Equations pp xiv+215– (1987)
[21] Zagier, Elliptic Modular Forms and Their Applications, The 1-2-3 of Modular Forms pp 1– (2008) · Zbl 1259.11042
[22] DOI: 10.1090/S0002-9947-1985-0800250-2
[23] DOI: 10.1007/BF01390273 · Zbl 0418.14023
[24] DOI: 10.1007/BF01455990 · Zbl 0539.14006
[25] Arithmetic Properties of Mirror Map and Quantum Couplinghttp://lanl.arxiv.org/abs/hep-th/9411234v3
[26] Yang, Differential equations satisfied by modular forms and K3 surfaces, Illinois J. Math. 51 pp 667– (2007) · Zbl 1211.11053
[27] Ditters, Hilbert functions and Witt functions. An identity for congruences of Atkin and of Swinnerton-Dyer type, Math. Z. 205 pp 247– (1990) · Zbl 0685.14026
[28] Top, Descent by 3-isogeny and 3-rank of quadratic fields, Advances in Number Theory (Kingston, ON, 1991) pp 303– (1993)
[29] Atkin, Modular forms on noncongruence subgroups, Combinatorics (Proceedings Symposium Pure Mathematical, Vol. XIX, University California, Los Angeles, California, 1968) pp 1– (1971) · Zbl 0235.10015
[30] Cartier, Groupes formels, fonctions automorphes et fonctions zeta des courbes elliptiques, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 pp 291– (1971)
[31] Katz, Crystalline cohomology, Dieudonné modules, and Jacobi sums, Automorphic Forms, Representation Theory and Arithmetic (Bombay, 1979) Volume 10 pp 165– (1981)
[32] Katz, p-adic properties of modular schemes and modular forms, Modular Functions of One Variable, III (Proceedings International Summer School, University Antwerp, Antwerp, 1972) Volume 350 pp 69– (1973)
[33] DOI: 10.1016/0022-314X(91)90019-8 · Zbl 0732.11021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.