Amrouche, Chérif; Bahouli, Bassem; Ouazar, El Hacène On the curl operator and some characterizations of matrix fields in Lipschitz domains. (English) Zbl 07309701 J. Math. Anal. Appl. 494, No. 1, Article ID 124595, 24 p. (2021). MSC: 35F05 58A12 PDF BibTeX XML Cite \textit{C. Amrouche} et al., J. Math. Anal. Appl. 494, No. 1, Article ID 124595, 24 p. (2021; Zbl 07309701) Full Text: DOI
Dai, Xiongping From the first Borel-Cantelli lemma to Poincaré’s recurrence theorem. (English) Zbl 1360.37003 Am. Math. Mon. 122, No. 2, 173-174 (2015). MSC: 37A05 28D05 60F20 PDF BibTeX XML Cite \textit{X. Dai}, Am. Math. Mon. 122, No. 2, 173--174 (2015; Zbl 1360.37003) Full Text: DOI
Mardare, Sorin On Poincaré and de Rham’s theorems. (English) Zbl 1174.35086 Rev. Roum. Math. Pures Appl. 53, No. 5-6, 523-541 (2008). Reviewer: Rodica Luca Tudorache (Iaşi) MSC: 35N10 35D05 58A12 PDF BibTeX XML Cite \textit{S. Mardare}, Rev. Roum. Math. Pures Appl. 53, No. 5--6, 523--541 (2008; Zbl 1174.35086)
Amrouche, Cherif; Ciarlet, Philippe G.; Gratie, Liliana; Kesavan, Srinivasan On the characterizations of matrix fields as linearized strain tensor fields. (English) Zbl 1115.35131 J. Math. Pures Appl. (9) 86, No. 2, 116-132 (2006). MSC: 35Q72 74B05 74G65 74B15 PDF BibTeX XML Cite \textit{C. Amrouche} et al., J. Math. Pures Appl. (9) 86, No. 2, 116--132 (2006; Zbl 1115.35131) Full Text: DOI
D’Almeida, Jean Systems of partial differential equations with constant coefficients. (Systèmes d’équations aux dérivées partielles à coefficients constants.) (French) Zbl 1043.35123 Math. Nachr. 245, 67-71 (2002). Reviewer: Emma Previato (Boston) MSC: 35N05 13D25 14M10 32A05 PDF BibTeX XML Cite \textit{J. D'Almeida}, Math. Nachr. 245, 67--71 (2002; Zbl 1043.35123) Full Text: DOI
Samelson, Hans Differential forms, the early days; or the stories of Deahna’s theorem and of Volterra’s theorem. (English) Zbl 0994.01009 Am. Math. Mon. 108, No. 6, 522-530 (2001). Reviewer: Ülo Lumiste (Tartu) MSC: 01A60 58-03 PDF BibTeX XML Cite \textit{H. Samelson}, Am. Math. Mon. 108, No. 6, 522--530 (2001; Zbl 0994.01009) Full Text: DOI
Ito, Yoshifumi \(L_2\)-estimates and existence theorems for the exterior differential operators. (English) Zbl 0949.35036 J. Math., Tokushima Univ. 33, 15-32 (1999). MSC: 35D05 35N05 14F17 14F40 32C35 58J10 PDF BibTeX XML Cite \textit{Y. Ito}, J. Math., Tokushima Univ. 33, 15--32 (1999; Zbl 0949.35036)
Kulpa, Wladyslaw The Poincaré-Miranda theorem. (English) Zbl 0891.47040 Am. Math. Mon. 104, No. 6, 545-550 (1997). Reviewer: J.Appell (Würzburg) MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{W. Kulpa}, Am. Math. Mon. 104, No. 6, 545--550 (1997; Zbl 0891.47040) Full Text: DOI
Nacinovich, Mauro; Shlapunov, Alexandre On iterations of the Green integrals and their applications to elliptic differential complexes. (English) Zbl 0871.35066 Math. Nachr. 180, 243-284 (1996). Reviewer: M.Shapiro (Mexico) MSC: 35N10 35J55 35N15 PDF BibTeX XML Cite \textit{M. Nacinovich} and \textit{A. Shlapunov}, Math. Nachr. 180, 243--284 (1996; Zbl 0871.35066) Full Text: DOI
Sharma, Chandra Shekhar Poincaré’s lemma and Darboux’s theorem revisited. (English) Zbl 0845.57026 J. Nat. Geom. 8, No. 2, 147-156 (1995). MSC: 57R55 58A10 70H05 58C20 PDF BibTeX XML Cite \textit{C. S. Sharma}, J. Nat. Geom. 8, No. 2, 147--156 (1995; Zbl 0845.57026)
Majima, Hideyuki Asymptotic analysis for integrable connections with irregular singular points. (English) Zbl 0546.58003 Lecture Notes in Mathematics. 1075. Berlin etc.: Springer-Verlag. IX, 159 p DM 26.50; $ 9.30 (1984). Reviewer: P.Michor MSC: 58A17 58-02 35C20 32L10 PDF BibTeX XML Full Text: DOI
Jacobowitz, Howard The Poincaré lemma for \(d\omega =F(x,\omega)\). (English) Zbl 0405.58002 Partial differential equations and geometry, Proc. Park City Conf. 1977, Lect. Notes Pure Appl. Math. 48, 22-24 (1979). MSC: 58A10 PDF BibTeX XML