Ma, Zhihui; Li, Shenghua; Han, Shuyan Bifurcation and optimal control for an infectious disease model with the impact of information. (English) Zbl 07713210 Int. J. Biomath. 17, No. 1, Article ID 2350006, 37 p. (2024). MSC: 37N25 37G10 92D30 PDF BibTeX XML Cite \textit{Z. Ma} et al., Int. J. Biomath. 17, No. 1, Article ID 2350006, 37 p. (2024; Zbl 07713210) Full Text: DOI
Hwang, Jin-soo Minimax optimal control problems for an extensible beam equation with uncertain initial velocity. (English) Zbl 07741570 Bound. Value Probl. 2023, Paper No. 72, 26 p. (2023). MSC: 93Bxx 35Qxx 35Dxx PDF BibTeX XML Cite \textit{J.-s. Hwang}, Bound. Value Probl. 2023, Paper No. 72, 26 p. (2023; Zbl 07741570) Full Text: DOI
Lamba, Sonu; Srivastava, Prashant K. Cost-effective optimal control analysis of a COVID-19 transmission model incorporating community awareness and waning immunity. (English) Zbl 07741481 Comput. Math. Biophys. 11, No. 1, Article ID 20230154, 21 p. (2023). MSC: 92D30 34A34 49J15 PDF BibTeX XML Cite \textit{S. Lamba} and \textit{P. K. Srivastava}, Comput. Math. Biophys. 11, No. 1, Article ID 20230154, 21 p. (2023; Zbl 07741481) Full Text: DOI
Sundaralingam, Ramasubramanian A two-step method for solving singular control problems. (English) Zbl 07734280 Int. J. Control 96, No. 9, 2313-2328 (2023). MSC: 93C15 49J15 49L20 92C75 92C50 PDF BibTeX XML Cite \textit{R. Sundaralingam}, Int. J. Control 96, No. 9, 2313--2328 (2023; Zbl 07734280) Full Text: DOI
Ronzhina, Mariya I.; Manita, Larisa A. Spiral-like extremals near a singular surface in a rocket control problem. (English) Zbl 07710983 Regul. Chaotic Dyn. 28, No. 2, 148-161 (2023). MSC: 37J51 37J06 37N35 49J15 49N60 34H05 PDF BibTeX XML Cite \textit{M. I. Ronzhina} and \textit{L. A. Manita}, Regul. Chaotic Dyn. 28, No. 2, 148--161 (2023; Zbl 07710983) Full Text: DOI
Arutyunov, A. V.; Karamzin, D. Yu. On a class of control problems with mixed constraints. (English. Russian original) Zbl 07709457 Differ. Equ. 59, No. 4, 529-539 (2023); translation from Differ. Uravn. 59, No. 4, 520-530 (2023). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49K15 93C10 93C15 PDF BibTeX XML Cite \textit{A. V. Arutyunov} and \textit{D. Yu. Karamzin}, Differ. Equ. 59, No. 4, 529--539 (2023; Zbl 07709457); translation from Differ. Uravn. 59, No. 4, 520--530 (2023) Full Text: DOI
Bröcker, Jochen Existence and uniqueness for variational data assimilation in continuous time. (English) Zbl 1516.49018 Math. Control Relat. Fields 13, No. 1, 94-115 (2023). MSC: 49J55 49K45 60J60 86A10 93E99 60G35 PDF BibTeX XML Cite \textit{J. Bröcker}, Math. Control Relat. Fields 13, No. 1, 94--115 (2023; Zbl 1516.49018) Full Text: DOI arXiv
Dmitruk, A. V.; Osmolovskii, N. P. Local minimum principle for optimal control problems with mixed constraints: the nonregular case. (English) Zbl 1512.49008 Appl. Math. Optim. 88, No. 1, Paper No. 16, 42 p. (2023). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49J27 49K15 46E27 28A33 PDF BibTeX XML Cite \textit{A. V. Dmitruk} and \textit{N. P. Osmolovskii}, Appl. Math. Optim. 88, No. 1, Paper No. 16, 42 p. (2023; Zbl 1512.49008) Full Text: DOI
Bressan, Alberto; Chiri, Maria Teresa; Salehi, Najmeh Optimal control of moving sets. (English) Zbl 1512.49026 J. Differ. Equations 361, 97-137 (2023). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49K15 49Q10 93B05 49-02 PDF BibTeX XML Cite \textit{A. Bressan} et al., J. Differ. Equations 361, 97--137 (2023; Zbl 1512.49026) Full Text: DOI arXiv
Dolgii, Yurii F.; Chupin, Ilya A. Optimal control of manipulator. (English) Zbl 1512.93089 Izv. Irkutsk. Gos. Univ., Ser. Mat. 43, 3-18 (2023). MSC: 93C85 93C10 49J10 PDF BibTeX XML Cite \textit{Y. F. Dolgii} and \textit{I. A. Chupin}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 43, 3--18 (2023; Zbl 1512.93089) Full Text: DOI Link
Ananth, V. S.; Vamsi, D. K. K. Time optimal control studies and sensitivity analysis of additional food provided prey-predator systems involving Holling type III functional response based on quality of additional food. (English) Zbl 1512.92062 J. Biol. Syst. 31, No. 1, 271-308 (2023). MSC: 92D25 49J30 PDF BibTeX XML Cite \textit{V. S. Ananth} and \textit{D. K. K. Vamsi}, J. Biol. Syst. 31, No. 1, 271--308 (2023; Zbl 1512.92062) Full Text: DOI
Liu, Hailiang; Tian, Xuping Data-driven optimal control of a SEIR model for COVID-19. (English) Zbl 1516.92112 Commun. Pure Appl. Anal. 22, No. 1, 19-39 (2023). MSC: 92D30 49M25 PDF BibTeX XML Cite \textit{H. Liu} and \textit{X. Tian}, Commun. Pure Appl. Anal. 22, No. 1, 19--39 (2023; Zbl 1516.92112) Full Text: DOI arXiv
Mahrouf, Marouane; Lotfi, El Mehdi; Hattaf, Khalid; Yousfi, Noura Non-pharmaceutical interventions and vaccination controls in a stochastic SIVR epidemic model. (English) Zbl 1508.92282 Differ. Equ. Dyn. Syst. 31, No. 1, 93-111 (2023). MSC: 92D30 92C60 93E20 49J15 49L12 PDF BibTeX XML Cite \textit{M. Mahrouf} et al., Differ. Equ. Dyn. Syst. 31, No. 1, 93--111 (2023; Zbl 1508.92282) Full Text: DOI
Nath, Bhagya Jyoti; Dehingia, Kaushik; Sadri, Khadijeh; Sarmah, Hemanta Kumar; Hosseini, Kamyar; Park, Choonkil Optimal control of combined antiretroviral therapies in an HIV infection model with cure rate and fusion effect. (English) Zbl 1505.92123 Int. J. Biomath. 16, No. 1, Article ID 2250062, 23 p. (2023). MSC: 92C60 34D20 49K15 PDF BibTeX XML Cite \textit{B. J. Nath} et al., Int. J. Biomath. 16, No. 1, Article ID 2250062, 23 p. (2023; Zbl 1505.92123) Full Text: DOI
Hwang, Jin-soo Optimal control problems for an extensible beam equation with pointwise state constraints. (English) Zbl 1500.49009 J. Math. Anal. Appl. 518, No. 2, Article ID 126711, 22 p. (2023). MSC: 49K15 35B40 58E15 PDF BibTeX XML Cite \textit{J.-s. Hwang}, J. Math. Anal. Appl. 518, No. 2, Article ID 126711, 22 p. (2023; Zbl 1500.49009) Full Text: DOI
Mishra, Pragya; Singh, Vimlesh Stability criteria for a system involving delays in growth response and harvesting. (English) Zbl 07690130 Gaṇita 72, No. 1, 135-143 (2022). MSC: 91B76 92D25 49J20 49J15 PDF BibTeX XML Cite \textit{P. Mishra} and \textit{V. Singh}, Gaṇita 72, No. 1, 135--143 (2022; Zbl 07690130) Full Text: Link
Osmolovskii, Nikolai P. A second-order sufficient condition for a weak local minimum in an optimal control problem with an inequality control constraint. (English) Zbl 1511.49010 Control Cybern. 51, No. 2, 151-169 (2022). MSC: 49J40 49K15 PDF BibTeX XML Cite \textit{N. P. Osmolovskii}, Control Cybern. 51, No. 2, 151--169 (2022; Zbl 1511.49010) Full Text: DOI
Karami, Sh.; Fakharzadeh Jahromi, A.; Heydari, M. H. A computational method based on the generalized Lucas polynomials for fractional optimal control problems. (English) Zbl 07636110 Adv. Contin. Discrete Models 2022, Paper No. 64, 29 p. (2022). MSC: 39-XX 34-XX PDF BibTeX XML Cite \textit{Sh. Karami} et al., Adv. Contin. Discrete Models 2022, Paper No. 64, 29 p. (2022; Zbl 07636110) Full Text: DOI
Dehghan Banadaki, M.; Navidi, H. A numerical treatment based on Bernoulli tau method for computing the open-loop Nash equilibrium in nonlinear differential games. (English) Zbl 1506.65168 Iran. J. Numer. Anal. Optim. 12, No. 2, 467-482 (2022). MSC: 65M70 65M12 65M15 65H10 91A23 35B50 35C20 35A01 11B68 49N70 35Q91 PDF BibTeX XML Cite \textit{M. Dehghan Banadaki} and \textit{H. Navidi}, Iran. J. Numer. Anal. Optim. 12, No. 2, 467--482 (2022; Zbl 1506.65168) Full Text: DOI
Xu, Fuguo; Fu, Qiaobin; Shen, Tielong PMP-based numerical solution for mean field game problem of general nonlinear system. (English) Zbl 1505.91063 Automatica 146, Article ID 110655, 9 p. (2022). MSC: 91A16 49N80 49M15 93C10 PDF BibTeX XML Cite \textit{F. Xu} et al., Automatica 146, Article ID 110655, 9 p. (2022; Zbl 1505.91063) Full Text: DOI
Tessema, Haileyesus; Mengistu, Yehualashet; Kassa, Endeshaw Analysis of the mitigation strategies for marriage divorce: from mathematical modeling perspective. (English) Zbl 1513.34198 J. Appl. Math. Inform. 40, No. 5-6, 857-871 (2022). MSC: 34C60 91D99 49J15 49M15 PDF BibTeX XML Cite \textit{H. Tessema} et al., J. Appl. Math. Inform. 40, No. 5--6, 857--871 (2022; Zbl 1513.34198) Full Text: DOI
Mwasunda, Joshua A.; Chacha, Chacha S.; Stephano, Mussa A.; Irunde, Jacob I. Modelling cystic echinococcosis and bovine cysticercosis co-infections with optimal control. (English) Zbl 1513.92082 Comput. Appl. Math. 41, No. 8, Paper No. 342, 37 p. (2022). MSC: 92D30 34D23 49J15 PDF BibTeX XML Cite \textit{J. A. Mwasunda} et al., Comput. Appl. Math. 41, No. 8, Paper No. 342, 37 p. (2022; Zbl 1513.92082) Full Text: DOI
Prohl, Andreas; Wang, Yanqing Strong error estimates for a space-time discretization of the linear-quadratic control problem with the stochastic heat equation with linear noise. (English) Zbl 1505.65267 IMA J. Numer. Anal. 42, No. 4, 3386-3429 (2022). MSC: 65M60 49M05 49N10 60H15 65C30 80A19 93E20 PDF BibTeX XML Cite \textit{A. Prohl} and \textit{Y. Wang}, IMA J. Numer. Anal. 42, No. 4, 3386--3429 (2022; Zbl 1505.65267) Full Text: DOI arXiv
Haddad, Ghassen; Kebir, Amira; Raissi, Nadia; Bouhali, Amira; Miled, Slimane Ben Optimal control model of tumor treatment in the context of cancer stem cell. (English) Zbl 1501.92045 Math. Biosci. Eng. 19, No. 5, 4627-4642 (2022). MSC: 92C50 92C37 49J15 PDF BibTeX XML Cite \textit{G. Haddad} et al., Math. Biosci. Eng. 19, No. 5, 4627--4642 (2022; Zbl 1501.92045) Full Text: DOI
Berlin, L. M.; Galyaev, A. A. Extremum conditions for constrained scalar control of two nonsynchronous oscillators in the time-optimal control problem. (English. Russian original) Zbl 1498.49039 Dokl. Math. 106, No. 1, 286-290 (2022); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 505, 86-91 (2022). MSC: 49K30 93C30 93C55 70Q05 PDF BibTeX XML Cite \textit{L. M. Berlin} and \textit{A. A. Galyaev}, Dokl. Math. 106, No. 1, 286--290 (2022; Zbl 1498.49039); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 505, 86--91 (2022) Full Text: DOI
Yadav, Sudhakar; Kumar, Vivek A prey-predator model approach to increase the production of crops: mathematical modeling and qualitative analysis. (English) Zbl 1498.92181 Int. J. Biomath. 15, No. 7, Article ID 2250042, 38 p. (2022). MSC: 92D25 92D45 34D23 49J15 PDF BibTeX XML Cite \textit{S. Yadav} and \textit{V. Kumar}, Int. J. Biomath. 15, No. 7, Article ID 2250042, 38 p. (2022; Zbl 1498.92181) Full Text: DOI
Mansimov, K. B.; Mastaliev, R. O. Necessary optimality conditions for singular controls in stochastic Goursat-Darboux systems. (English. Russian original) Zbl 1496.93128 Autom. Remote Control 83, No. 4, 536-547 (2022); translation from Avtom. Telemekh. 2022, No. 4, 47-61 (2022). MSC: 93E20 35R60 49K20 PDF BibTeX XML Cite \textit{K. B. Mansimov} and \textit{R. O. Mastaliev}, Autom. Remote Control 83, No. 4, 536--547 (2022; Zbl 1496.93128); translation from Avtom. Telemekh. 2022, No. 4, 47--61 (2022) Full Text: DOI
Mohan, Manil T. Pontryagin’s maximum principle for distributed optimal control of two dimensional tidal dynamics system with state constraints of integral type. (English) Zbl 1491.49005 Acta Appl. Math. 179, Paper No. 12, 35 p. (2022). MSC: 49J20 49K15 35Q35 35B50 PDF BibTeX XML Cite \textit{M. T. Mohan}, Acta Appl. Math. 179, Paper No. 12, 35 p. (2022; Zbl 1491.49005) Full Text: DOI
Yang, Liu; Song, Da; Fan, Meng; Gao, Lu Transmission dynamics and optimal control of H7N9 in China. (English) Zbl 1492.92127 Int. J. Biomath. 15, No. 4, Article ID 2250007, 27 p. (2022). MSC: 92D30 92C60 49J15 PDF BibTeX XML Cite \textit{L. Yang} et al., Int. J. Biomath. 15, No. 4, Article ID 2250007, 27 p. (2022; Zbl 1492.92127) Full Text: DOI
Mohan, Manil T. Optimal control problems governed by two dimensional convective Brinkman-Forchheimer equations. (English) Zbl 1487.49006 Evol. Equ. Control Theory 11, No. 3, 649-679 (2022). MSC: 49J20 49K20 35Q35 76D03 PDF BibTeX XML Cite \textit{M. T. Mohan}, Evol. Equ. Control Theory 11, No. 3, 649--679 (2022; Zbl 1487.49006) Full Text: DOI arXiv
Lewis, Debra Modeling student engagement using optimal control theory. (English) Zbl 1486.49053 J. Geom. Mech. 14, No. 1, 131-150 (2022). MSC: 49N90 91E40 93B50 PDF BibTeX XML Cite \textit{D. Lewis}, J. Geom. Mech. 14, No. 1, 131--150 (2022; Zbl 1486.49053) Full Text: DOI
Chatterjee, Anal; Pal, Samares Impact of refuge prey: a bottom-up top-down phytoplankton-zooplankton interaction model. (English) Zbl 1486.92313 J. Appl. Nonlinear Dyn. 11, No. 1, 179-194 (2022). MSC: 92D40 92D25 49J20 PDF BibTeX XML Cite \textit{A. Chatterjee} and \textit{S. Pal}, J. Appl. Nonlinear Dyn. 11, No. 1, 179--194 (2022; Zbl 1486.92313) Full Text: DOI
Rodrigues, Hugo Murilo; Fukuoka, Ryuichi Geodesic fields for Pontryagin type \(C^0\)-Finsler manifolds. (English) Zbl 1485.49027 ESAIM, Control Optim. Calc. Var. 28, Paper No. 19, 41 p. (2022). MSC: 49K15 53B40 53C22 49K27 58A05 PDF BibTeX XML Cite \textit{H. M. Rodrigues} and \textit{R. Fukuoka}, ESAIM, Control Optim. Calc. Var. 28, Paper No. 19, 41 p. (2022; Zbl 1485.49027) Full Text: DOI arXiv
Nath, Bhagya Jyoti; Sarmah, Hemanta Kumar; Maurer, Helmut An optimal control strategy for antiretroviral treatment of HIV infection in presence of immunotherapy. (English) Zbl 1494.37056 Qual. Theory Dyn. Syst. 21, No. 2, Paper No. 30, 26 p. (2022). Reviewer: Hongying Shu (Xi’an) MSC: 37N25 37N35 92B05 49K15 92D30 PDF BibTeX XML Cite \textit{B. J. Nath} et al., Qual. Theory Dyn. Syst. 21, No. 2, Paper No. 30, 26 p. (2022; Zbl 1494.37056) Full Text: DOI
Das, Parthasakha; Das, Samhita; Das, Pritha; Rihan, Fathalla A.; Uzuntarla, Muhammet; Ghosh, Dibakar Optimal control strategy for cancer remission using combinatorial therapy: a mathematical model-based approach. (English) Zbl 1498.49071 Chaos Solitons Fractals 145, Article ID 110789, 15 p. (2021). MSC: 49N90 34C60 49K15 92C50 PDF BibTeX XML Cite \textit{P. Das} et al., Chaos Solitons Fractals 145, Article ID 110789, 15 p. (2021; Zbl 1498.49071) Full Text: DOI
Ronzhina, Mariya I.; Manita, Larisa A.; Lokutsievskiy, Lev V. Solutions of a Hamiltonian system with two-dimensional control in a neighbourhood of a singular second-order extremal. (English. Russian original) Zbl 1486.49003 Russ. Math. Surv. 76, No. 5, 936-938 (2021); translation from Usp. Mat. Nauk 76, No. 5, 201-202 (2021). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49J15 49J10 49K15 49N60 34H05 PDF BibTeX XML Cite \textit{M. I. Ronzhina} et al., Russ. Math. Surv. 76, No. 5, 936--938 (2021; Zbl 1486.49003); translation from Usp. Mat. Nauk 76, No. 5, 201--202 (2021) Full Text: DOI
Staritsyn, Maxim; Pogodaev, Nikolay; Goncharova, Elena Feedback maximum principle for a class of linear continuity equations inspired by optimal impulsive control. (English) Zbl 1485.49041 Pardalos, Panos (ed.) et al., Mathematical optimization theory and operations research. 20th international conference, MOTOR 2021, Irkutsk, Russia, July 5–10, 2021. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12755, 356-368 (2021). MSC: 49N25 49N35 49K15 PDF BibTeX XML Cite \textit{M. Staritsyn} et al., Lect. Notes Comput. Sci. 12755, 356--368 (2021; Zbl 1485.49041) Full Text: DOI
Adewole, Matthew O.; Onifade, Akindele A.; Abdullah, Farah A.; Kasali, Funmilayo; Ismail, Ahmad I. M. Modeling the dynamics of COVID-19 in Nigeria. (English) Zbl 1499.92087 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 67, 25 p. (2021). MSC: 92D30 49J15 PDF BibTeX XML Cite \textit{M. O. Adewole} et al., Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 67, 25 p. (2021; Zbl 1499.92087) Full Text: DOI
Goswami, Naba Kumar Modelling analysis of Zika virus with saturated incidence using optimal control theory. (English) Zbl 1482.92098 Int. J. Dyn. Syst. Differ. Equ. 11, No. 3-4, 287-301 (2021). MSC: 92D30 93C15 PDF BibTeX XML Cite \textit{N. K. Goswami}, Int. J. Dyn. Syst. Differ. Equ. 11, No. 3--4, 287--301 (2021; Zbl 1482.92098) Full Text: DOI
Zhang, Xiao-Hong Optimal dynamic pricing strategy for inventory with reference price effects. (English) Zbl 1483.90028 Int. J. Inf. Manage. Sci. 32, No. 1, 77-100 (2021). MSC: 90B05 91B24 PDF BibTeX XML Cite \textit{X.-H. Zhang}, Int. J. Inf. Manage. Sci. 32, No. 1, 77--100 (2021; Zbl 1483.90028) Full Text: DOI
Aliane, Mohamed; Moussouni, Nacima; Bentobache, Mohand Numerical methods for the optimal control of the heel angle of a rocket. (English) Zbl 1489.49022 Int. J. Math. Oper. Res. 20, No. 3, 418-431 (2021). MSC: 49M99 49K15 90C30 PDF BibTeX XML Cite \textit{M. Aliane} et al., Int. J. Math. Oper. Res. 20, No. 3, 418--431 (2021; Zbl 1489.49022) Full Text: DOI
Aseev, S. M. Refined Euler-Lagrange inclusion for an optimal control problem with discontinuous integrand. (English. Russian original) Zbl 1481.49020 Proc. Steklov Inst. Math. 315, 27-55 (2021); translation from Tr. Mat. Inst. Steklova 315, 34-63 (2021). MSC: 49K15 93C20 PDF BibTeX XML Cite \textit{S. M. Aseev}, Proc. Steklov Inst. Math. 315, 27--55 (2021; Zbl 1481.49020); translation from Tr. Mat. Inst. Steklova 315, 34--63 (2021) Full Text: DOI
Mohan, Manil T. First order necessary conditions of optimality for the two dimensional tidal dynamics system. (English) Zbl 1481.49007 Math. Control Relat. Fields 11, No. 4, 739-769 (2021). MSC: 49J20 35Q35 49K20 PDF BibTeX XML Cite \textit{M. T. Mohan}, Math. Control Relat. Fields 11, No. 4, 739--769 (2021; Zbl 1481.49007) Full Text: DOI arXiv
Mondal, Chittaranjan; Adak, Debadatta; Bairagi, Nandadulal Optimal control in a multi-pathways HIV-1 infection model: a comparison between mono-drug and multi-drug therapies. (English) Zbl 1480.92128 Int. J. Control 94, No. 8, 2047-2064 (2021). MSC: 92C60 49J15 PDF BibTeX XML Cite \textit{C. Mondal} et al., Int. J. Control 94, No. 8, 2047--2064 (2021; Zbl 1480.92128) Full Text: DOI
Hrdina, Jaroslav; Návrat, Aleš; Zalabová, Lenka Symmetries in geometric control theory using Maple. (English) Zbl 07431527 Math. Comput. Simul. 190, 474-493 (2021). MSC: 49-XX 93-XX PDF BibTeX XML Cite \textit{J. Hrdina} et al., Math. Comput. Simul. 190, 474--493 (2021; Zbl 07431527) Full Text: DOI
Villanueva, Mario Eduardo; Jones, Colin N.; Houska, Boris Towards global optimal control via Koopman lifts. (English) Zbl 1478.49015 Automatica 132, Article ID 109610, 11 p. (2021). MSC: 49K15 49N35 93B52 93B28 53D05 PDF BibTeX XML Cite \textit{M. E. Villanueva} et al., Automatica 132, Article ID 109610, 11 p. (2021; Zbl 1478.49015) Full Text: DOI arXiv
Ananth, V. S.; Vamsi, D. K. K. An optimal control study with quantity of additional food as control in prey-predator systems involving inhibitory effect. (English) Zbl 1472.92170 Comput. Math. Biophys. 9, No. 1, 114-145 (2021). MSC: 92D25 92D40 92D45 49J30 PDF BibTeX XML Cite \textit{V. S. Ananth} and \textit{D. K. K. Vamsi}, Comput. Math. Biophys. 9, No. 1, 114--145 (2021; Zbl 1472.92170) Full Text: DOI
Mohan, Manil T. The time optimal control of two dimensional convective Brinkman-Forchheimer equations. (English) Zbl 1480.49007 Appl. Math. Optim. 84, No. 3, 3295-3338 (2021). Reviewer: Wei Gong (Beijing) MSC: 49J20 49K15 49S05 35Q35 76D03 PDF BibTeX XML Cite \textit{M. T. Mohan}, Appl. Math. Optim. 84, No. 3, 3295--3338 (2021; Zbl 1480.49007) Full Text: DOI
Hynd, Ryan; Ikpe, Dennis; Pendleton, Terrance An eradication time problem for the SIR model. (English) Zbl 1478.92196 J. Differ. Equations 303, 214-252 (2021). Reviewer: Ran Zhang (Nanjing) MSC: 92D30 92C60 49J15 49L25 PDF BibTeX XML Cite \textit{R. Hynd} et al., J. Differ. Equations 303, 214--252 (2021; Zbl 1478.92196) Full Text: DOI arXiv
Biswas, Tania; Dharmatti, Sheetal; Mohan, Manil T. Second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn-Hillard-Navier-Stokes equations. (English) Zbl 1488.49004 Nonlinear Stud. 28, No. 1, 29-43 (2021). MSC: 49J20 35Q35 76D03 35K65 76D55 49K15 PDF BibTeX XML Cite \textit{T. Biswas} et al., Nonlinear Stud. 28, No. 1, 29--43 (2021; Zbl 1488.49004) Full Text: arXiv Link
Huang, Lirong; Cai, Donghan; Liu, Weiyi Optimal tax policy of a one-predator-two-prey system with a marine protected area. (English) Zbl 1472.34089 Math. Methods Appl. Sci. 44, No. 8, 6876-6895 (2021). MSC: 34C60 92D25 34C05 34D20 92D40 49J15 PDF BibTeX XML Cite \textit{L. Huang} et al., Math. Methods Appl. Sci. 44, No. 8, 6876--6895 (2021; Zbl 1472.34089) Full Text: DOI
Bandaliyev, R. A.; Mamedov, I. G.; Abdullayeva, A. B.; Safarova, K. H. Optimal control problem for a degenerate fractional differential equation. (English) Zbl 1468.49020 Lobachevskii J. Math. 42, No. 6, 1239-1247 (2021). Reviewer: Hector O. Fattorini (Los Angeles) MSC: 49K15 93C10 93C15 PDF BibTeX XML Cite \textit{R. A. Bandaliyev} et al., Lobachevskii J. Math. 42, No. 6, 1239--1247 (2021; Zbl 1468.49020) Full Text: DOI
Wang, Lijuan Minimal time impulse control problem of semilinear heat equation. (English) Zbl 1466.49031 J. Optim. Theory Appl. 188, No. 3, 805-822 (2021). MSC: 49N25 49K30 49K20 49J20 93C20 35K58 PDF BibTeX XML Cite \textit{L. Wang}, J. Optim. Theory Appl. 188, No. 3, 805--822 (2021; Zbl 1466.49031) Full Text: DOI
Goverde, Rob M. P.; Scheepmaker, Gerben M.; Wang, Pengling Pseudospectral optimal train control. (English) Zbl 1487.49048 Eur. J. Oper. Res. 292, No. 1, 353-375 (2021). MSC: 49N90 49K15 49M37 PDF BibTeX XML Cite \textit{R. M. P. Goverde} et al., Eur. J. Oper. Res. 292, No. 1, 353--375 (2021; Zbl 1487.49048) Full Text: DOI
Meng, Xin-You; Qin, Ni-Ni; Huo, Hai-Feng Dynamics of a food chain model with two infected predators. (English) Zbl 1459.92160 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 2, Article ID 2150019, 24 p. (2021). MSC: 92D40 92D30 34D23 34C23 49N90 PDF BibTeX XML Cite \textit{X.-Y. Meng} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 2, Article ID 2150019, 24 p. (2021; Zbl 1459.92160) Full Text: DOI
Koutou, Ousmane; Sangaré, Boureima; Traoré, Bakary Optimal control of malaria transmission dynamics combining some usual strategies and an imperfect vaccine. (English) Zbl 1513.92043 Discuss. Math., Differ. Incl. Control Optim. 40, No. 1, 33-59 (2020). MSC: 92C60 34C60 49K15 49N90 PDF BibTeX XML Cite \textit{O. Koutou} et al., Discuss. Math., Differ. Incl. Control Optim. 40, No. 1, 33--59 (2020; Zbl 1513.92043) Full Text: DOI
Kumar, Anuj; Srivastava, Prashant K.; Dong, Yueping; Takeuchi, Yasuhiro Optimal control of infectious disease: information-induced vaccination and limited treatment. (English) Zbl 07527092 Physica A 542, Article ID 123196, 17 p. (2020). MSC: 82-XX 34H05 49J15 92D30 PDF BibTeX XML Cite \textit{A. Kumar} et al., Physica A 542, Article ID 123196, 17 p. (2020; Zbl 07527092) Full Text: DOI
Kada, Driss; Kouidere, Abdelfatah; Balatif, Omar; Rachik, Mostafa; Labriji, El Houssine Mathematical modeling of the spread of COVID-19 among different age groups in Morocco: optimal control approach for intervention strategies. (English) Zbl 1496.92116 Chaos Solitons Fractals 141, Article ID 110437, 14 p. (2020). MSC: 92D30 49N90 PDF BibTeX XML Cite \textit{D. Kada} et al., Chaos Solitons Fractals 141, Article ID 110437, 14 p. (2020; Zbl 1496.92116) Full Text: DOI
Meng, Xin-You; Wu, Yu-Qian; Li, Jie Bifurcation analysis of a singular nutrient-plankton-fish model with taxation, protected zone and multiple delays. (English) Zbl 1478.92247 Numer. Algebra Control Optim. 10, No. 3, 391-423 (2020). MSC: 92D40 34A09 91B76 34H05 34C23 PDF BibTeX XML Cite \textit{X.-Y. Meng} et al., Numer. Algebra Control Optim. 10, No. 3, 391--423 (2020; Zbl 1478.92247) Full Text: DOI
Meng, Xin-You; Wu, Yu-Qian Dynamical analysis of a fuzzy phytoplankton-zooplankton model with refuge, fishery protection and harvesting. (English) Zbl 1478.92246 J. Appl. Math. Comput. 63, No. 1-2, 361-389 (2020). MSC: 92D40 92D25 91B76 34D23 49J15 PDF BibTeX XML Cite \textit{X.-Y. Meng} and \textit{Y.-Q. Wu}, J. Appl. Math. Comput. 63, No. 1--2, 361--389 (2020; Zbl 1478.92246) Full Text: DOI
Abimbade, S. F.; Olaniyi, S.; Ajala, O. A.; Ibrahim, M. O. Optimal control analysis of a tuberculosis model with exogenous re-infection and incomplete treatment. (English) Zbl 1469.92071 Optim. Control Appl. Methods 41, No. 6, 2349-2368 (2020). MSC: 92C60 34D23 49J15 PDF BibTeX XML Cite \textit{S. F. Abimbade} et al., Optim. Control Appl. Methods 41, No. 6, 2349--2368 (2020; Zbl 1469.92071) Full Text: DOI
Mohan, Manil Thankamani Dynamic programming and feedback analysis of the two dimensional tidal dynamics system. (English) Zbl 1459.49016 ESAIM, Control Optim. Calc. Var. 26, Paper No. 109, 43 p. (2020). MSC: 49L20 49L25 35F21 35Q35 76D03 PDF BibTeX XML Cite \textit{M. T. Mohan}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 109, 43 p. (2020; Zbl 1459.49016) Full Text: DOI
Petrosian, Ovanes; Tur, Anna; Zhou, Jiangjing Pontryagin’s maximum principle for non-cooperative differential games with continuous updating. (English) Zbl 1458.91037 Kochetov, Yury (ed.) et al., Mathematical optimization theory and operations research. 19th international conference, MOTOR 2020, Novosibirsk, Russia, July 6–10, 2020. Revised selected papers. Cham: Springer. Commun. Comput. Inf. Sci. 1275, 256-270 (2020). MSC: 91A23 91A10 49N70 PDF BibTeX XML Cite \textit{O. Petrosian} et al., Commun. Comput. Inf. Sci. 1275, 256--270 (2020; Zbl 1458.91037) Full Text: DOI
Yushkov, M. P. Formulation and solution of a generalized Chebyshev problem. II. (English. Russian original) Zbl 1461.93212 Vestn. St. Petersbg. Univ., Math. 53, No. 4, 459-472 (2020); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 4, 714-733 (2020). Reviewer: Mikhail I. Krastanov (Sofia) MSC: 93C15 70Q05 70F25 PDF BibTeX XML Cite \textit{M. P. Yushkov}, Vestn. St. Petersbg. Univ., Math. 53, No. 4, 459--472 (2020; Zbl 1461.93212); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 7(65), No. 4, 714--733 (2020) Full Text: DOI
Wang, Lisha; Song, Huaming; Yang, Hui; Huang, Fu Optimal dynamic pricing for non-instantaneous deteriorating items dependent on price and time demand. (English) Zbl 1453.90028 Int. J. Comput. Sci. Math. 11, No. 4, 372-384 (2020). MSC: 90B06 49N90 91B24 PDF BibTeX XML Cite \textit{L. Wang} et al., Int. J. Comput. Sci. Math. 11, No. 4, 372--384 (2020; Zbl 1453.90028) Full Text: DOI
Dehghan Banadaki, Mojtaba; Navidi, Hamidreza Numerical solution of open-loop Nash differential games based on the Legendre Tau method. (English) Zbl 1457.91082 Games 11, No. 3, Paper No. 28, 11 p. (2020). MSC: 91A23 91A10 91A05 49N70 PDF BibTeX XML Cite \textit{M. Dehghan Banadaki} and \textit{H. Navidi}, Games 11, No. 3, Paper No. 28, 11 p. (2020; Zbl 1457.91082) Full Text: DOI
Gün Polat, Gülden; Özer, Teoman On group analysis of optimal control problems in economic growth models. (English) Zbl 1477.49029 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2853-2876 (2020). MSC: 49K15 35A30 91B62 PDF BibTeX XML Cite \textit{G. Gün Polat} and \textit{T. Özer}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2853--2876 (2020; Zbl 1477.49029) Full Text: DOI
Shirazian, Mohammad; Effati, Sohrab A novel successive approximation method for solving a class of optimal control problems. (English) Zbl 1463.49031 Casp. J. Math. Sci. 9, No. 1, 124-136 (2020). MSC: 49K15 49M05 PDF BibTeX XML Cite \textit{M. Shirazian} and \textit{S. Effati}, Casp. J. Math. Sci. 9, No. 1, 124--136 (2020; Zbl 1463.49031) Full Text: DOI
Deka, Aniruddha; Pantha, Buddhi; Bhattacharyya, Samit Optimal management of public perceptions during a flu outbreak: a game-theoretic perspective. (English) Zbl 1453.92188 Bull. Math. Biol. 82, No. 11, Paper No. 139, 22 p. (2020). MSC: 92C60 91A22 91A80 PDF BibTeX XML Cite \textit{A. Deka} et al., Bull. Math. Biol. 82, No. 11, Paper No. 139, 22 p. (2020; Zbl 1453.92188) Full Text: DOI
Osmolovskii, N. P.; Veliov, V. M. Metric sub-regularity in optimal control of affine problems with free end state. (English) Zbl 1448.49033 ESAIM, Control Optim. Calc. Var. 26, Paper No. 47, 19 p. (2020). MSC: 49K40 49J53 49J30 49K15 47J30 PDF BibTeX XML Cite \textit{N. P. Osmolovskii} and \textit{V. M. Veliov}, ESAIM, Control Optim. Calc. Var. 26, Paper No. 47, 19 p. (2020; Zbl 1448.49033) Full Text: DOI
Perkins, T. Alex; España, Guido Optimal control of the COVID-19 pandemic with non-pharmaceutical interventions. (English) Zbl 1448.92139 Bull. Math. Biol. 82, No. 9, Paper No. 118, 24 p. (2020). MSC: 92C60 49J15 PDF BibTeX XML Cite \textit{T. A. Perkins} and \textit{G. España}, Bull. Math. Biol. 82, No. 9, Paper No. 118, 24 p. (2020; Zbl 1448.92139) Full Text: DOI
Grigor’eva, E. V.; Khailov, E. N. Minimum-time optimal control for a model of biological wastewater treatment. (English. Russian original) Zbl 1441.93112 Comput. Math. Model. 31, No. 2, 179-189 (2020); translation from Probl. Din. Upr. 2017, No. 8, 27-38 (2017). MSC: 93C10 49N90 93C15 PDF BibTeX XML Cite \textit{E. V. Grigor'eva} and \textit{E. N. Khailov}, Comput. Math. Model. 31, No. 2, 179--189 (2020; Zbl 1441.93112); translation from Probl. Din. Upr. 2017, No. 8, 27--38 (2017) Full Text: DOI
Bandaliyev, R. A.; Mamedov, I. G.; Mardanov, M. J.; Melikov, T. K. Fractional optimal control problem for ordinary differential equation in weighted Lebesgue spaces. (English) Zbl 1448.49026 Optim. Lett. 14, No. 6, 1519-1532 (2020). MSC: 49K15 34A08 PDF BibTeX XML Cite \textit{R. A. Bandaliyev} et al., Optim. Lett. 14, No. 6, 1519--1532 (2020; Zbl 1448.49026) Full Text: DOI
Juneja, Nishant; Agnihotri, Kulbhushan Dynamical behavior of two toxic releasing competing species in presence of predator. (English) Zbl 1447.92521 Differ. Equ. Dyn. Syst. 28, No. 3, 587-601 (2020). MSC: 92D40 92D25 PDF BibTeX XML Cite \textit{N. Juneja} and \textit{K. Agnihotri}, Differ. Equ. Dyn. Syst. 28, No. 3, 587--601 (2020; Zbl 1447.92521) Full Text: DOI
Pogodaev, Nikolay; Staritsyn, Maxim Impulsive control of nonlocal transport equations. (English) Zbl 1439.49062 J. Differ. Equations 269, No. 4, 3585-3623 (2020). MSC: 49N25 49Q22 49K15 49K20 49J45 93C20 PDF BibTeX XML Cite \textit{N. Pogodaev} and \textit{M. Staritsyn}, J. Differ. Equations 269, No. 4, 3585--3623 (2020; Zbl 1439.49062) Full Text: DOI arXiv
Hrdina, Jaroslav; Zalabová, Lenka Local geometric control of a certain mechanism with the growth vector \((4,7)\). (English) Zbl 1439.53034 J. Dyn. Control Syst. 26, No. 2, 199-216 (2020). Reviewer: Peibiao Zhao (Nanjing) MSC: 53C17 93C15 34H05 PDF BibTeX XML Cite \textit{J. Hrdina} and \textit{L. Zalabová}, J. Dyn. Control Syst. 26, No. 2, 199--216 (2020; Zbl 1439.53034) Full Text: DOI arXiv
Kajanovičová, Viktória; Novotný, Branislav; Pospíšil, Michal Ramsey model with non-constant population growth. (English) Zbl 1437.91297 Math. Soc. Sci. 104, 40-46 (2020). MSC: 91B62 91D20 49K15 PDF BibTeX XML Cite \textit{V. Kajanovičová} et al., Math. Soc. Sci. 104, 40--46 (2020; Zbl 1437.91297) Full Text: DOI
Duan, Yueliang; Wang, Lijuan Minimal norm control problem governed by semilinear heat equation with impulse control. (English) Zbl 1434.49029 J. Optim. Theory Appl. 184, No. 2, 400-418 (2020). Reviewer: Wei Gong (Beijing) MSC: 49N25 49K15 49K20 49J20 93C20 PDF BibTeX XML Cite \textit{Y. Duan} and \textit{L. Wang}, J. Optim. Theory Appl. 184, No. 2, 400--418 (2020; Zbl 1434.49029) Full Text: DOI
Ghosh, M.; Olaniyi, S.; Obabiyi, O. S. Mathematical analysis of reinfection and relapse in malaria dynamics. (English) Zbl 1433.92053 Appl. Math. Comput. 373, Article ID 125044, 18 p. (2020). MSC: 92D30 34D23 49K15 49N90 92C60 34C60 PDF BibTeX XML Cite \textit{M. Ghosh} et al., Appl. Math. Comput. 373, Article ID 125044, 18 p. (2020; Zbl 1433.92053) Full Text: DOI
Zhang, Heting; Yang, Zhanwen; Pawelek, Kasia A.; Liu, Shengqiang Optimal control strategies for a two-group epidemic model with vaccination-resource constraints. (English) Zbl 1433.34061 Appl. Math. Comput. 371, Article ID 124956, 24 p. (2020). MSC: 34C25 92C45 92C60 34H05 34D23 34C60 PDF BibTeX XML Cite \textit{H. Zhang} et al., Appl. Math. Comput. 371, Article ID 124956, 24 p. (2020; Zbl 1433.34061) Full Text: DOI
Lin, Ping; Yong, Jiongmin Controlled singular Volterra integral equations and Pontryagin maximum principle. (English) Zbl 1444.45003 SIAM J. Control Optim. 58, No. 1, 136-164 (2020). MSC: 45D05 45G05 34A08 49K15 49K21 PDF BibTeX XML Cite \textit{P. Lin} and \textit{J. Yong}, SIAM J. Control Optim. 58, No. 1, 136--164 (2020; Zbl 1444.45003) Full Text: DOI arXiv
Gün Polat, Gülden; Özer, Teoman The group-theoretical analysis of nonlinear optimal control problems with Hamiltonian formalism. (English) Zbl 1436.70003 J. Nonlinear Math. Phys. 27, No. 1, 106-129 (2020). MSC: 70G65 93C10 91B62 49K20 49N90 PDF BibTeX XML Cite \textit{G. Gün Polat} and \textit{T. Özer}, J. Nonlinear Math. Phys. 27, No. 1, 106--129 (2020; Zbl 1436.70003) Full Text: DOI
Li, Tingting; Guo, Youming Stability and optimal control in a mathematical model of online game addiction. (English) Zbl 1499.34275 Filomat 33, No. 17, 5691-5711 (2019). MSC: 34C60 91D99 34C05 34D20 34D23 49J15 PDF BibTeX XML Cite \textit{T. Li} and \textit{Y. Guo}, Filomat 33, No. 17, 5691--5711 (2019; Zbl 1499.34275) Full Text: DOI
Jeremić, Bojan; Radulović, Radoslav; Zorić, Nemanja; Dražić, Milan Realizing brachistochronic planar motion of a variable mass nonholonomic mechanical system by an ideal holonomic constraint with restricted reaction. (English) Zbl 1499.49064 Filomat 33, No. 14, 4387-4401 (2019). MSC: 49K15 PDF BibTeX XML Cite \textit{B. Jeremić} et al., Filomat 33, No. 14, 4387--4401 (2019; Zbl 1499.49064) Full Text: DOI
Mirhosseini-Alizamini, S. M. Solving linear optimal control problems of the time-delayed systems by Adomian decomposition method. (English) Zbl 1513.49075 Iran. J. Numer. Anal. Optim. 9, No. 2, 165-183 (2019). MSC: 49N05 93C05 PDF BibTeX XML Cite \textit{S. M. Mirhosseini-Alizamini}, Iran. J. Numer. Anal. Optim. 9, No. 2, 165--183 (2019; Zbl 1513.49075) Full Text: DOI
Ozalp, Mustafa Asim; Yildirak, Kasirga; Okur, Yeliz Yolcu Optimal investment strategy and liability ratio for insurer with Lévy risk process. (English) Zbl 1488.91098 Hacet. J. Math. Stat. 48, No. 4, 1232-1249 (2019). MSC: 91G05 60G51 93E20 PDF BibTeX XML Cite \textit{M. A. Ozalp} et al., Hacet. J. Math. Stat. 48, No. 4, 1232--1249 (2019; Zbl 1488.91098) Full Text: Link
Yushkov, M. P. Formulation and solution of a generalized Chebyshev problem. I. (English. Russian original) Zbl 1482.70019 Vestn. St. Petersbg. Univ., Math. 52, No. 4, 436-451 (2019); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 6(64), No. 4, 680-701 (2019). MSC: 70F25 70Q05 PDF BibTeX XML Cite \textit{M. P. Yushkov}, Vestn. St. Petersbg. Univ., Math. 52, No. 4, 436--451 (2019; Zbl 1482.70019); translation from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 6(64), No. 4, 680--701 (2019) Full Text: DOI
Bayón, L.; Fortuny Ayuso, P.; García-Nieto, P. J.; Otero, J. A.; Suárez, P. M.; Tasis, C. Mid-term bio-economic optimization of multi-species fisheries. (English) Zbl 1481.91136 Appl. Math. Modelling 66, 548-561 (2019). MSC: 91B76 49N90 92D40 PDF BibTeX XML Cite \textit{L. Bayón} et al., Appl. Math. Modelling 66, 548--561 (2019; Zbl 1481.91136) Full Text: DOI
Levskii, M. V. Restricted quadratic optimal control of a spacecraft turning in a fixed time period. (English. Russian original) Zbl 1432.49069 J. Comput. Syst. Sci. Int. 58, No. 1, 126-146 (2019); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2019, No. 1, 131-152 (2019). MSC: 49S05 49K15 70G75 PDF BibTeX XML Cite \textit{M. V. Levskii}, J. Comput. Syst. Sci. Int. 58, No. 1, 126--146 (2019; Zbl 1432.49069); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upravl. 2019, No. 1, 131--152 (2019) Full Text: DOI
Baker, Christopher M.; Diele, Fasma; Lacitignola, Deborah; Marangi, Carmela; Martiradonna, Angela Optimal control of invasive species through a dynamical systems approach. (English) Zbl 1430.49019 Nonlinear Anal., Real World Appl. 49, 45-70 (2019). MSC: 49K15 92D25 PDF BibTeX XML Cite \textit{C. M. Baker} et al., Nonlinear Anal., Real World Appl. 49, 45--70 (2019; Zbl 1430.49019) Full Text: DOI
Wang, Lijuan; Yan, Qishu Optimal control problem for exact synchronization of parabolic system. (English) Zbl 1427.93042 Math. Control Relat. Fields 9, No. 3, 411-424 (2019). MSC: 93B05 93C20 49K20 35B50 35K40 PDF BibTeX XML Cite \textit{L. Wang} and \textit{Q. Yan}, Math. Control Relat. Fields 9, No. 3, 411--424 (2019; Zbl 1427.93042) Full Text: DOI
Harroudi, Sanaa; Bentaleb, Dounia; Tabit, Youssef; Amine, Saida; Allali, Karam Optimal control of an HIV infection model with the adaptive immune response and two saturated rates. (English) Zbl 1432.49027 Int. J. Math. Comput. Sci. 14, No. 4, 787-807 (2019). MSC: 49K15 49N90 92C60 34C60 PDF BibTeX XML Cite \textit{S. Harroudi} et al., Int. J. Math. Comput. Sci. 14, No. 4, 787--807 (2019; Zbl 1432.49027) Full Text: Link
Bayen, Terence; Rapaport, Alain Minimal time crisis versus minimum time to reach a viability kernel: a case study in the prey-predator model. (English) Zbl 1458.92060 Optim. Control Appl. Methods 40, No. 2, 330-350 (2019). MSC: 92D25 49N90 PDF BibTeX XML Cite \textit{T. Bayen} and \textit{A. Rapaport}, Optim. Control Appl. Methods 40, No. 2, 330--350 (2019; Zbl 1458.92060) Full Text: DOI HAL
Okosun, K. O.; Khan, M. A.; Bonyah, E.; Okosun, O. O. Cholera-schistosomiasis coinfection dynamics. (English) Zbl 1425.92195 Optim. Control Appl. Methods 40, No. 4, 703-727 (2019). MSC: 92D30 49N90 34D20 PDF BibTeX XML Cite \textit{K. O. Okosun} et al., Optim. Control Appl. Methods 40, No. 4, 703--727 (2019; Zbl 1425.92195) Full Text: DOI
Mirhosseini-Alizamini, Seyed Mehdi; Effati, Sohrab An iterative method for suboptimal control of a class of nonlinear time-delayed systems. (English) Zbl 1425.93122 Int. J. Control 92, No. 12, 2869-2885 (2019). MSC: 93C15 49K15 93B52 93C10 PDF BibTeX XML Cite \textit{S. M. Mirhosseini-Alizamini} and \textit{S. Effati}, Int. J. Control 92, No. 12, 2869--2885 (2019; Zbl 1425.93122) Full Text: DOI
Liu, Kangsheng; Huang, Jingfang; Yu, Xin Error estimates of finite dimensional approximations for the time optimal control problems of parabolic systems. (Chinese. English summary) Zbl 1438.49010 J. Syst. Sci. Math. Sci. 39, No. 2, 311-325 (2019). MSC: 49J20 93-08 PDF BibTeX XML Cite \textit{K. Liu} et al., J. Syst. Sci. Math. Sci. 39, No. 2, 311--325 (2019; Zbl 1438.49010)
Gromova, Ekaterina V.; Magnitskaya, Natalya G. Solution of the differential game with hybrid structure. (English) Zbl 1425.91061 Petrosyan, Leon A. (ed.) et al., Contributions to game theory and management. Volume XII. Collected papers presented at the 12th international conference on game theory and management (GTM 2018), St. Petersburg, Russia, June 27–29, 2018. St. Petersburg: St. Petersburg State University. 159-176 (2019). MSC: 91A23 91A12 49N70 PDF BibTeX XML Cite \textit{E. V. Gromova} and \textit{N. G. Magnitskaya}, in: Contributions to game theory and management. Volume XII. Collected papers presented at the 12th international conference on game theory and management (GTM 2018), St. Petersburg, Russia, June 27--29, 2018. St. Petersburg: St. Petersburg State University. 159--176 (2019; Zbl 1425.91061) Full Text: Link
E, Weinan; Han, Jiequn; Li, Qianxiao A mean-field optimal control formulation of deep learning. (English) Zbl 1421.49021 Res. Math. Sci. 6, No. 1, Paper No. 10, 41 p. (2019). MSC: 49K21 92B20 PDF BibTeX XML Cite \textit{W. E} et al., Res. Math. Sci. 6, No. 1, Paper No. 10, 41 p. (2019; Zbl 1421.49021) Full Text: DOI arXiv
Yu, Xin; Huang, Jingfang; Liu, Kangsheng Finite element approximations of impulsive optimal control problems for heat equations. (English) Zbl 1416.49031 J. Math. Anal. Appl. 477, No. 1, 250-271 (2019). MSC: 49M25 65M60 35K05 PDF BibTeX XML Cite \textit{X. Yu} et al., J. Math. Anal. Appl. 477, No. 1, 250--271 (2019; Zbl 1416.49031) Full Text: DOI
Olivier, Antoine; Pouchol, Camille Combination of direct methods and homotopy in numerical optimal control: application to the optimization of chemotherapy in cancer. (English) Zbl 1416.49024 J. Optim. Theory Appl. 181, No. 2, 479-503 (2019). MSC: 49M05 49M25 92C50 49S05 PDF BibTeX XML Cite \textit{A. Olivier} and \textit{C. Pouchol}, J. Optim. Theory Appl. 181, No. 2, 479--503 (2019; Zbl 1416.49024) Full Text: DOI arXiv