Jain, Deepak; Kumar, Sanjay; Park, Choonkil Variants of \(R\)-weakly commuting mappings satisfying a weak contraction. (English) Zbl 07363686 Miskolc Math. Notes 22, No. 1, 259-271 (2021). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{D. Jain} et al., Miskolc Math. Notes 22, No. 1, 259--271 (2021; Zbl 07363686) Full Text: DOI OpenURL
Sun, Yuxin; Gu, Feng A new common fixed point theorem for \(R\)-weakly commuting mappings in the \(S\)-metric space. (Chinese. English summary) Zbl 1463.54142 J. Hangzhou Norm. Univ., Nat. Sci. 19, No. 1, 71-75 (2020). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{Y. Sun} and \textit{F. Gu}, J. Hangzhou Norm. Univ., Nat. Sci. 19, No. 1, 71--75 (2020; Zbl 1463.54142) Full Text: DOI OpenURL
Das, Krishnapada Common fixed point results for non-compatible \(R\)-weakly commuting mappings in probabilistic semimetric spaces using control functions. (English) Zbl 07139824 Korean J. Math. 27, No. 3, 629-643 (2019). MSC: 47H10 54H25 54E70 PDF BibTeX XML Cite \textit{K. Das}, Korean J. Math. 27, No. 3, 629--643 (2019; Zbl 07139824) Full Text: DOI OpenURL
Bouhadjera, H. More general common fixed point theorems under a new concept. (English) Zbl 1338.54158 Demonstr. Math. 49, No. 1, 64-78 (2016). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{H. Bouhadjera}, Demonstr. Math. 49, No. 1, 64--78 (2016; Zbl 1338.54158) Full Text: DOI OpenURL
Murthy, Penumarthy Parvateesam; Devi Patel, Uma Common fixed point theorems of Greguš type \((\phi, \psi)\)-weak contraction for \(R\)-weakly commuting mappings in 2-metric spaces. (English) Zbl 1371.54181 J. Oper. 2015, Article ID 195731, 9 p. (2015). MSC: 54H25 54C60 54E40 PDF BibTeX XML Cite \textit{P. P. Murthy} and \textit{U. Devi Patel}, J. Oper. 2015, Article ID 195731, 9 p. (2015; Zbl 1371.54181) Full Text: DOI OpenURL
Das, Nanda Ram; Saha, Mintu Lal On fixed points in complete fuzzy normed linear spaces. (English) Zbl 1334.47075 Ann. Fuzzy Math. Inform. 10, No. 4, 515-524 (2015). MSC: 47S40 47H10 PDF BibTeX XML Cite \textit{N. R. Das} and \textit{M. L. Saha}, Ann. Fuzzy Math. Inform. 10, No. 4, 515--524 (2015; Zbl 1334.47075) Full Text: Link OpenURL
Yang, Zhongzhi; Sadati, Hassan; Sedghi, Shaban; Shobe, Nabi Common fixed point theorems for non-compatible self-maps in \(b\)-metric spaces. (English) Zbl 1437.54075 J. Nonlinear Sci. Appl. 8, No. 6, 1022-1031 (2015). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{Z. Yang} et al., J. Nonlinear Sci. Appl. 8, No. 6, 1022--1031 (2015; Zbl 1437.54075) Full Text: DOI Link OpenURL
Pant, B. D.; Chauhan, Sunny; Chaudhari, Shikha An integral type fixed point theorem in generalized metric space. (English) Zbl 1325.54044 Panam. Math. J. 25, No. 2, 52-70 (2015). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{B. D. Pant} et al., Panam. Math. J. 25, No. 2, 52--70 (2015; Zbl 1325.54044) OpenURL
Manro, S. A common fixed point theorem in fuzzy metric space using implicit relation. (English) Zbl 1320.54037 Int. J. Math. Stat. 16, No. 2, 35-42 (2015). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. Manro}, Int. J. Math. Stat. 16, No. 2, 35--42 (2015; Zbl 1320.54037) Full Text: Link OpenURL
Chauhan, Sunny; Vujaković, Jelena; Haq, Shamsul Employing common limit range property with variants of \(R\)-weakly commuting mappings in metric spaces. (English) Zbl 1321.54075 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 22, No. 2, 127-138 (2015). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. Chauhan} et al., J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 22, No. 2, 127--138 (2015; Zbl 1321.54075) Full Text: DOI OpenURL
Manro, Saurabh; Tomar, Anita Common fixed point theorems for \(R\)-weakly commuting maps satisfying common property \((E. A.)\) in intuitionistic fuzzy metric spaces using implicit relation. (English) Zbl 1330.54061 J. Indian Math. Soc., New Ser. 82, No. 1-2, 79-95 (2015). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. Manro} and \textit{A. Tomar}, J. Indian Math. Soc., New Ser. 82, No. 1--2, 79--95 (2015; Zbl 1330.54061) OpenURL
Singh, Deepak; Ahmed, Amin; Singh, Madhu; Tomar, Surjeet Singh A common fixed point theorem via family of R-weakly commuting maps. (English) Zbl 1413.54184 J. Nonlinear Anal. Optim. 5, No. 1, 115-123 (2014). MSC: 54H25 54E70 PDF BibTeX XML Cite \textit{D. Singh} et al., J. Nonlinear Anal. Optim. 5, No. 1, 115--123 (2014; Zbl 1413.54184) Full Text: Link OpenURL
Yang, Zhongzhi Common fixed point theorems for non-compatible self-maps in generalized metric spaces. (English) Zbl 1469.54205 J. Inequal. Appl. 2014, Paper No. 275, 12 p. (2014). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{Z. Yang}, J. Inequal. Appl. 2014, Paper No. 275, 12 p. (2014; Zbl 1469.54205) Full Text: DOI OpenURL
Manro, Saurabh A common fixed point theorem for four mappings in intuitionistic fuzzy metric space. (English) Zbl 1389.54101 Gulf J. Math. 2, No. 4, 78-86 (2014). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. Manro}, Gulf J. Math. 2, No. 4, 78--86 (2014; Zbl 1389.54101) OpenURL
Manro, Saurabh Weak reciprocal continuity and common fixed point theorems in Menger spaces using implicit relation. (English) Zbl 1329.54048 Panam. Math. J. 24, No. 4, 14-25 (2014). Reviewer: Cihangir Alaca (Manisa) MSC: 54H25 54E40 54E70 PDF BibTeX XML Cite \textit{S. Manro}, Panam. Math. J. 24, No. 4, 14--25 (2014; Zbl 1329.54048) OpenURL
Sintunavarat, Wutiphol; Chauhan, Sunny; Kumam, Poom Some fixed point results in modified intuitionistic fuzzy metric spaces. (English) Zbl 1316.54021 Afr. Mat. 25, No. 2, 461-473 (2014). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{W. Sintunavarat} et al., Afr. Mat. 25, No. 2, 461--473 (2014; Zbl 1316.54021) Full Text: DOI OpenURL
Kang, Shin Min; Kumar, Sanjay; Gupta, Vishal; Singh, Balbir Some common fixed point theorems for weakly reciprocally continuous mappings in a fuzzy metric space. (English) Zbl 1309.54018 Int. J. Pure Appl. Math. 93, No. 2, 261-274 (2014). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. M. Kang} et al., Int. J. Pure Appl. Math. 93, No. 2, 261--274 (2014; Zbl 1309.54018) Full Text: DOI Link OpenURL
Phaneendra, T.; Prasad, V. S. R. Two generalized common fixed point theorems involving compatibility and property E.A. (English) Zbl 1293.54034 Demonstr. Math. 47, No. 2, 449-458 (2014). MSC: 54H25 PDF BibTeX XML Cite \textit{T. Phaneendra} and \textit{V. S. R. Prasad}, Demonstr. Math. 47, No. 2, 449--458 (2014; Zbl 1293.54034) Full Text: DOI OpenURL
Manro, Saurabh; Kang, Shin Min Common fixed point theorems for four mappings in intuitionistic fuzzy metric spaces. (English) Zbl 1304.54086 Int. J. Pure Appl. Math. 91, No. 2, 253-264 (2014). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{S. Manro} and \textit{S. M. Kang}, Int. J. Pure Appl. Math. 91, No. 2, 253--264 (2014; Zbl 1304.54086) Full Text: DOI Link OpenURL
Kang, Shin Min; Kumar, Manoj; Kumar, Pankaj; Kumar, Sanjay Fixed point theorems for \(\phi\)-weakly expansive mappings in metric spaces. (English) Zbl 1300.54072 Int. J. Pure Appl. Math. 90, No. 2, 143-152 (2014). Reviewer: Ioan A. Rus (Cluj-Napoca) MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. M. Kang} et al., Int. J. Pure Appl. Math. 90, No. 2, 143--152 (2014; Zbl 1300.54072) Full Text: DOI Link OpenURL
Ali, Muhammad Usman; Kamran, Tayyab Hybrid generalized contractions. (English) Zbl 1295.54041 Math. Sci., Springer 7, Paper No. 29, 5 p. (2013). MSC: 54H25 54E40 54C60 PDF BibTeX XML Cite \textit{M. U. Ali} and \textit{T. Kamran}, Math. Sci., Springer 7, Paper No. 29, 5 p. (2013; Zbl 1295.54041) Full Text: DOI OpenURL
Prasad, Bhagwati; Sahni, Ritu Common fixed point theorems for \(\psi\)-weakly commuting maps in fuzzy metric space. (English) Zbl 1304.54089 Acta Comment. Univ. Tartu. Math. 17, No. 2, 117-126 (2013). Reviewer: Salvatore Sessa (Napoli) MSC: 54H25 54A40 54E50 PDF BibTeX XML Cite \textit{B. Prasad} and \textit{R. Sahni}, Acta Comment. Univ. Tartu. Math. 17, No. 2, 117--126 (2013; Zbl 1304.54089) Full Text: DOI OpenURL
Singh, Deepak; Ahmed, Amin Fixed point theorems via family of maps in weak non-Archimedean Menger PM-spaces. (English) Zbl 1294.54041 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 20, No. 3, 181-198 (2013). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{D. Singh} and \textit{A. Ahmed}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 20, No. 3, 181--198 (2013; Zbl 1294.54041) Full Text: DOI OpenURL
Manro, Saurabh; Kumar, Sanjay; Bhatia, Satwinder Singh; Kang, Shin Min Common fixed point theorems for contraction mappings using weak reciprocal continuity. (English) Zbl 1278.54038 Int. J. Pure Appl. Math. 88, No. 1, 77-90 (2013). MSC: 54H25 54E40 54E70 PDF BibTeX XML Cite \textit{S. Manro} et al., Int. J. Pure Appl. Math. 88, No. 1, 77--90 (2013; Zbl 1278.54038) Full Text: DOI Link OpenURL
Kaewcharoen, Anchalee Fixed point theorems and convergence theorems for generalized nonexpansive mappings. (English) Zbl 1475.47090 Far East J. Math. Sci. (FJMS) 77, No. 1, 85-104 (2013). MSC: 47J26 47H09 54H25 54E40 PDF BibTeX XML Cite \textit{A. Kaewcharoen}, Far East J. Math. Sci. (FJMS) 77, No. 1, 85--104 (2013; Zbl 1475.47090) Full Text: Link OpenURL
Shatanawi, Wasfi; Chauhan, Sunny; Postolache, Mihai; Abbas, Mujahid; Radenović, Stojan Common fixed points for contractive mappings of integral type in \(G\)-metric spaces. (English) Zbl 1278.54047 J. Adv. Math. Stud. 6, No. 1, 53-72 (2013). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{W. Shatanawi} et al., J. Adv. Math. Stud. 6, No. 1, 53--72 (2013; Zbl 1278.54047) OpenURL
Saluja, A. S.; Jain, Mukesh Kumar; Jhade, Pankaj Kumar Weak semi compatibility and fixed point theorems. (English) Zbl 1446.47044 Bull. Int. Math. Virtual Inst. 2, No. 2, 205-217 (2012). MSC: 54H25 54E40 54E50 PDF BibTeX XML Cite \textit{A. S. Saluja} et al., Bull. Int. Math. Virtual Inst. 2, No. 2, 205--217 (2012; Zbl 1446.47044) Full Text: Link OpenURL
Gopal, D.; Imdad, M.; Hasan, M.; Patel, D. K. An erratum to: “Proving common fixed point theorems for Lipschitz type mappings via absorbing pairs”. (English) Zbl 1314.47080 Bull. Math. Anal. Appl. 4, No. 4, 45-46 (2012). MSC: 47H10 PDF BibTeX XML Cite \textit{D. Gopal} et al., Bull. Math. Anal. Appl. 4, No. 4, 45--46 (2012; Zbl 1314.47080) Full Text: Link OpenURL
Manro, Saurabh; Bhatia, S. S.; Kumar, Sanjay Common fixed point theorems in fuzzy metric spaces. (English) Zbl 1301.54020 Ann. Fuzzy Math. Inform. 3, No. 1, 151-158 (2012). MSC: 54A40 54E35 54H25 PDF BibTeX XML Cite \textit{S. Manro} et al., Ann. Fuzzy Math. Inform. 3, No. 1, 151--158 (2012; Zbl 1301.54020) Full Text: Link OpenURL
Sintunavarat, Wutiphol; Kumam, Poom Common fixed points for \(R\)-weakly commuting in fuzzy metric spaces. (English) Zbl 1302.54088 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 58, No. 2, 389-406 (2012). MSC: 54H25 54E40 47H10 54E99 PDF BibTeX XML Cite \textit{W. Sintunavarat} and \textit{P. Kumam}, Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 58, No. 2, 389--406 (2012; Zbl 1302.54088) Full Text: DOI OpenURL
Manro, Saurabh; Kumam, Poom Common fixed point theorems for expansion mappings in various abstract spaces using the concept of weak reciprocal continuity. (English) Zbl 1278.54037 Fixed Point Theory Appl. 2012, Paper No. 221, 12 p. (2012); erratum ibid. 2013, Paper No. 8 (2013). MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{S. Manro} and \textit{P. Kumam}, Fixed Point Theory Appl. 2012, Paper No. 221, 12 p. (2012; Zbl 1278.54037) Full Text: DOI OpenURL
Gopal, Dhananjay; Imdad, Mohammad; Abbas, Mujahid Metrical common fixed point theorems without completeness and closedness. (English) Zbl 1274.54124 Fixed Point Theory Appl. 2012, Paper No. 18, 9 p. (2012). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{D. Gopal} et al., Fixed Point Theory Appl. 2012, Paper No. 18, 9 p. (2012; Zbl 1274.54124) Full Text: DOI OpenURL
Sharma, Arvind Kumar; Badshah, V. H.; Gupta, V. K.; Sharma, Ajay A common fixed point theorem for three self mappings in a fuzzy metric space. (English) Zbl 1273.54074 Int. J. Contemp. Math. Sci. 7, No. 29-32, 1509-1518 (2012). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{A. K. Sharma} et al., Int. J. Contemp. Math. Sci. 7, No. 29--32, 1509--1518 (2012; Zbl 1273.54074) Full Text: Link OpenURL
Choudhury, Binayak S.; Kutukcu, Servet; Das, Krishnapada On fixed points in non-Archimedean Menger PM-spaces. (English) Zbl 1293.54020 Kochi J. Math. 7, 41-50 (2012). Reviewer: S. L. Singh (Rishikesh) MSC: 54H25 54E70 47S10 PDF BibTeX XML Cite \textit{B. S. Choudhury} et al., Kochi J. Math. 7, 41--50 (2012; Zbl 1293.54020) OpenURL
Shobe, Nabi; Sedgh, Shaban; Choudhury, Binayak S. Relation between metric and fuzzy metric spaces and some fixed point theorems. (English) Zbl 1236.54046 J. Appl. Math. Inform. 30, No. 1-2, 265-278 (2012). MSC: 54H25 54A40 54E40 54E35 PDF BibTeX XML Cite \textit{N. Shobe} et al., J. Appl. Math. Inform. 30, No. 1--2, 265--278 (2012; Zbl 1236.54046) OpenURL
Gopal, D.; Imdad, M.; Hasan, M.; Patel, D. K. Proving common fixed point theorems for Lipschitz type mappings via absorbing pairs. (Proving common fixed point theorems for Lipschitz type mappings via absorbing pair.) (English) Zbl 1314.47081 Bull. Math. Anal. Appl. 3, No. 4, 92-100 (2011); erratum ibid. 4, No. 4, 45-46 (2012). MSC: 47H10 PDF BibTeX XML Cite \textit{D. Gopal} et al., Bull. Math. Anal. Appl. 3, No. 4, 92--100 (2011; Zbl 1314.47081) Full Text: Link OpenURL
Al-Mezel, Saleh Abdullah Common fixed points and best approximations in locally convex spaces. (English) Zbl 1275.41039 Fixed Point Theory Appl. 2011, Paper No. 99, 9 p. (2011). MSC: 41A65 46A03 47H10 54H25 PDF BibTeX XML Cite \textit{S. A. Al-Mezel}, Fixed Point Theory Appl. 2011, Paper No. 99, 9 p. (2011; Zbl 1275.41039) Full Text: DOI OpenURL
Abbas, Mujahid; Khan, Safeer Hussain; Nazir, Talat Common fixed points of \(R\)-weakly commuting maps in generalized metric spaces. (English) Zbl 1271.54069 Fixed Point Theory Appl. 2011, Paper No. 41, 11 p. (2011). MSC: 54H25 47H10 54E50 PDF BibTeX XML Cite \textit{M. Abbas} et al., Fixed Point Theory Appl. 2011, Paper No. 41, 11 p. (2011; Zbl 1271.54069) Full Text: DOI OpenURL
Shrivastava, Rajesh; M., Vijyakumar; Kohli, Manavi; Singhvi, Jitendra; Bhardwaj, Ramakant Some common fixed points for R-weakly commuting maps in fuzzy metric spaces. (English) Zbl 1248.54032 Int. J. Contemp. Math. Sci. 6, No. 33-36, 1629-1634 (2011). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{R. Shrivastava} et al., Int. J. Contemp. Math. Sci. 6, No. 33--36, 1629--1634 (2011; Zbl 1248.54032) Full Text: Link OpenURL
Manro, S.; Kumar, S.; Bhatia, S. S. \(R\)-weakly commuting maps in \(G\)-metric spaces. (English) Zbl 1237.54055 Fasc. Math. 47, 11-17 (2011). MSC: 54H25 54E50 PDF BibTeX XML Cite \textit{S. Manro} et al., Fasc. Math. 47, 11--17 (2011; Zbl 1237.54055) OpenURL
Pant, R. P.; Bisht, R. K.; Arora, D. Weak reciprocal continuity and fixed point theorems. (English) Zbl 1223.54068 Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 57, No. 1, 181-190 (2011). Reviewer: In-Sook Kim (Suwon) MSC: 54H25 47H10 47H09 54E40 PDF BibTeX XML Cite \textit{R. P. Pant} et al., Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 57, No. 1, 181--190 (2011; Zbl 1223.54068) Full Text: DOI OpenURL
Kumar, Sanjay A note on Jungck’s fixed point theorem. (English) Zbl 1277.54035 Fasc. Math. 45, 59-69 (2010). Reviewer: Dariusz Bugajewski (Poznań) MSC: 54H25 54E50 PDF BibTeX XML Cite \textit{S. Kumar}, Fasc. Math. 45, 59--69 (2010; Zbl 1277.54035) Full Text: Link OpenURL
Manro, Saurabh; Bhatia, S. S.; Kumar, Sanjay Expansion mapping theorems in \(G\)-metric spaces. (English) Zbl 1284.54060 Int. J. Contemp. Math. Sci. 5, No. 49-52, 2529-2535 (2010). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{S. Manro} et al., Int. J. Contemp. Math. Sci. 5, No. 49--52, 2529--2535 (2010; Zbl 1284.54060) Full Text: Link OpenURL
Kumar, Sanjay; Garg, S. K.; Vats, Ramesh Kumar Fixed point theorems for coincidence maps in intuitionistic fuzzy metric space. (English) Zbl 1218.54043 Int. J. Math. Anal., Ruse 4, No. 9-12, 537-545 (2010). Reviewer: Bhavana Deshpande (Ratlam) MSC: 54H25 54A40 54E99 PDF BibTeX XML Cite \textit{S. Kumar} et al., Int. J. Math. Anal., Ruse 4, No. 9--12, 537--545 (2010; Zbl 1218.54043) Full Text: Link OpenURL
Nashine, Hemant Kumar Existence of common random fixed point and random best approximation for non-commuting random operators. (English) Zbl 1204.41020 Bull. Inst. Math., Acad. Sin. (N.S.) 5, No. 1, 25-40 (2010). Reviewer: Cristinel Mortici (Targoviste) MSC: 41A50 41A65 47H10 60H25 PDF BibTeX XML Cite \textit{H. K. Nashine}, Bull. Inst. Math., Acad. Sin. (N.S.) 5, No. 1, 25--40 (2010; Zbl 1204.41020) OpenURL
Khan, M. Alamgir; Sumitra Common fixed point theorems in non-Archimedean Menger PM-space. (English) Zbl 1235.54042 JP J. Fixed Point Theory Appl. 5, No. 1, 1-13 (2010). Reviewer: S. L. Singh (Rishikesh) MSC: 54H25 54E70 47H10 PDF BibTeX XML Cite \textit{M. A. Khan} and \textit{Sumitra}, JP J. Fixed Point Theory Appl. 5, No. 1, 1--13 (2010; Zbl 1235.54042) Full Text: Link OpenURL
Jha, Kanhaiya Generalized fixed point theorem in fuzzy metric space. (English) Zbl 1427.54050 Nepali Math. Sci. Rep. 29, No. 1-2, 69-74 (2009). MSC: 54H25 54A40 54E40 PDF BibTeX XML Cite \textit{K. Jha}, Nepali Math. Sci. Rep. 29, No. 1--2, 69--74 (2009; Zbl 1427.54050) OpenURL
Rangamma, M.; Mallikarjun Reddy, G.; Srikantha Rao, P. Common fixed point theorems for six self mappings in fuzzy metric spaces and under compatibility of type \((\beta)\). (English) Zbl 1232.54038 J. Indian Math. Soc., New Ser. 76, No. 1-4, 129-140 (2009). Reviewer: Hüseyin Çakalli (Istanbul) MSC: 54H25 54A40 54E50 PDF BibTeX XML Cite \textit{M. Rangamma} et al., J. Indian Math. Soc., New Ser. 76, No. 1--4, 129--140 (2009; Zbl 1232.54038) OpenURL
Nashine, Hemant Kumar; Khan, M. S. Random best approximations for \(R\)-subweakly commuting maps. (English) Zbl 1222.41035 Nonlinear Funct. Anal. Appl. 14, No. 3, 377-389 (2009). Reviewer: T.S.S.R.K. Rao (Bangalore) MSC: 41A50 41A65 PDF BibTeX XML Cite \textit{H. K. Nashine} and \textit{M. S. Khan}, Nonlinear Funct. Anal. Appl. 14, No. 3, 377--389 (2009; Zbl 1222.41035) OpenURL
Nashine, Hemant Kumar Invariant approximation results for generalized \((I,{\mathcal I})\)-nonexpansive mappings. (English) Zbl 1182.41026 Afr. Diaspora J. Math. 7, No. 2, 151-163 (2009). MSC: 41A50 47H10 PDF BibTeX XML Cite \textit{H. K. Nashine}, Afr. Diaspora J. Math. 7, No. 2, 151--163 (2009; Zbl 1182.41026) OpenURL
Nashine, Hemant Kumar Random approximation for non-commuting random operators in \(q\)-normed spaces. (English) Zbl 1199.41158 Random Oper. Stoch. Equ. 16, No. 4, 383-397 (2008). Reviewer: Rostyslav E. Yamnenko (Kyïv) MSC: 41A50 41A65 47H10 60H25 PDF BibTeX XML Cite \textit{H. K. Nashine}, Random Oper. Stoch. Equ. 16, No. 4, 383--397 (2008; Zbl 1199.41158) Full Text: DOI OpenURL
Miheţ, Dorel A counterexample to ”Common fixed point theorem in probabilistic quasi-metric spaces”. (English) Zbl 1160.54314 J. Nonlinear Sci. Appl. 1, No. 2, 121-122 (2008). MSC: 54E70 54H25 PDF BibTeX XML Cite \textit{D. Miheţ}, J. Nonlinear Sci. Appl. 1, No. 2, 121--122 (2008; Zbl 1160.54314) Full Text: DOI EuDML EMIS OpenURL
Shabani, A. R.; Ghasempour, S. Common fixed point theorem in probabilistic quasi-metric spaces. (English) Zbl 1160.54329 J. Nonlinear Sci. Appl. 1, No. 1, 31-35 (2008). MSC: 54H25 54E70 PDF BibTeX XML Cite \textit{A. R. Shabani} and \textit{S. Ghasempour}, J. Nonlinear Sci. Appl. 1, No. 1, 31--35 (2008; Zbl 1160.54329) Full Text: DOI EuDML EMIS OpenURL
Kamran, Tayyab Coincidence and fixed points of contractive type multivalued maps. (English) Zbl 1151.54342 Georgian Math. J. 15, No. 1, 63-70 (2008). MSC: 54H25 PDF BibTeX XML Cite \textit{T. Kamran}, Georgian Math. J. 15, No. 1, 63--70 (2008; Zbl 1151.54342) Full Text: Link OpenURL
Dimri, R. C.; Gariya, N. S. A common fixed point theorem in Menger spaces. (English) Zbl 1234.54055 Jñānābha 37, 77-82 (2007). Reviewer: Dorel Miheţ (Timişoara) MSC: 54H25 54E70 PDF BibTeX XML Cite \textit{R. C. Dimri} and \textit{N. S. Gariya}, Jñānābha 37, 77--82 (2007; Zbl 1234.54055) OpenURL
Kutukcu, Servet; Sharma, Sushil; Tokgoz, Hanifi A fixed point theorem in fuzzy metric spaces. (English) Zbl 1148.47054 Int. J. Math. Anal., Ruse 1, No. 17-20, 861-872 (2007). Reviewer: Ismat Beg (Lahore) MSC: 47S40 47H10 46S40 54H25 PDF BibTeX XML Cite \textit{S. Kutukcu} et al., Int. J. Math. Anal., Ruse 1, No. 17--20, 861--872 (2007; Zbl 1148.47054) OpenURL
Nashine, Hemant Kumar Invariant approximations for noncommuting generalized \((\mathcal I, \mathcal J)\)-nonexpansive mappings in \(q\)-normed spaces. (English) Zbl 1119.41024 Filomat 20, No. 2, 55-65 (2006). Reviewer: Zoran Kadelburg (Beograd) MSC: 41A50 47H10 46A16 PDF BibTeX XML Cite \textit{H. K. Nashine}, Filomat 20, No. 2, 55--65 (2006; Zbl 1119.41024) Full Text: DOI OpenURL
Kubiaczyk, Ireneusz; Deshpande, Bhavana Coincidence point for noncompatible multivalued maps satisfying an implicit relation. (English) Zbl 1118.47048 Demonstr. Math. 39, No. 4, 855-862 (2006). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 47H10 47H04 54H25 54C60 PDF BibTeX XML Cite \textit{I. Kubiaczyk} and \textit{B. Deshpande}, Demonstr. Math. 39, No. 4, 855--862 (2006; Zbl 1118.47048) Full Text: DOI OpenURL
Singh, S. L.; Hashim, Amal M. New coincidence and fixed point theorems for strictly contractive hybrid maps. (English) Zbl 1111.54034 Aust. J. Math. Anal. Appl. 2, No. 1, Article 12, 7 p. (2005). Reviewer: Zvonko Čerin (Zagreb) MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{S. L. Singh} and \textit{A. M. Hashim}, Aust. J. Math. Anal. Appl. 2, No. 1, Article 12, 7 p. (2005; Zbl 1111.54034) OpenURL
Kamran, Tayyab Noncommuting \(f\)-contraction mappings. (English) Zbl 1085.54029 Novi Sad J. Math. 34, No. 1, 33-37 (2004). Reviewer: Ljubiša Kočinac (Niš) MSC: 54H25 54C60 PDF BibTeX XML Cite \textit{T. Kamran}, Novi Sad J. Math. 34, No. 1, 33--37 (2004; Zbl 1085.54029) Full Text: EuDML OpenURL
Singh, S. L.; Kumar, Ashish Fixed point theorems for Lipschitz type maps. (English) Zbl 1069.54028 Riv. Mat. Univ. Parma (7) 3, 25-34 (2004). Reviewer: S. L. Singh (Rishikesh) MSC: 54H25 47H10 PDF BibTeX XML Cite \textit{S. L. Singh} and \textit{A. Kumar}, Riv. Mat. Univ. Parma (7) 3, 25--34 (2004; Zbl 1069.54028) OpenURL
Singh, S. L.; Tomar, Anita Fixed point theorems in \(FM\)-spaces. (English) Zbl 1078.54027 J. Fuzzy Math. 12, No. 4, 845-859 (2004). Reviewer: S. Ganguly (Kolkata) MSC: 54H25 54A40 PDF BibTeX XML Cite \textit{S. L. Singh} and \textit{A. Tomar}, J. Fuzzy Math. 12, No. 4, 845--859 (2004; Zbl 1078.54027) OpenURL
Chugh, Renu; Savita Common fixed points of four \(R\)-weakly commuting mappings. (English) Zbl 1115.47308 J. Indian Math. Soc., New Ser. 70, No. 1-4, 185-189 (2003). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{R. Chugh} and \textit{Savita}, J. Indian Math. Soc., New Ser. 70, No. 1--4, 185--189 (2003; Zbl 1115.47308) OpenURL
Singh, S. L.; Mishra, S. N. Coincidences and fixed points of nonself hybrid contractions. (English) Zbl 0985.47046 J. Math. Anal. Appl. 256, No. 2, 486-497 (2001). Reviewer: Billy E.Rhoades (Bloomington) MSC: 47H10 47J05 47H09 47H04 PDF BibTeX XML Cite \textit{S. L. Singh} and \textit{S. N. Mishra}, J. Math. Anal. Appl. 256, No. 2, 486--497 (2001; Zbl 0985.47046) Full Text: DOI OpenURL
Vasuki, R. Common fixed points for R-weakly commuting maps in fuzzy metric spaces. (English) Zbl 0924.54010 Indian J. Pure Appl. Math. 30, No. 4, 419-423 (1999). MSC: 54A40 54H25 54E35 PDF BibTeX XML Cite \textit{R. Vasuki}, Indian J. Pure Appl. Math. 30, No. 4, 419--423 (1999; Zbl 0924.54010) OpenURL