Dai, Xuanzhong Chiral de Rham complex on the upper half plane and modular forms. (English) Zbl 07643550 Int. Math. Res. Not. 2022, No. 24, 19258-19299 (2022). Reviewer: Matthew Krauel (Sacramento) MSC: 11F22 17B69 PDF BibTeX XML Cite \textit{X. Dai}, Int. Math. Res. Not. 2022, No. 24, 19258--19299 (2022; Zbl 07643550) Full Text: DOI arXiv
Kumari, Moni; Sahu, Brundaban Rankin-Cohen type operators for Hilbert-Jacobi forms. (English) Zbl 1469.11108 Ramakrishnan, B. (ed.) et al., Modular forms and related topics in number theory. Proceedings of the international conference on number theory, ICNT 2018, Kozhikode, India, December 10–14, 2018. Singapore: Springer. Springer Proc. Math. Stat. 340, 143-156 (2020). MSC: 11F41 11F50 11F60 PDF BibTeX XML Cite \textit{M. Kumari} and \textit{B. Sahu}, Springer Proc. Math. Stat. 340, 143--156 (2020; Zbl 1469.11108) Full Text: DOI
Kumar, Arvind; Meher, Jaban Rankin-Cohen brackets and identities among eigenforms. II. (English) Zbl 1469.11075 Ramakrishnan, B. (ed.) et al., Modular forms and related topics in number theory. Proceedings of the international conference on number theory, ICNT 2018, Kozhikode, India, December 10–14, 2018. Singapore: Springer. Springer Proc. Math. Stat. 340, 125-141 (2020). MSC: 11F25 11F30 11F37 PDF BibTeX XML Cite \textit{A. Kumar} and \textit{J. Meher}, Springer Proc. Math. Stat. 340, 125--141 (2020; Zbl 1469.11075) Full Text: DOI
Ben Saïd, Salem; Clerc, Jean-Louis; Koufany, Khalid Conformally covariant bi-differential operators on a simple real Jordan algebra. (English) Zbl 1479.43013 Int. Math. Res. Not. 2020, No. 8, 2287-2351 (2020). MSC: 43A85 17C50 22E46 58J99 PDF BibTeX XML Cite \textit{S. Ben Saïd} et al., Int. Math. Res. Not. 2020, No. 8, 2287--2351 (2020; Zbl 1479.43013) Full Text: DOI arXiv
Horinaga, Shuji Constructions of nearly holomorphic Siegel modular forms of degree two. (English) Zbl 1454.11090 Int. J. Math. 31, No. 1, Article ID 2050002, 29 p. (2020). MSC: 11F46 11F37 PDF BibTeX XML Cite \textit{S. Horinaga}, Int. J. Math. 31, No. 1, Article ID 2050002, 29 p. (2020; Zbl 1454.11090) Full Text: DOI
Imed, Basdouri; Mabrouk, Ben Nasr; Sami, Chouaibi; Hassen, Mechi Construction of supermodular forms using differential operators from a given supermodular form. (English) Zbl 1457.11038 J. Geom. Phys. 146, Article ID 103488, 9 p. (2019). MSC: 11F22 11F60 PDF BibTeX XML Cite \textit{B. Imed} et al., J. Geom. Phys. 146, Article ID 103488, 9 p. (2019; Zbl 1457.11038) Full Text: DOI
Lanphier, Dominic Determining cuspforms from critical values of convolution \(L\)-functions and Rankin-Cohen brackets. (English) Zbl 1456.11056 Int. J. Number Theory 15, No. 7, 1403-1412 (2019). MSC: 11F11 11F67 11F25 PDF BibTeX XML Cite \textit{D. Lanphier}, Int. J. Number Theory 15, No. 7, 1403--1412 (2019; Zbl 1456.11056) Full Text: DOI
Choie, Youngju; Park, Yoon Kyung; Zagier, Don B. Periods of modular forms on \(\Gamma_0(N)\) and products of Jacobi theta functions. (English) Zbl 1471.11164 J. Eur. Math. Soc. (JEMS) 21, No. 5, 1379-1410 (2019). MSC: 11F67 11F12 11F25 11F50 PDF BibTeX XML Cite \textit{Y. Choie} et al., J. Eur. Math. Soc. (JEMS) 21, No. 5, 1379--1410 (2019; Zbl 1471.11164) Full Text: DOI arXiv
Lyubashenko, Volodymyr Moyal and Rankin-Cohen deformations of algebras. (English) Zbl 1426.16028 Proc. Int. Geom. Cent. 11, No. 2, 48-53 (2018). MSC: 16S80 32A10 PDF BibTeX XML Cite \textit{V. Lyubashenko}, Proc. Int. Geom. Cent. 11, No. 2, 48--53 (2018; Zbl 1426.16028) Full Text: DOI
Williams, Brandon Rankin-Cohen brackets and Serre derivatives as Poincaré series. (English) Zbl 1444.11061 Res. Number Theory 4, No. 4, Paper No. 37, 13 p. (2018). MSC: 11F11 11F25 PDF BibTeX XML Cite \textit{B. Williams}, Res. Number Theory 4, No. 4, Paper No. 37, 13 p. (2018; Zbl 1444.11061) Full Text: DOI arXiv
Kumar, Arvind; Meher, Jaban Rankin-Cohen brackets and identities among eigenforms. (English) Zbl 1422.11093 Pac. J. Math. 297, No. 2, 381-403 (2018). Reviewer: Andrzej Dąbrowski (Szczecin) MSC: 11F25 11F37 11F30 11F67 PDF BibTeX XML Cite \textit{A. Kumar} and \textit{J. Meher}, Pac. J. Math. 297, No. 2, 381--403 (2018; Zbl 1422.11093) Full Text: DOI
Pevzner, Michael A generating function for Rankin-Cohen brackets. (English) Zbl 1457.53070 Lett. Math. Phys. 108, No. 12, 2627-2633 (2018). MSC: 53D55 PDF BibTeX XML Cite \textit{M. Pevzner}, Lett. Math. Phys. 108, No. 12, 2627--2633 (2018; Zbl 1457.53070) Full Text: DOI
Kumari, Moni; Sahu, Brundaban Rankin-Cohen brackets on Hilbert modular forms and special values of certain Dirichlet series. (English) Zbl 1441.11109 Funct. Approximatio, Comment. Math. 58, No. 2, 257-268 (2018). MSC: 11F41 11F60 11F68 PDF BibTeX XML Cite \textit{M. Kumari} and \textit{B. Sahu}, Funct. Approximatio, Comment. Math. 58, No. 2, 257--268 (2018; Zbl 1441.11109) Full Text: DOI Euclid
Clerc, Jean-Louis Covariant bi-differential operators on matrix space. (Opérateurs bi-différentiels sur l’espace des matrices.) (English. French summary) Zbl 1402.22012 Ann. Inst. Fourier 67, No. 4, 1427-1455 (2017). Reviewer: Mircea Crâşmăreanu (Iaşi) MSC: 22E45 58J70 PDF BibTeX XML Cite \textit{J.-L. Clerc}, Ann. Inst. Fourier 67, No. 4, 1427--1455 (2017; Zbl 1402.22012) Full Text: DOI arXiv
Jha, Abhash Kumar; Kumar, Arvind Construction of cusp forms using Rankin-Cohen brackets. (English) Zbl 1433.11048 Andrews, George E. (ed.) et al., Analytic number theory, modular forms and \(q\)-hypergeometric series. In honor of Krishna Alladi’s 60th birthday, University of Florida, Gainesville, FL, USA, March 17–21, 2016. Cham: Springer. Springer Proc. Math. Stat. 221, 329-341 (2017). MSC: 11F37 11F25 PDF BibTeX XML Cite \textit{A. K. Jha} and \textit{A. Kumar}, Springer Proc. Math. Stat. 221, 329--341 (2017; Zbl 1433.11048) Full Text: DOI arXiv
Jha, Abhash Kumar; Sahu, Brundaban Rankin-Cohen brackets on Siegel modular forms and special values of certain Dirichlet series. (English) Zbl 1434.11099 Ramanujan J. 44, No. 1, 63-73 (2017). MSC: 11F46 11F25 11F66 PDF BibTeX XML Cite \textit{A. K. Jha} and \textit{B. Sahu}, Ramanujan J. 44, No. 1, 63--73 (2017; Zbl 1434.11099) Full Text: DOI
Martin, James D.; Senadheera, Jayantha Differential operators for Hermitian Jacobi forms and Hermitian modular forms. (English) Zbl 1422.11114 Ramanujan J. 42, No. 2, 443-451 (2017). MSC: 11F55 11F60 PDF BibTeX XML Cite \textit{J. D. Martin} and \textit{J. Senadheera}, Ramanujan J. 42, No. 2, 443--451 (2017; Zbl 1422.11114) Full Text: DOI
Böcherer, Siegfried Quasimodular Siegel modular forms as \(p\)-adic modular forms. (English) Zbl 1424.11095 Sarajevo J. Math. 12(25), No. 2, Suppl., 419-428 (2016). MSC: 11F33 11F46 11F60 PDF BibTeX XML Cite \textit{S. Böcherer}, Sarajevo J. Math. 12(25), No. 2, 419--428 (2016; Zbl 1424.11095)
Jha, Abhash Kumar; Sahu, Brundaban Rankin-Cohen brackets on Jacobi forms and the adjoint of some linear maps. (English) Zbl 1417.11069 Ramanujan J. 39, No. 3, 533-544 (2016). MSC: 11F50 11F25 11F66 PDF BibTeX XML Cite \textit{A. K. Jha} and \textit{B. Sahu}, Ramanujan J. 39, No. 3, 533--544 (2016; Zbl 1417.11069) Full Text: DOI
Lee, Min Ho Differential operators on modular forms associated to quasimodular forms. (English) Zbl 1402.11063 Ramanujan J. 39, No. 1, 133-147 (2016). MSC: 11F11 11F50 PDF BibTeX XML Cite \textit{M. H. Lee}, Ramanujan J. 39, No. 1, 133--147 (2016; Zbl 1402.11063) Full Text: DOI
Choie, YoungJu; Lee, Min Ho Symmetric tensor representations, quasimodular forms, and weak Jacobi forms. (English) Zbl 1331.11030 Adv. Math. 287, 567-599 (2016). Reviewer: Steven T. Dougherty (Scranton) MSC: 11F11 11F50 11F25 PDF BibTeX XML Cite \textit{Y. Choie} and \textit{M. H. Lee}, Adv. Math. 287, 567--599 (2016; Zbl 1331.11030) Full Text: DOI arXiv
Banerjee, Abhishek Hopf action on twisted modular Hecke operators. (Action de Hopf sur les opérateurs de Hecke modulaires tordus.) (French. English summary) Zbl 1388.11015 J. Noncommut. Geom. 9, No. 4, 1155-1173 (2015). MSC: 11F25 16T05 PDF BibTeX XML Cite \textit{A. Banerjee}, J. Noncommut. Geom. 9, No. 4, 1155--1173 (2015; Zbl 1388.11015) Full Text: DOI
Herrero, Sebastián Daniel The adjoint of some linear maps constructed with the Rankin-Cohen brackets. (English) Zbl 1310.11046 Ramanujan J. 36, No. 3, 529-536 (2015). Reviewer: Ahmet Tekcan (Bursa) MSC: 11F11 11F25 11F30 PDF BibTeX XML Cite \textit{S. D. Herrero}, Ramanujan J. 36, No. 3, 529--536 (2015; Zbl 1310.11046) Full Text: DOI
Böcherer, Siegfried; Nagaoka, Shoyu On \(p \)-adic properties of Siegel modular forms. (English) Zbl 1359.11046 Heim, Bernhard (ed.) et al., Automorphic forms. Research in number theory from Oman. Proceedings of the international conference on automorphic forms and number theory, Muscat, Oman, February 18–22, 2012. Cham: Springer (ISBN 978-3-319-11351-7/hbk; 978-3-319-11352-4/ebook). Springer Proceedings in Mathematics & Statistics 115, 47-66 (2014). MSC: 11F46 11F33 PDF BibTeX XML Cite \textit{S. Böcherer} and \textit{S. Nagaoka}, Springer Proc. Math. Stat. 115, 47--66 (2014; Zbl 1359.11046) Full Text: DOI arXiv
Dumas, François; Royer, Emmanuel Poisson structures and star products on quasimodular forms. (English) Zbl 1362.17041 Algebra Number Theory 8, No. 5, 1127-1149 (2014). MSC: 17B63 11F25 11F11 16W25 PDF BibTeX XML Cite \textit{F. Dumas} and \textit{E. Royer}, Algebra Number Theory 8, No. 5, 1127--1149 (2014; Zbl 1362.17041) Full Text: DOI arXiv
Diamantis, Nikolaos; O’Sullivan, Cormac Kernels for products of \(L\)-functions. (English) Zbl 1286.11077 Algebra Number Theory 7, No. 8, 1883-1917 (2013). Reviewer: Tobias Mühlenbruch (Hagen) MSC: 11F67 11F03 11F37 PDF BibTeX XML Cite \textit{N. Diamantis} and \textit{C. O'Sullivan}, Algebra Number Theory 7, No. 8, 1883--1917 (2013; Zbl 1286.11077) Full Text: DOI arXiv
El Gradechi, Amine M. The Lie theory of certain modular form and arithmetic identities. (English) Zbl 1281.11038 Ramanujan J. 31, No. 3, 397-433 (2013). MSC: 11F11 11F22 11F25 11F30 PDF BibTeX XML Cite \textit{A. M. El Gradechi}, Ramanujan J. 31, No. 3, 397--433 (2013; Zbl 1281.11038) Full Text: DOI
Wieber, Thomas Structure theorems for certain vector valued Siegel modular forms of degree two. (English) Zbl 1355.11052 Heidelberg: Univ. Heidelberg, Naturwissenschaftlich-Mathematische Gesamtfakultät (Diss.). 88 p. (2013). MSC: 11F46 11F27 11-02 PDF BibTeX XML Cite \textit{T. Wieber}, Structure theorems for certain vector valued Siegel modular forms of degree two. Heidelberg: Univ. Heidelberg, Naturwissenschaftlich-Mathematische Gesamtfakultät (Diss.) (2013; Zbl 1355.11052) Full Text: Link
Beckmann, Ralf Invariant trilinear forms for conformal groups and their applications in the theory of automorphic forms. (English) Zbl 1302.11018 Tübingen: Univ. Tübingen, Mathematisch-Naturwissenschaftliche Fakultät (Diss.). 199 p. (2012). Reviewer: Hung Yean Loke (Singapore) MSC: 11F12 11F70 PDF BibTeX XML Cite \textit{R. Beckmann}, Invariant trilinear forms for conformal groups and their applications in the theory of automorphic forms. Tübingen: Univ. Tübingen, Mathematisch-Naturwissenschaftliche Fakultät (Diss.) (2012; Zbl 1302.11018)
Pevzner, Michael Rankin-Cohen brackets and representations of conformal Lie groups. (Crochets de Rankin-Cohen et représentations des groupes de Lie conformes.) (English. French summary) Zbl 1283.11072 Ann. Math. Blaise Pascal 19, No. 2, 455-484 (2012). MSC: 11F11 22E46 47L80 PDF BibTeX XML Cite \textit{M. Pevzner}, Ann. Math. Blaise Pascal 19, No. 2, 455--484 (2012; Zbl 1283.11072) Full Text: DOI
Meher, Jaban Some remarks on Rankin-Cohen brackets of eigenforms. (English) Zbl 1287.11055 Int. J. Number Theory 8, No. 8, 2059-2068 (2012). MSC: 11F11 11F25 11F37 PDF BibTeX XML Cite \textit{J. Meher}, Int. J. Number Theory 8, No. 8, 2059--2068 (2012; Zbl 1287.11055) Full Text: DOI arXiv
Bertin, Marie José A Mahler measure of a \(K3\) surface expressed as a Dirichlet \(L\)-series. (English) Zbl 1273.11152 Can. Math. Bull. 55, No. 1, 26-37 (2012). Reviewer: Artūras Dubickas (Vilnius) MSC: 11R09 11M41 14J28 PDF BibTeX XML Cite \textit{M. J. Bertin}, Can. Math. Bull. 55, No. 1, 26--37 (2012; Zbl 1273.11152) Full Text: DOI arXiv Link
Popa, Alexandru A. Rational decomposition of modular forms. (English) Zbl 1269.11042 Ramanujan J. 26, No. 3, 419-435 (2011). MSC: 11F11 11F25 11F30 11F37 11F67 PDF BibTeX XML Cite \textit{A. A. Popa}, Ramanujan J. 26, No. 3, 419--435 (2011; Zbl 1269.11042) Full Text: DOI
Choie, YoungJu; Lee, Min Ho Notes on Rankin-Cohen brackets. (English) Zbl 1244.11039 Ramanujan J. 25, No. 1, 141-147 (2011). MSC: 11F11 11F12 PDF BibTeX XML Cite \textit{Y. Choie} and \textit{M. H. Lee}, Ramanujan J. 25, No. 1, 141--147 (2011; Zbl 1244.11039) Full Text: DOI
Fialowski, Alice; Wagemann, Friedrich Associative algebra deformations of Connes-Moscovici’s Hopf algebra \(\mathcal H_1\). (English) Zbl 1268.16007 J. Algebra 323, No. 7, 2026-2040 (2010). MSC: 16E40 16T05 17B56 17B65 16S80 19D55 PDF BibTeX XML Cite \textit{A. Fialowski} and \textit{F. Wagemann}, J. Algebra 323, No. 7, 2026--2040 (2010; Zbl 1268.16007) Full Text: DOI arXiv
Zhang, Genkai Rankin-Cohen brackets, transvectants and covariant differential operators. (English) Zbl 1189.32013 Math. Z. 264, No. 3, 513-519 (2010). Reviewer: Eberhard Oeljeklaus (Bremen) MSC: 32M15 22E46 32Q05 PDF BibTeX XML Cite \textit{G. Zhang}, Math. Z. 264, No. 3, 513--519 (2010; Zbl 1189.32013) Full Text: DOI
Lanphier, Dominic Combinatorics of Maass-Shimura operators. (English) Zbl 1213.11098 J. Number Theory 128, No. 8, 2467-2487 (2008). MSC: 11F25 11F11 11F30 11F67 PDF BibTeX XML Cite \textit{D. Lanphier}, J. Number Theory 128, No. 8, 2467--2487 (2008; Zbl 1213.11098) Full Text: DOI
Pevzner, Michael Rankin-Cohen brackets and associativity. (English) Zbl 1167.53075 Lett. Math. Phys. 85, No. 2-3, 195-202 (2008). Reviewer: Benjamin Cahen (Metz) MSC: 53D55 11F11 22E46 PDF BibTeX XML Cite \textit{M. Pevzner}, Lett. Math. Phys. 85, No. 2--3, 195--202 (2008; Zbl 1167.53075) Full Text: DOI
Bertin, Marie José The Mahler measure for \(K3\) hypersurfaces. (Mesure de Mahler d’hypersurfaces \(K3\).) (French) Zbl 1201.11097 J. Number Theory 128, No. 11, 2890-2913 (2008). Reviewer: David W. Boyd (Vancouver) MSC: 11R09 14J28 11F23 PDF BibTeX XML Cite \textit{M. J. Bertin}, J. Number Theory 128, No. 11, 2890--2913 (2008; Zbl 1201.11097) Full Text: DOI arXiv
Yao, Yi-Jun Around Rankin-Cohen deformations. (Autour des déformations de Rankin-Cohen.) (French) Zbl 1423.11007 Paris: École Polytechnique (Diss.). x, 143 p. (2007). MSC: 11-02 11F99 58B34 58H15 46L65 PDF BibTeX XML Cite \textit{Y.-J. Yao}, Autour des déformations de Rankin-Cohen. Paris: École Polytechnique (Diss.) (2007; Zbl 1423.11007) Full Text: HAL
Böcherer, Siegfried; Nagaoka, Shoyu On mod \(p\) properties of Siegel modular forms. (English) Zbl 1171.11029 Math. Ann. 338, No. 2, 421-433 (2007). Reviewer: Miriam Ciavarella (Torino) MSC: 11F33 11F46 PDF BibTeX XML Cite \textit{S. Böcherer} and \textit{S. Nagaoka}, Math. Ann. 338, No. 2, 421--433 (2007; Zbl 1171.11029) Full Text: DOI
van Dijk, Gerrit; Pevzner, Michael Ring structures for holomorphic discrete series and Rankin-Cohen brackets. (English) Zbl 1123.22009 J. Lie Theory 17, No. 2, 283-305 (2007). Reviewer: Vasily A. Chernecky (Odessa) MSC: 22E46 22-06 43A85 11F60 PDF BibTeX XML Cite \textit{G. van Dijk} and \textit{M. Pevzner}, J. Lie Theory 17, No. 2, 283--305 (2007; Zbl 1123.22009) Full Text: arXiv Link
Bieliavsky, Pierre; Tang, Xiang; Yao, Yijun Rankin-Cohen brackets and formal quantization. (English) Zbl 1123.53049 Adv. Math. 212, No. 1, 293-314 (2007). MSC: 53D55 46L87 11F32 16T05 46L65 58H05 PDF BibTeX XML Cite \textit{P. Bieliavsky} et al., Adv. Math. 212, No. 1, 293--314 (2007; Zbl 1123.53049) Full Text: DOI arXiv
Choie, YoungJu; Lee, Min Ho Rankin-Cohen brackets on pseudodifferential operators. (English) Zbl 1114.11046 J. Math. Anal. Appl. 326, No. 2, 882-895 (2007). Reviewer: Yilmaz Simsek (Antalya) MSC: 11F55 11F11 11F27 35S99 47G10 PDF BibTeX XML Cite \textit{Y. Choie} and \textit{M. H. Lee}, J. Math. Anal. Appl. 326, No. 2, 882--895 (2007; Zbl 1114.11046) Full Text: DOI
Choie, YoungJu; Kim, Haesuk; Richter, Olav K. Differential operators on Hilbert modular forms. (English) Zbl 1127.11037 J. Number Theory 122, No. 1, 25-36 (2007). Reviewer: Yilmaz Simsek (Antalya) MSC: 11F55 11F41 11F60 PDF BibTeX XML Cite \textit{Y. Choie} et al., J. Number Theory 122, No. 1, 25--36 (2007; Zbl 1127.11037) Full Text: DOI
El Gradechi, Amine M. The Lie theory of the Rankin-Cohen brackets and allied bi-differential operators. (English) Zbl 1161.11331 Adv. Math. 207, No. 2, 484-531 (2006). MSC: 11F25 11F11 11F70 22E45 PDF BibTeX XML Cite \textit{A. M. El Gradechi}, Adv. Math. 207, No. 2, 484--531 (2006; Zbl 1161.11331) Full Text: DOI
Connes, Alain; Moscovici, Henri Rankin-Cohen brackets and the Hopf algebra of transverse geometry. (English) Zbl 1122.11024 Mosc. Math. J. 4, No. 1, 111-130 (2004). MSC: 11F32 11F75 11F25 16W30 58B34 PDF BibTeX XML Cite \textit{A. Connes} and \textit{H. Moscovici}, Mosc. Math. J. 4, No. 1, 111--130 (2004; Zbl 1122.11024) Full Text: arXiv Link
Berndt, Bruce C.; Kohnen, Winfried; Ono, Ken The life and work of R. A. Rankin (1915–2001). (English) Zbl 1039.01011 Ramanujan J. 7, No. 1-3, 9-38 (2003). MSC: 01A70 11-03 PDF BibTeX XML Cite \textit{B. C. Berndt} et al., Ramanujan J. 7, No. 1--3, 9--38 (2003; Zbl 1039.01011) Full Text: DOI
Enriquez, Benjamin; Odesskii, Alexander Quantization of canonical cones of algebraic curves. (English) Zbl 1052.14035 Ann. Inst. Fourier 52, No. 6, 1629-1663 (2002). MSC: 14H70 16S32 16W35 PDF BibTeX XML Cite \textit{B. Enriquez} and \textit{A. Odesskii}, Ann. Inst. Fourier 52, No. 6, 1629--1663 (2002; Zbl 1052.14035) Full Text: DOI arXiv Numdam EuDML
Unterberger, André Quantization and non-holomorphic modular forms. (English) Zbl 0970.11014 Lecture Notes in Mathematics. 1742. Berlin: Springer. viii, 253 p. (2000). Reviewer: Min Ho Lee (Cedar Falls) MSC: 11F11 11-02 11F25 11L05 44A12 81S99 35-02 35S99 PDF BibTeX XML Cite \textit{A. Unterberger}, Quantization and non-holomorphic modular forms. Berlin: Springer (2000; Zbl 0970.11014) Full Text: DOI
Choie, YoungJu Multilinear operators on Siegel modular forms of genus 1 and 2. (English) Zbl 0966.11020 J. Math. Anal. Appl. 232, No. 1, 34-44 (1999). Reviewer: Min Ho Lee (Cedar Falls) MSC: 11F46 11F60 PDF BibTeX XML Cite \textit{Y. Choie}, J. Math. Anal. Appl. 232, No. 1, 34--44 (1999; Zbl 0966.11020) Full Text: DOI Link
Zagier, Don Modular forms and differential operators. (English) Zbl 0806.11022 Proc. Indian Acad. Sci., Math. Sci. 104, No. 1, 57-75 (1994). Reviewer: A.Krieg (Aachen) MSC: 11F11 35S99 17B69 PDF BibTeX XML Cite \textit{D. Zagier}, Proc. Indian Acad. Sci., Math. Sci. 104, No. 1, 57--75 (1994; Zbl 0806.11022) Full Text: DOI