Alcântara, Adriano A.; Carmo, Bruno A.; Clark, Haroldo R.; Guardia, Ronald R.; Rincon, Mauro A. Nonlinear wave equation with Dirichlet and acoustic boundary conditions: theoretical analysis and numerical simulation. (English) Zbl 07530563 Comput. Appl. Math. 41, No. 4, Paper No. 141, 21 p. (2022). MSC: 35L20 65M60 65M06 PDF BibTeX XML Cite \textit{A. A. Alcântara} et al., Comput. Appl. Math. 41, No. 4, Paper No. 141, 21 p. (2022; Zbl 07530563) Full Text: DOI OpenURL
Messaï, Nadir-Alexandre; Pernet, Sebastien; Bouguerra, Abdesselam Directional \(\mathcal{H}^2\) Compression algorithm: optimisations and application to a discontinuous Galerkin BEM for the Helmholtz equation. (English) Zbl 07529240 Commun. Comput. Phys. 31, No. 5, 1585-1635 (2022). MSC: 35J05 65D05 65N38 41A10 65N30 PDF BibTeX XML Cite \textit{N.-A. Messaï} et al., Commun. Comput. Phys. 31, No. 5, 1585--1635 (2022; Zbl 07529240) Full Text: DOI OpenURL
Chen, Huangxin; Pani, Amiya K.; Qiu, Weifeng A mixed finite element scheme for biharmonic equation with variable coefficient and von Kármán equations. (English) Zbl 07529234 Commun. Comput. Phys. 31, No. 5, 1434-1466 (2022). MSC: 65N12 65N30 PDF BibTeX XML Cite \textit{H. Chen} et al., Commun. Comput. Phys. 31, No. 5, 1434--1466 (2022; Zbl 07529234) Full Text: DOI OpenURL
Zhang, Xi; Feng, Minfu A weak Galerkin mixed finite element method for acoustic wave equation. (English) Zbl 07528522 Adv. Appl. Math. Mech. 14, No. 4, 936-959 (2022). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{M. Feng}, Adv. Appl. Math. Mech. 14, No. 4, 936--959 (2022; Zbl 07528522) Full Text: DOI OpenURL
Wang, Jianyun; Tian, Zhikun Superconvergence of finite element approximations of the two-dimensional cubic nonlinear Schrödinger equation. (English) Zbl 07528510 Adv. Appl. Math. Mech. 14, No. 3, 652-665 (2022). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{J. Wang} and \textit{Z. Tian}, Adv. Appl. Math. Mech. 14, No. 3, 652--665 (2022; Zbl 07528510) Full Text: DOI OpenURL
Li, Shan; Sun, Guilei; Guo, Yuling; Wang, Zhongqing A multiple interval Chebyshev-Gauss-Lobatto collocation method for multi-order fractional differential equations. (English) Zbl 07524374 East Asian J. Appl. Math. 12, No. 3, 649-672 (2022). MSC: 65L60 34A08 65L70 PDF BibTeX XML Cite \textit{S. Li} et al., East Asian J. Appl. Math. 12, No. 3, 649--672 (2022; Zbl 07524374) Full Text: DOI OpenURL
Marcati, C.; Rakhuba, M.; Schwab, Ch. Tensor rank bounds for point singularities in \(\mathbb{R}^3\). (English) Zbl 07523512 Adv. Comput. Math. 48, No. 3, Paper No. 18, 57 p. (2022). MSC: 35A35 15A69 35J15 41A25 41A46 65N30 PDF BibTeX XML Cite \textit{C. Marcati} et al., Adv. Comput. Math. 48, No. 3, Paper No. 18, 57 p. (2022; Zbl 07523512) Full Text: DOI OpenURL
Wang, Junjun Superconvergence analysis for a semilinear parabolic equation with BDF-3 finite element method. (English) Zbl 07518208 Appl. Anal. 101, No. 6, 1822-1832 (2022). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{J. Wang}, Appl. Anal. 101, No. 6, 1822--1832 (2022; Zbl 07518208) Full Text: DOI OpenURL
Wen, Juan; He, Yaling; He, Yinnian; Wang, Kun Stabilized finite element methods based on multiscale enrichment for Allen-Cahn and Cahn-Hilliard equations. (English) Zbl 07517687 Commun. Pure Appl. Anal. 21, No. 6, 1873-1894 (2022). MSC: 35Q35 65M60 65M06 65N30 PDF BibTeX XML Cite \textit{J. Wen} et al., Commun. Pure Appl. Anal. 21, No. 6, 1873--1894 (2022; Zbl 07517687) Full Text: DOI OpenURL
Bottois, Arthur Pointwise moving control for the \(1\)-D wave equation. (English) Zbl 07516509 Herzog, Roland (ed.) et al., Optimization and control for partial differential equations. Uncertainty quantification, open and closed-loop control, and shape optimization. Berlin: De Gruyter. Radon Ser. Comput. Appl. Math. 29, 33-57 (2022). MSC: 93B05 93C20 35L05 65N30 PDF BibTeX XML Cite \textit{A. Bottois}, Radon Ser. Comput. Appl. Math. 29, 33--57 (2022; Zbl 07516509) Full Text: DOI OpenURL
Zhang, Ruming Exponential convergence of perfectly matched layers for scattering problems with periodic surfaces. (English) Zbl 07516279 SIAM J. Numer. Anal. 60, No. 2, 804-823 (2022). MSC: 35J05 35A35 65N30 PDF BibTeX XML Cite \textit{R. Zhang}, SIAM J. Numer. Anal. 60, No. 2, 804--823 (2022; Zbl 07516279) Full Text: DOI OpenURL
Hepson, Ozlem Ersoy; Dağ, İdris; Saka, Bülent; Ay, Buket The cubic B-spline least-squares finite-element method for the numerical solutions of regularized long-wave equation. (English) Zbl 07513121 Int. J. Comput. Math. 99, No. 5, 993-1004 (2022). MSC: 65L05 65N30 PDF BibTeX XML Cite \textit{O. E. Hepson} et al., Int. J. Comput. Math. 99, No. 5, 993--1004 (2022; Zbl 07513121) Full Text: DOI OpenURL
Zhang, Jin; Lv, Yanhui Finite element method for singularly perturbed problems with two parameters on a Bakhvalov-type mesh in 2D. (English) Zbl 07512671 Numer. Algorithms 90, No. 1, 447-475 (2022). MSC: 65N12 65N30 65N50 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{Y. Lv}, Numer. Algorithms 90, No. 1, 447--475 (2022; Zbl 07512671) Full Text: DOI OpenURL
Abbaszadeh, Mostafa; Dehghan, Mehdi A class of moving Kriging interpolation-based DQ methods to simulate multi-dimensional space Galilei invariant fractional advection-diffusion equation. (English) Zbl 07512665 Numer. Algorithms 90, No. 1, 271-299 (2022). MSC: 65L60 PDF BibTeX XML Cite \textit{M. Abbaszadeh} and \textit{M. Dehghan}, Numer. Algorithms 90, No. 1, 271--299 (2022; Zbl 07512665) Full Text: DOI OpenURL
Feng, Xiaobing; Ma, Shu Stable numerical methods for a stochastic nonlinear Schrödinger equation with linear multiplicative noise. (English) Zbl 07512198 Discrete Contin. Dyn. Syst., Ser. S 15, No. 4, 687-711 (2022). MSC: 65M60 35Q55 35Q60 65M12 PDF BibTeX XML Cite \textit{X. Feng} and \textit{S. Ma}, Discrete Contin. Dyn. Syst., Ser. S 15, No. 4, 687--711 (2022; Zbl 07512198) Full Text: DOI OpenURL
Chen, Zheng; Liu, Liu; Mu, Lin Solving the linear transport equation by a deep neural network approach. (English) Zbl 07512197 Discrete Contin. Dyn. Syst., Ser. S 15, No. 4, 669-686 (2022). MSC: 65M60 35Q49 68T07 PDF BibTeX XML Cite \textit{Z. Chen} et al., Discrete Contin. Dyn. Syst., Ser. S 15, No. 4, 669--686 (2022; Zbl 07512197) Full Text: DOI OpenURL
Matonoha, Ctirad; Moskovka, Alexej; Valdman, Jan Minimization of p-Laplacian via the finite element method in MATLAB. (English) Zbl 07511675 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 13th international conference, LSSC 2021, Sozopol, Bulgaria, June 7–11, 2021. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 13127, 533-540 (2022). MSC: 65N30 65K10 35J05 PDF BibTeX XML Cite \textit{C. Matonoha} et al., Lect. Notes Comput. Sci. 13127, 533--540 (2022; Zbl 07511675) Full Text: DOI OpenURL
Benkhaldoun, Fayssal; Bradji, Abdallah A new error estimate for a primal-dual Crank-Nicolson mixed finite element using lowest degree Raviart-Thomas spaces for parabolic equations. (English) Zbl 07511670 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 13th international conference, LSSC 2021, Sozopol, Bulgaria, June 7–11, 2021. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 13127, 489-497 (2022). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65N30 65M15 65M12 35K05 PDF BibTeX XML Cite \textit{F. Benkhaldoun} and \textit{A. Bradji}, Lect. Notes Comput. Sci. 13127, 489--497 (2022; Zbl 07511670) Full Text: DOI OpenURL
Khan, Hassam; Ghiba, Ionel-Dumitrel; Madeo, Angela; Neff, Patrizio Existence and uniqueness of Rayleigh waves in isotropic elastic Cosserat materials and algorithmic aspects. (English) Zbl 07508678 Wave Motion 110, Article ID 102898, 39 p. (2022). MSC: 74J15 74M25 74H05 74J05 PDF BibTeX XML Cite \textit{H. Khan} et al., Wave Motion 110, Article ID 102898, 39 p. (2022; Zbl 07508678) Full Text: DOI OpenURL
Du, Jie; Chung, Eric; Yang, Yang Maximum-principle-preserving local discontinuous Galerkin methods for Allen-Cahn equations. (English) Zbl 07508618 Commun. Appl. Math. Comput. 4, No. 1, 353-379 (2022). MSC: 65M12 65M60 PDF BibTeX XML Cite \textit{J. Du} et al., Commun. Appl. Math. Comput. 4, No. 1, 353--379 (2022; Zbl 07508618) Full Text: DOI OpenURL
Xu, Yuan; Zhang, Qiang Superconvergence analysis of the Runge-Kutta discontinuous Galerkin method with upwind-biased numerical flux for two-dimensional linear hyperbolic equation. (English) Zbl 07508617 Commun. Appl. Math. Comput. 4, No. 1, 319-352 (2022). MSC: 65M12 65M15 65M60 PDF BibTeX XML Cite \textit{Y. Xu} and \textit{Q. Zhang}, Commun. Appl. Math. Comput. 4, No. 1, 319--352 (2022; Zbl 07508617) Full Text: DOI OpenURL
Miao, Yuqing; Yan, Jue; Zhong, Xinghui Superconvergence study of the direct discontinuous Galerkin method and its variations for diffusion equations. (English) Zbl 07508611 Commun. Appl. Math. Comput. 4, No. 1, 180-204 (2022). MSC: 65M60 PDF BibTeX XML Cite \textit{Y. Miao} et al., Commun. Appl. Math. Comput. 4, No. 1, 180--204 (2022; Zbl 07508611) Full Text: DOI OpenURL
Zhang, Hongjuan; Wu, Boying; Meng, Xiong A local discontinuous Galerkin method with generalized alternating fluxes for 2D nonlinear Schrödinger equations. (English) Zbl 07508608 Commun. Appl. Math. Comput. 4, No. 1, 84-107 (2022). MSC: 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{H. Zhang} et al., Commun. Appl. Math. Comput. 4, No. 1, 84--107 (2022; Zbl 07508608) Full Text: DOI OpenURL
Tao, Zhanjing; Huang, Juntao; Liu, Yuan; Guo, Wei; Cheng, Yingda An adaptive multiresolution ultra-weak discontinuous Galerkin method for nonlinear Schrödinger equations. (English) Zbl 07508607 Commun. Appl. Math. Comput. 4, No. 1, 60-83 (2022). MSC: 65M60 PDF BibTeX XML Cite \textit{Z. Tao} et al., Commun. Appl. Math. Comput. 4, No. 1, 60--83 (2022; Zbl 07508607) Full Text: DOI OpenURL
Gómez, Sergio; Moiola, Andrea A space-time Trefftz discontinuous Galerkin method for the linear Schrödinger equation. (English) Zbl 07506905 SIAM J. Numer. Anal. 60, No. 2, 688-714 (2022). MSC: 65M60 65M12 65M15 65F05 78M10 35Q41 PDF BibTeX XML Cite \textit{S. Gómez} and \textit{A. Moiola}, SIAM J. Numer. Anal. 60, No. 2, 688--714 (2022; Zbl 07506905) Full Text: DOI OpenURL
Hong, Qingguo; Li, Yuwen; Xu, Jinchao An extended Galerkin analysis in finite element exterior calculus. (English) Zbl 07506844 Math. Comput. 91, No. 335, 1077-1106 (2022). MSC: 65N30 65N12 65N15 PDF BibTeX XML Cite \textit{Q. Hong} et al., Math. Comput. 91, No. 335, 1077--1106 (2022; Zbl 07506844) Full Text: DOI OpenURL
Schulz, Erick; Hiptmair, Ralf Coupled domain-boundary variational formulations for Hodge-Helmholtz operators. (English) Zbl 07506752 Integral Equations Oper. Theory 94, No. 1, Paper No. 7, 29 p. (2022). MSC: 35Q61 35Q60 65N30 65N38 78A45 78M10 78M15 PDF BibTeX XML Cite \textit{E. Schulz} and \textit{R. Hiptmair}, Integral Equations Oper. Theory 94, No. 1, Paper No. 7, 29 p. (2022; Zbl 07506752) Full Text: DOI OpenURL
Arrutselvi, M.; Adak, D.; Natarajan, E.; Roy, S.; Natarajan, S. Virtual element analysis of nonlocal coupled parabolic problems on polygonal meshes. (English) Zbl 07506750 Calcolo 59, No. 2, Paper No. 18, 34 p. (2022). MSC: 65M60 65M06 65N30 65M12 35K55 PDF BibTeX XML Cite \textit{M. Arrutselvi} et al., Calcolo 59, No. 2, Paper No. 18, 34 p. (2022; Zbl 07506750) Full Text: DOI OpenURL
Marchner, Philippe; Antoine, Xavier; Geuzaine, Christophe; Bériot, Hadrien Construction and numerical assessment of local absorbing boundary conditions for heterogeneous time-harmonic acoustic problems. (English) Zbl 07504981 SIAM J. Appl. Math. 82, No. 2, 476-501 (2022). MSC: 35S15 35J10 35J25 65N30 PDF BibTeX XML Cite \textit{P. Marchner} et al., SIAM J. Appl. Math. 82, No. 2, 476--501 (2022; Zbl 07504981) Full Text: DOI OpenURL
Khoa, Vo Anh; Dao, Manh-Khang Convergence analysis of a variational quasi-reversibility approach for an inverse hyperbolic heat conduction problem. (English) Zbl 07503658 J. Inverse Ill-Posed Probl. 30, No. 2, 251-264 (2022). MSC: 65L70 65L09 65L60 PDF BibTeX XML Cite \textit{V. A. Khoa} and \textit{M.-K. Dao}, J. Inverse Ill-Posed Probl. 30, No. 2, 251--264 (2022; Zbl 07503658) Full Text: DOI OpenURL
Bayada, Guy; Ciuperca, Ionel Sorin About a cavitation model including bubbles in thin film lubrication taking convection into account. (English) Zbl 07502106 Q. Appl. Math. 80, No. 2, 237-257 (2022). MSC: 35Qxx 35A01 35B35 35Q35 76D08 76B10 PDF BibTeX XML Cite \textit{G. Bayada} and \textit{I. S. Ciuperca}, Q. Appl. Math. 80, No. 2, 237--257 (2022; Zbl 07502106) Full Text: DOI OpenURL
Li, Buyang; Ma, Shu Exponential convolution quadrature for nonlinear subdiffusion equations with nonsmooth initial data. (English) Zbl 07498291 SIAM J. Numer. Anal. 60, No. 2, 503-528 (2022). MSC: 65M12 65M60 35K55 35Q35 PDF BibTeX XML Cite \textit{B. Li} and \textit{S. Ma}, SIAM J. Numer. Anal. 60, No. 2, 503--528 (2022; Zbl 07498291) Full Text: DOI OpenURL
Seibel, Daniel Boundary element methods for the wave equation based on hierarchical matrices and adaptive cross approximation. (English) Zbl 07493703 Numer. Math. 150, No. 2, 629-670 (2022). MSC: 65M38 65M60 65M06 65M50 65R20 PDF BibTeX XML Cite \textit{D. Seibel}, Numer. Math. 150, No. 2, 629--670 (2022; Zbl 07493703) Full Text: DOI arXiv OpenURL
Peralta, Gilbert; Kunisch, Karl Mixed and hybrid Petrov-Galerkin finite element discretization for optimal control of the wave equation. (English) Zbl 07493702 Numer. Math. 150, No. 2, 591-627 (2022). Reviewer: Francesco Rossi (Padova) MSC: 49J20 35L05 65M60 PDF BibTeX XML Cite \textit{G. Peralta} and \textit{K. Kunisch}, Numer. Math. 150, No. 2, 591--627 (2022; Zbl 07493702) Full Text: DOI OpenURL
Zhang, Li-Ping; Li, Zi-Cai; Lee, Ming-Gong; Huang, Hung-Tsai Stability analysis of the method of fundamental solutions with smooth closed pseudo-boundaries for Laplace’s equation: better pseudo-boundaries. (English) Zbl 07490870 Numer. Algorithms 89, No. 3, 1183-1222 (2022). MSC: 65N30 PDF BibTeX XML Cite \textit{L.-P. Zhang} et al., Numer. Algorithms 89, No. 3, 1183--1222 (2022; Zbl 07490870) Full Text: DOI OpenURL
Ouaissa, Hamid; Chakib, Abdelkrim; Nachaoui, Abdeljalil; Nachaoui, Mourad On numerical approaches for solving an inverse Cauchy Stokes problem. (English) Zbl 07490293 Appl. Math. Optim. 85, No. 1, 1-37 (2022). MSC: 65N21 65N20 65N30 65J20 PDF BibTeX XML Cite \textit{H. Ouaissa} et al., Appl. Math. Optim. 85, No. 1, 1--37 (2022; Zbl 07490293) Full Text: DOI arXiv OpenURL
Adak, D.; Mora, D.; Natarajan, S. Convergence analysis of virtual element method for nonlinear nonlocal dynamic plate equation. (English) Zbl 07488733 J. Sci. Comput. 91, No. 1, Paper No. 23, 37 p. (2022). MSC: 65M60 65M06 65N30 65N12 65N15 74K20 35G20 35Q74 PDF BibTeX XML Cite \textit{D. Adak} et al., J. Sci. Comput. 91, No. 1, Paper No. 23, 37 p. (2022; Zbl 07488733) Full Text: DOI arXiv OpenURL
Li, Buyang; Qiu, Weifeng; Yang, Zongze A convergent post-processed discontinuous Galerkin method for incompressible flow with variable density. (English) Zbl 07488712 J. Sci. Comput. 91, No. 1, Paper No. 2, 28 p. (2022). MSC: 65M60 65N30 65M12 65M15 76D05 35Q30 PDF BibTeX XML Cite \textit{B. Li} et al., J. Sci. Comput. 91, No. 1, Paper No. 2, 28 p. (2022; Zbl 07488712) Full Text: DOI arXiv OpenURL
Cao, Wanrong; Hao, Zhaopeng; Zhang, Zhongqiang Optimal strong convergence of finite element methods for one-dimensional stochastic elliptic equations with fractional noise. (English) Zbl 07488711 J. Sci. Comput. 91, No. 1, Paper No. 1, 23 p. (2022). MSC: 65-XX 35B65 41A25 60H35 60H10 65L60 65L70 PDF BibTeX XML Cite \textit{W. Cao} et al., J. Sci. Comput. 91, No. 1, Paper No. 1, 23 p. (2022; Zbl 07488711) Full Text: DOI OpenURL
Gong, Bo Convergence analysis of two finite element methods for the modified Maxwell’s Steklov eigenvalue problem. (English) Zbl 07488294 ESAIM, Math. Model. Numer. Anal. 56, No. 1, 287-301 (2022). MSC: 65N25 65N30 PDF BibTeX XML Cite \textit{B. Gong}, ESAIM, Math. Model. Numer. Anal. 56, No. 1, 287--301 (2022; Zbl 07488294) Full Text: DOI OpenURL
Chen, Yaoyao; Huang, Yunqing; Yi, Nianyu Error analysis of a decoupled, linear and stable finite element method for Cahn-Hilliard-Navier-Stokes equations. (English) Zbl 07484235 Appl. Math. Comput. 421, Article ID 126928, 17 p. (2022). MSC: 65N15 65N30 65N50 PDF BibTeX XML Cite \textit{Y. Chen} et al., Appl. Math. Comput. 421, Article ID 126928, 17 p. (2022; Zbl 07484235) Full Text: DOI OpenURL
Wang, Shuai; Yuan, Guangwei Discrete strong extremum principles for finite element solutions of diffusion problems with nonlinear corrections. (English) Zbl 1483.65193 Appl. Numer. Math. 174, 1-16 (2022). MSC: 65N30 35B50 65N12 35J25 65N50 PDF BibTeX XML Cite \textit{S. Wang} and \textit{G. Yuan}, Appl. Numer. Math. 174, 1--16 (2022; Zbl 1483.65193) Full Text: DOI OpenURL
Clayton, Bennett; Guermond, Jean-Luc; Popov, Bojan Invariant domain-preserving approximations for the Euler equations with tabulated equation of state. (English) Zbl 07482212 SIAM J. Sci. Comput. 44, No. 1, A444-A470 (2022). Reviewer: Jan Giesselmann (Darmstadt) MSC: 65M60 65M06 65N30 65M12 65M22 35L65 76N10 35Q31 PDF BibTeX XML Cite \textit{B. Clayton} et al., SIAM J. Sci. Comput. 44, No. 1, A444--A470 (2022; Zbl 07482212) Full Text: DOI OpenURL
Carstensen, Carsten; Nataraj, Neela Lowest-order equivalent nonstandard finite element methods for biharmonic plates. (English) Zbl 1483.65177 ESAIM, Math. Model. Numer. Anal. 56, No. 1, 41-78 (2022). MSC: 65N30 65N12 65N15 65N50 31A30 74K20 PDF BibTeX XML Cite \textit{C. Carstensen} and \textit{N. Nataraj}, ESAIM, Math. Model. Numer. Anal. 56, No. 1, 41--78 (2022; Zbl 1483.65177) Full Text: DOI arXiv OpenURL
Caboussat, Alexandre; Gourzoulidis, Dimitrios; Picasso, Marco An anisotropic adaptive method for the numerical approximation of orthogonal maps. (English) Zbl 07474396 J. Comput. Appl. Math. 407, Article ID 113997, 21 p. (2022). MSC: 65N30 65N50 65K10 49M20 35F30 PDF BibTeX XML Cite \textit{A. Caboussat} et al., J. Comput. Appl. Math. 407, Article ID 113997, 21 p. (2022; Zbl 07474396) Full Text: DOI OpenURL
Gjerde, Ingeborg G.; Scott, L. Ridgway Nitsche’s method for Navier-Stokes equations with slip boundary conditions. (English) Zbl 07473338 Math. Comput. 91, No. 334, 597-622 (2022). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65N12 76D05 PDF BibTeX XML Cite \textit{I. G. Gjerde} and \textit{L. R. Scott}, Math. Comput. 91, No. 334, 597--622 (2022; Zbl 07473338) Full Text: DOI OpenURL
Gao, Yu; Li, Jingzhi; Song, Yongcun; Wang, Chao; Zhang, Kai Alternating direction based method for optimal control problem constrained by Stokes equation. (English) Zbl 07472948 J. Inverse Ill-Posed Probl. 30, No. 1, 81-99 (2022). MSC: 90C30 90C33 65N30 PDF BibTeX XML Cite \textit{Y. Gao} et al., J. Inverse Ill-Posed Probl. 30, No. 1, 81--99 (2022; Zbl 07472948) Full Text: DOI OpenURL
Dehghan, Mehdi; Gharibi, Zeinab An analysis of weak Galerkin finite element method for a steady state Boussinesq problem. (English) Zbl 1482.35168 J. Comput. Appl. Math. 406, Article ID 114029, 29 p. (2022). MSC: 35Q35 35B45 35B35 35A01 35A02 76D05 76M10 80A19 65N30 65N15 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{Z. Gharibi}, J. Comput. Appl. Math. 406, Article ID 114029, 29 p. (2022; Zbl 1482.35168) Full Text: DOI OpenURL
Xie, Yaning; Li, Shuwang; Ying, Wenjun A fourth-order Cartesian grid method for multiple acoustic scattering on closely packed obstacles. (English) Zbl 07472416 J. Comput. Appl. Math. 406, Article ID 113885, 17 p. (2022). MSC: 35J05 65N38 65N06 65N30 PDF BibTeX XML Cite \textit{Y. Xie} et al., J. Comput. Appl. Math. 406, Article ID 113885, 17 p. (2022; Zbl 07472416) Full Text: DOI OpenURL
Riahi, M. K.; Ali, M.; Addad, Y.; Abu-Nada, E. Combined Newton-Raphson and streamlines-upwind Petrov-Galerkin iterations for nanoparticles transport in buoyancy-driven flow. (English) Zbl 1478.65087 J. Eng. Math. 132, Paper No. 22, 26 p. (2022). MSC: 65M60 65Y04 35Q35 35Q79 PDF BibTeX XML Cite \textit{M. K. Riahi} et al., J. Eng. Math. 132, Paper No. 22, 26 p. (2022; Zbl 1478.65087) Full Text: DOI arXiv OpenURL
Gentili, G. G.; Khosronejad, M.; Bernasconi, G.; Perotto, S.; Micheletti, S. Efficient modeling of multimode guided acoustic wave propagation in deformed pipelines by hierarchical model reduction. (English) Zbl 07468872 Appl. Numer. Math. 173, 329-344 (2022). Reviewer: Bülent Karasözen (Ankara) MSC: 65N30 35J25 35J05 76Q05 76M10 65N15 65N35 35Q35 PDF BibTeX XML Cite \textit{G. G. Gentili} et al., Appl. Numer. Math. 173, 329--344 (2022; Zbl 07468872) Full Text: DOI OpenURL
Dassi, F.; Gedicke, J.; Mascotto, L. Adaptive virtual element methods with equilibrated fluxes. (English) Zbl 07468868 Appl. Numer. Math. 173, 249-278 (2022). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65N15 65N12 65N50 35J05 PDF BibTeX XML Cite \textit{F. Dassi} et al., Appl. Numer. Math. 173, 249--278 (2022; Zbl 07468868) Full Text: DOI arXiv OpenURL
Huang, Chaobao; An, Na; Chen, Hu Local \(H^1\)-norm error analysis of a mixed finite element method for a time-fractional biharmonic equation. (English) Zbl 07468865 Appl. Numer. Math. 173, 211-221 (2022). MSC: 65M60 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{C. Huang} et al., Appl. Numer. Math. 173, 211--221 (2022; Zbl 07468865) Full Text: DOI OpenURL
North, Evan; Tsynkov, Semyon; Turkel, Eli Non-iterative domain decomposition for the Helmholtz equation with strong material discontinuities. (English) Zbl 07468857 Appl. Numer. Math. 173, 51-78 (2022). MSC: 35J05 65N55 65N06 65N30 PDF BibTeX XML Cite \textit{E. North} et al., Appl. Numer. Math. 173, 51--78 (2022; Zbl 07468857) Full Text: DOI arXiv OpenURL
Bonnet-Ben Dhia, Anne-Sophie; Chandler-Wilde, Simon N.; Fliss, Sonia; Hazard, Christophe; Perfekt, Karl-Mikael; Tjandrawidjaja, Yohanes The complex-scaled half-space matching method. (English) Zbl 1481.35131 SIAM J. Math. Anal. 54, No. 1, 512-557 (2022). MSC: 35J05 35J25 45B05 45F15 65N30 65N38 PDF BibTeX XML Cite \textit{A.-S. Bonnet-Ben Dhia} et al., SIAM J. Math. Anal. 54, No. 1, 512--557 (2022; Zbl 1481.35131) Full Text: DOI arXiv OpenURL
Wang, Liang; Yuan, Xinpeng; Xiong, Chunguang; Wu, Huibin A priori error analysis of discontinuous Galerkin isogeometric analysis approximations of Burgers on surface. (English) Zbl 07464724 Comput. Methods Appl. Mech. Eng. 390, Article ID 114342, 16 p. (2022). MSC: 65F10 65N30 65N55 PDF BibTeX XML Cite \textit{L. Wang} et al., Comput. Methods Appl. Mech. Eng. 390, Article ID 114342, 16 p. (2022; Zbl 07464724) Full Text: DOI OpenURL
Brunken, Julia; Smetana, Kathrin Stable and efficient Petrov-Galerkin methods for a kinetic Fokker-Planck equation. (English) Zbl 07463755 SIAM J. Numer. Anal. 60, No. 1, 157-179 (2022). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M12 65J10 35A15 35A01 35A02 35D30 60J65 92C37 92C50 35Q92 PDF BibTeX XML Cite \textit{J. Brunken} and \textit{K. Smetana}, SIAM J. Numer. Anal. 60, No. 1, 157--179 (2022; Zbl 07463755) Full Text: DOI arXiv OpenURL
Lafontaine, D.; Spence, E. A.; Wunsch, J. A sharp relative-error bound for the Helmholtz \(h\)-FEM at high frequency. (English) Zbl 1481.35136 Numer. Math. 150, No. 1, 137-178 (2022). MSC: 35J05 65N15 65N30 78A45 PDF BibTeX XML Cite \textit{D. Lafontaine} et al., Numer. Math. 150, No. 1, 137--178 (2022; Zbl 1481.35136) Full Text: DOI arXiv OpenURL
Einkemmer, L.; Ostermann, A.; Residori, M. A pseudo-spectral Strang splitting method for linear dispersive problems with transparent boundary conditions. (English) Zbl 1482.65192 Numer. Math. 150, No. 1, 105-135 (2022). Reviewer: Xiaofei Zhao (Wuhan) MSC: 65M70 65M06 65M12 65N35 65N30 35Q53 PDF BibTeX XML Cite \textit{L. Einkemmer} et al., Numer. Math. 150, No. 1, 105--135 (2022; Zbl 1482.65192) Full Text: DOI arXiv OpenURL
Yi, Nianyu; Liu, Hailiang A mass- and energy-conserved DG method for the Schrödinger-Poisson equation. (English) Zbl 1483.35230 Numer. Algorithms 89, No. 2, 905-930 (2022). MSC: 35Q55 35Q60 65M60 65M06 65N30 65M15 65M12 PDF BibTeX XML Cite \textit{N. Yi} and \textit{H. Liu}, Numer. Algorithms 89, No. 2, 905--930 (2022; Zbl 1483.35230) Full Text: DOI OpenURL
Dassi, Franco; Fumagalli, Alessio; Mazzieri, Ilario; Scotti, Anna; Vacca, Giuseppe A virtual element method for the wave equation on curved edges in two dimensions. (English) Zbl 07454832 J. Sci. Comput. 90, No. 1, Paper No. 50, 25 p. (2022). Reviewer: Baasansuren Jadamba (Rochester) MSC: 65M60 65M06 65N30 65M12 PDF BibTeX XML Cite \textit{F. Dassi} et al., J. Sci. Comput. 90, No. 1, Paper No. 50, 25 p. (2022; Zbl 07454832) Full Text: DOI arXiv OpenURL
Wang, Junjun; Zhang, Houchao Superconvergence analysis of a BDF-3 finite element method for nonlinear parabolic equation. (English) Zbl 07453269 Comput. Appl. Math. 41, No. 1, Paper No. 7, 23 p. (2022). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{J. Wang} and \textit{H. Zhang}, Comput. Appl. Math. 41, No. 1, Paper No. 7, 23 p. (2022; Zbl 07453269) Full Text: DOI OpenURL
Ostermann, Alexander; Rousset, Frédéric; Schratz, Katharina Error estimates at low regularity of splitting schemes for NLS. (English) Zbl 1482.65197 Math. Comput. 91, No. 333, 169-182 (2022). Reviewer: Bülent Karasözen (Ankara) MSC: 65M70 65M06 65N35 65N30 65T50 65M12 65M15 35Q55 35Q41 PDF BibTeX XML Cite \textit{A. Ostermann} et al., Math. Comput. 91, No. 333, 169--182 (2022; Zbl 1482.65197) Full Text: DOI arXiv OpenURL
Zhong, Liuqiang; Xuan, Yue; Cui, Jintao Two-grid discontinuous Galerkin method for convection-diffusion-reaction equations. (English) Zbl 07444657 J. Comput. Appl. Math. 404, Article ID 113903, 13 p. (2022). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{L. Zhong} et al., J. Comput. Appl. Math. 404, Article ID 113903, 13 p. (2022; Zbl 07444657) Full Text: DOI OpenURL
Hao, Yongle; Liu, Siyu; Wang, Lin Numerical solutions for Helmholtz equation with stochastic interface based on PML method. (English) Zbl 1479.78012 J. Comput. Appl. Math. 404, Article ID 113877, 12 p. (2022). MSC: 78A45 78M10 78M31 65N30 65N50 65C05 65N15 35A15 35B25 35J05 35Q60 35R60 PDF BibTeX XML Cite \textit{Y. Hao} et al., J. Comput. Appl. Math. 404, Article ID 113877, 12 p. (2022; Zbl 1479.78012) Full Text: DOI OpenURL
Hu, Dongdong; Cai, Wenjun; Gu, Xian-Ming; Wang, Yushun Efficient energy preserving Galerkin-Legendre spectral methods for fractional nonlinear Schrödinger equation with wave operator. (English) Zbl 07441574 Appl. Numer. Math. 172, 608-628 (2022). MSC: 65M60 35Q55 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{D. Hu} et al., Appl. Numer. Math. 172, 608--628 (2022; Zbl 07441574) Full Text: DOI OpenURL
Yang, Xuehua; Qiu, Wenlin; Chen, Haifan; Zhang, Haixiang Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space. (English) Zbl 07441568 Appl. Numer. Math. 172, 497-513 (2022). MSC: 65M60 65M12 PDF BibTeX XML Cite \textit{X. Yang} et al., Appl. Numer. Math. 172, 497--513 (2022; Zbl 07441568) Full Text: DOI OpenURL
Çiloğlu, Pelin; Yücel, Hamdullah Stochastic discontinuous Galerkin methods with low-rank solvers for convection diffusion equations. (English) Zbl 1478.65118 Appl. Numer. Math. 172, 157-185 (2022). MSC: 65N30 65N75 35K57 60H35 PDF BibTeX XML Cite \textit{P. Çiloğlu} and \textit{H. Yücel}, Appl. Numer. Math. 172, 157--185 (2022; Zbl 1478.65118) Full Text: DOI arXiv OpenURL
Guan, Zhen; Wang, Jungang; Liu, Ying; Nie, Yufeng Unconditionally optimal convergence of a linearized Galerkin FEM for the nonlinear time-fractional mobile/immobile transport equation. (English) Zbl 07441547 Appl. Numer. Math. 172, 133-156 (2022). MSC: 65M60 35R11 65M12 65M15 PDF BibTeX XML Cite \textit{Z. Guan} et al., Appl. Numer. Math. 172, 133--156 (2022; Zbl 07441547) Full Text: DOI OpenURL
Tan, Zhijun; Li, Kang; Chen, Yanping A fully discrete two-grid finite element method for nonlinear hyperbolic integro-differential equation. (English) Zbl 07427432 Appl. Math. Comput. 413, Article ID 126596, 19 p. (2022). MSC: 65M15 65M60 PDF BibTeX XML Cite \textit{Z. Tan} et al., Appl. Math. Comput. 413, Article ID 126596, 19 p. (2022; Zbl 07427432) Full Text: DOI OpenURL
Almeida, Rui M. P.; Chihaluca, Teófilo D.; Duque, José C. M. Approach to the Delta Greek of nonlinear Black-Scholes equation governing European options. (English) Zbl 1471.91614 J. Comput. Appl. Math. 402, Article ID 113790, 17 p. (2022). MSC: 91G60 65M60 91G20 35K65 PDF BibTeX XML Cite \textit{R. M. P. Almeida} et al., J. Comput. Appl. Math. 402, Article ID 113790, 17 p. (2022; Zbl 1471.91614) Full Text: DOI OpenURL
Meng, Jian; Mei, Liquan The optimal order convergence for the lowest order mixed finite element method of the biharmonic eigenvalue problem. (English) Zbl 1481.65217 J. Comput. Appl. Math. 402, Article ID 113783, 14 p. (2022). MSC: 65N25 65N30 65N15 65N12 31A30 PDF BibTeX XML Cite \textit{J. Meng} and \textit{L. Mei}, J. Comput. Appl. Math. 402, Article ID 113783, 14 p. (2022; Zbl 1481.65217) Full Text: DOI OpenURL
Patra, Pulak; Kumar Gupta, Asit; Kundu, Santimoy Generalized Rayleigh wave propagation in heterogeneous substratum over homogeneous half-space under gravity. (English) Zbl 1475.74070 Singh, Jagdev (ed.) et al., Methods of mathematical modelling and computation for complex systems. Cham: Springer. Stud. Syst. Decis. Control 373, 229-252 (2022). MSC: 74J15 74E05 PDF BibTeX XML Cite \textit{P. Patra} et al., Stud. Syst. Decis. Control 373, 229--252 (2022; Zbl 1475.74070) Full Text: DOI OpenURL
Asai, Taisei; Tanaka, Kazuaki; Oishi, Shin’ichi Numerical verification for asymmetric solutions of the Hénon equation on bounded domains. (English) Zbl 1473.35286 J. Comput. Appl. Math. 399, Article ID 113708, 13 p. (2022). MSC: 35J91 35J25 35A01 65N30 PDF BibTeX XML Cite \textit{T. Asai} et al., J. Comput. Appl. Math. 399, Article ID 113708, 13 p. (2022; Zbl 1473.35286) Full Text: DOI arXiv OpenURL
Ersoy Hepson, Ozlem; Dag, Idris An exponential cubic B-spline algorithm for solving the nonlinear coupled Burgers’ equation. (English) Zbl 07527916 Comput. Methods Differ. Equ. 9, No. 4, 1109-1127 (2021). MSC: 65L60 65M12 41A15 PDF BibTeX XML Cite \textit{O. Ersoy Hepson} and \textit{I. Dag}, Comput. Methods Differ. Equ. 9, No. 4, 1109--1127 (2021; Zbl 07527916) Full Text: DOI OpenURL
Wang, Zhen Non-uniform L1/DG method for one-dimensional time-fractional convection equation. (English) Zbl 07527913 Comput. Methods Differ. Equ. 9, No. 4, 1069-1082 (2021). MSC: 65M06 65M12 65M60 PDF BibTeX XML Cite \textit{Z. Wang}, Comput. Methods Differ. Equ. 9, No. 4, 1069--1082 (2021; Zbl 07527913) Full Text: DOI OpenURL
Chabassier, Juliette; Imperiale, Sébastien Construction and convergence analysis of conservative second order local time discretisation for linear wave equations. (English) Zbl 07523506 ESAIM, Math. Model. Numer. Anal. 55, No. 4, 1507-1543 (2021). MSC: 65-XX 35L05 65M12 65M22 65M60 PDF BibTeX XML Cite \textit{J. Chabassier} and \textit{S. Imperiale}, ESAIM, Math. Model. Numer. Anal. 55, No. 4, 1507--1543 (2021; Zbl 07523506) Full Text: DOI OpenURL
Ljung, Per; Målqvist, Axel; Persson, Anna A generalized finite element method for the strongly damped wave equation with rapidly varying data. (English) Zbl 07523502 ESAIM, Math. Model. Numer. Anal. 55, No. 4, 1375-1404 (2021). MSC: 65-XX 35K10 65M60 PDF BibTeX XML Cite \textit{P. Ljung} et al., ESAIM, Math. Model. Numer. Anal. 55, No. 4, 1375--1404 (2021; Zbl 07523502) Full Text: DOI OpenURL
Izadi, Mohammad; Srivastava, H. M. Numerical approximations to the nonlinear fractional-order logistic population model with fractional-order Bessel and Legendre bases. (English) Zbl 07514629 Chaos Solitons Fractals 145, Article ID 110779, 11 p. (2021). MSC: 26A33 65L60 42C05 65L05 PDF BibTeX XML Cite \textit{M. Izadi} and \textit{H. M. Srivastava}, Chaos Solitons Fractals 145, Article ID 110779, 11 p. (2021; Zbl 07514629) Full Text: DOI OpenURL
Liu, Kaifang; Song, Lunji A family of interior-penalized weak Galerkin methods for second-order elliptic equations. (English) Zbl 07514400 AIMS Math. 6, No. 1, 500-517 (2021). MSC: 65N30 35J15 65N15 PDF BibTeX XML Cite \textit{K. Liu} and \textit{L. Song}, AIMS Math. 6, No. 1, 500--517 (2021; Zbl 07514400) Full Text: DOI OpenURL
Abbaszadeh, Mostafa; Bayat, Mostafa; Dehghan, Mehdi The local meshless collocation method for numerical simulation of shallow water waves based on generalized equal width (GEW) equation. (English) Zbl 07508634 Wave Motion 107, Article ID 102805, 19 p. (2021). MSC: 65N12 65N30 65M12 PDF BibTeX XML Cite \textit{M. Abbaszadeh} et al., Wave Motion 107, Article ID 102805, 19 p. (2021; Zbl 07508634) Full Text: DOI OpenURL
Montenegro, Marcelo Existence of solution for Kirchhoff model problems with singular nonlinearity. (English) Zbl 07493406 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 82, 13 p. (2021). MSC: 35J40 35J30 37L65 35J60 65N30 PDF BibTeX XML Cite \textit{M. Montenegro}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 82, 13 p. (2021; Zbl 07493406) Full Text: DOI OpenURL
Adel, Waleed; Biçer, Kübra Erdem; Sezer, Mehmet A novel numerical approach for simulating the nonlinear MHD Jeffery-Hamel flow problem. (English) Zbl 07490005 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 74, 15 p. (2021). MSC: 76W05 76M25 65L10 65L60 PDF BibTeX XML Cite \textit{W. Adel} et al., Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 74, 15 p. (2021; Zbl 07490005) Full Text: DOI OpenURL
Erfanian, Majid; Zeidabadi, Hamed Solving of nonlinear Volterra integro-differential equations in the complex plane with periodic quasi-wavelets. (English) Zbl 07489844 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 221, 13 p. (2021). MSC: 65L60 44A45 45B05 65R20 PDF BibTeX XML Cite \textit{M. Erfanian} and \textit{H. Zeidabadi}, Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 221, 13 p. (2021; Zbl 07489844) Full Text: DOI OpenURL
Lin, Fubiao; Li, Yaxiang; Zhang, Jun Energy and mass conservative averaging local discontinuous Galerkin method for Schrödinger equation. (English) Zbl 07479358 Int. J. Numer. Anal. Model. 18, No. 6, 723-739 (2021). MSC: 65L10 34B27 65M60 PDF BibTeX XML Cite \textit{F. Lin} et al., Int. J. Numer. Anal. Model. 18, No. 6, 723--739 (2021; Zbl 07479358) Full Text: Link OpenURL
Al-Taweel, Ahmed; Dong, Yinlin; Hussain, Saqib; Wang, Xiaoshen A weak Galerkin harmonic finite element method for Laplace equation. (English) Zbl 07479335 Commun. Appl. Math. Comput. 3, No. 3, 527-543 (2021). MSC: 65N15 65N30 35J50 PDF BibTeX XML Cite \textit{A. Al-Taweel} et al., Commun. Appl. Math. Comput. 3, No. 3, 527--543 (2021; Zbl 07479335) Full Text: DOI OpenURL
Beznosov, Oleksii; Appelö, Daniel Hermite-discontinuous Galerkin overset grid methods for the scalar wave equation. (English) Zbl 07479328 Commun. Appl. Math. Comput. 3, No. 3, 391-418 (2021). MSC: 65M60 35L05 PDF BibTeX XML Cite \textit{O. Beznosov} and \textit{D. Appelö}, Commun. Appl. Math. Comput. 3, No. 3, 391--418 (2021; Zbl 07479328) Full Text: DOI arXiv OpenURL
Yang, Zhiwei; Zheng, Xiangcheng; Wang, Hong An indirect collocation method for variable-order fractional wave equations on uniform or graded meshes and its optimal error estimates. (English) Zbl 1480.65193 Int. J. Comput. Math. 98, No. 11, 2296-2309 (2021). MSC: 65L60 34A08 65L20 65L70 PDF BibTeX XML Cite \textit{Z. Yang} et al., Int. J. Comput. Math. 98, No. 11, 2296--2309 (2021; Zbl 1480.65193) Full Text: DOI OpenURL
Arrutselvi, M.; Natarajan, E. Virtual element method for nonlinear convection-diffusion-reaction equation on polygonal meshes. (English) Zbl 1480.65327 Int. J. Comput. Math. 98, No. 9, 1852-1876 (2021). MSC: 65N30 65N12 65N15 PDF BibTeX XML Cite \textit{M. Arrutselvi} and \textit{E. Natarajan}, Int. J. Comput. Math. 98, No. 9, 1852--1876 (2021; Zbl 1480.65327) Full Text: DOI OpenURL
Chen, An Two efficient Galerkin finite element methods for the modified anomalous subdiffusion equation. (English) Zbl 1480.65249 Int. J. Comput. Math. 98, No. 9, 1834-1851 (2021). MSC: 65M60 65M12 65M15 PDF BibTeX XML Cite \textit{A. Chen}, Int. J. Comput. Math. 98, No. 9, 1834--1851 (2021; Zbl 1480.65249) Full Text: DOI OpenURL
Bao, Gang; Jiang, Xue; Li, Peijun; Yuan, Xiaokai An adaptive finite element DtN method for the elastic wave scattering by biperiodic structures. (English) Zbl 07477266 ESAIM, Math. Model. Numer. Anal. 55, No. 6, 2921-2947 (2021). Reviewer: Adina Chirila (Braşov) MSC: 35Q74 74J20 74B10 35J05 65N30 65N12 65N15 65N50 PDF BibTeX XML Cite \textit{G. Bao} et al., ESAIM, Math. Model. Numer. Anal. 55, No. 6, 2921--2947 (2021; Zbl 07477266) Full Text: DOI arXiv OpenURL
Jia, Jinhong; Zheng, Xiangcheng; Wang, Hong Numerical discretization and fast approximation of a variably distributed-order fractional wave equation. (English) Zbl 07477243 ESAIM, Math. Model. Numer. Anal. 55, No. 5, 2211-2232 (2021). MSC: 65-XX 35R11 65N30 PDF BibTeX XML Cite \textit{J. Jia} et al., ESAIM, Math. Model. Numer. Anal. 55, No. 5, 2211--2232 (2021; Zbl 07477243) Full Text: DOI OpenURL
Li, Ming; Zheng, Zhoushun; Pan, Kejia An efficient extrapolation full multigrid method for elliptic problems in two and three dimensions. (English) Zbl 1480.65322 Int. J. Comput. Math. 98, No. 6, 1183-1198 (2021). MSC: 65N22 65N30 65N55 PDF BibTeX XML Cite \textit{M. Li} et al., Int. J. Comput. Math. 98, No. 6, 1183--1198 (2021; Zbl 1480.65322) Full Text: DOI OpenURL
Fan, Wenping; Jiang, Xiaoyun Error analysis of the unstructured mesh finite element method for the two-dimensional time-space fractional Schrödinger equation with a time-independent potential. (English) Zbl 07476638 Int. J. Comput. Math. 98, No. 8, 1663-1682 (2021). MSC: 65-XX 26A33 65M06 65M12 65M15 65M60 PDF BibTeX XML Cite \textit{W. Fan} and \textit{X. Jiang}, Int. J. Comput. Math. 98, No. 8, 1663--1682 (2021; Zbl 07476638) Full Text: DOI OpenURL
Zaky, Mahmoud A.; Hendy, Ahmed S. Convergence analysis of an \(L1\)-continuous Galerkin method for nonlinear time-space fractional Schrödinger equations. (English) Zbl 1480.65275 Int. J. Comput. Math. 98, No. 7, 1420-1437 (2021). MSC: 65M60 35Q55 35R11 65M12 PDF BibTeX XML Cite \textit{M. A. Zaky} and \textit{A. S. Hendy}, Int. J. Comput. Math. 98, No. 7, 1420--1437 (2021; Zbl 1480.65275) Full Text: DOI OpenURL
Manimaran, J.; Shangerganesh, L. Error estimates for Galerkin finite element approximations of time-fractional nonlocal diffusion equation. (English) Zbl 1480.65267 Int. J. Comput. Math. 98, No. 7, 1365-1384 (2021). MSC: 65M60 35K57 35R11 65M15 PDF BibTeX XML Cite \textit{J. Manimaran} and \textit{L. Shangerganesh}, Int. J. Comput. Math. 98, No. 7, 1365--1384 (2021; Zbl 1480.65267) Full Text: DOI OpenURL
Zhang, Wei The truncated Euler-Maruyama method for stochastic differential equations with piecewise continuous arguments driven by Lévy noise. (English) Zbl 1480.65024 Int. J. Comput. Math. 98, No. 2, 389-413 (2021). MSC: 65C30 65L05 65L60 60H35 PDF BibTeX XML Cite \textit{W. Zhang}, Int. J. Comput. Math. 98, No. 2, 389--413 (2021; Zbl 1480.65024) Full Text: DOI OpenURL
Elishakoff, Isaak Galerkin’s method as corrected by Bastatsky and Khvoles. (English) Zbl 07475454 Appl. Math. Inform. Mech. 26, No. 1, 95-107 (2021). MSC: 65M60 35L35 74K10 35Q74 65-03 01A60 PDF BibTeX XML Cite \textit{I. Elishakoff}, Appl. Math. Inform. Mech. 26, No. 1, 95--107 (2021; Zbl 07475454) Full Text: Link OpenURL
Chaumont-Frelet, Théophile; Gallistl, Dietmar; Nicaise, Serge; Tomezyk, Jérôme Wavenumber-explicit convergence analysis for finite element discretizations of time-harmonic wave propagation problems with perfectly matched layers. (English) Zbl 07474592 Commun. Math. Sci. 20, No. 1, 1-52 (2021). MSC: 35J05 65N30 78A40 PDF BibTeX XML Cite \textit{T. Chaumont-Frelet} et al., Commun. Math. Sci. 20, No. 1, 1--52 (2021; Zbl 07474592) Full Text: DOI OpenURL
Taleei, Ameneh An extended element free Galerkin method based on moving kriging interpolation for second-order elliptic interface problems. (English) Zbl 1478.65131 J. Math. Ext. 15, No. 4, Paper No. 11, 16 p. (2021). MSC: 65N30 35J05 35J57 74S05 82B24 PDF BibTeX XML Cite \textit{A. Taleei}, J. Math. Ext. 15, No. 4, Paper No. 11, 16 p. (2021; Zbl 1478.65131) Full Text: DOI Link OpenURL