She, Zi-Hang A class of unconditioned stable 4-point WSGD schemes and fast iteration methods for space fractional diffusion equations. (English) Zbl 07549606 J. Sci. Comput. 92, No. 1, Paper No. 18, 35 p. (2022). MSC: 26A33 65F10 65L12 65L20 65M22 PDF BibTeX XML Cite \textit{Z.-H. She}, J. Sci. Comput. 92, No. 1, Paper No. 18, 35 p. (2022; Zbl 07549606) Full Text: DOI OpenURL
Gekkieva, S. Kh.; Kerefov, M. A. Boundary-value problem for the Aller-Lykov nonlocal moisture transfer equation. (English. Russian original) Zbl 07542511 J. Math. Sci., New York 260, No. 3, 300-306 (2022); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 27-33 (2019). MSC: 35R11 35B45 35C10 PDF BibTeX XML Cite \textit{S. Kh. Gekkieva} and \textit{M. A. Kerefov}, J. Math. Sci., New York 260, No. 3, 300--306 (2022; Zbl 07542511); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 167, 27--33 (2019) Full Text: DOI OpenURL
Karaman, Bahar On fractional Fitzhugh-Nagumo equation as a transmission of nerve impulses design. (English) Zbl 07541705 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 95, 13 p. (2022). MSC: 35C05 35K58 35R11 PDF BibTeX XML Cite \textit{B. Karaman}, Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 95, 13 p. (2022; Zbl 07541705) Full Text: DOI OpenURL
Zafar, Husna; Ali, Amir; Khan, Khalid; Sadiq, Muhammad Noveel Analytical solution of time fractional Kawahara and modified Kawahara equations by homotopy analysis method. (English) Zbl 07541704 Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 94, 18 p. (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{H. Zafar} et al., Int. J. Appl. Comput. Math. 8, No. 3, Paper No. 94, 18 p. (2022; Zbl 07541704) Full Text: DOI OpenURL
Rezazadeh, A.; Avazzadeh, Z. Barycentric-Legendre interpolation method for solving two-dimensional fractional cable equation in neuronal dynamics. (English) Zbl 07541690 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 80, 20 p. (2022). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{A. Rezazadeh} and \textit{Z. Avazzadeh}, Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 80, 20 p. (2022; Zbl 07541690) Full Text: DOI OpenURL
Ashpazzadeh, Elmira; Chu, Yu-Ming; Hashemi, Mir Sajjad; Moharrami, Mahsa; Inc, Mustafa Hermite multiwavelets representation for the sparse solution of nonlinear Abel’s integral equation. (English) Zbl 07531280 Appl. Math. Comput. 427, Article ID 127171, 15 p. (2022). MSC: 34Axx 65Rxx 65Mxx PDF BibTeX XML Cite \textit{E. Ashpazzadeh} et al., Appl. Math. Comput. 427, Article ID 127171, 15 p. (2022; Zbl 07531280) Full Text: DOI OpenURL
Benia, Kheireddine; Beddani, Moustafa; Fečkan, Michal; Hedia, Benaouda Existence result for a problem involving \(\psi \)-Riemann-Liouville fractional derivative on unbounded domain. (English) Zbl 07531114 Differ. Equ. Appl. 14, No. 1, 83-97 (2022). MSC: 26A33 34A08 47H08 47H10 PDF BibTeX XML Cite \textit{K. Benia} et al., Differ. Equ. Appl. 14, No. 1, 83--97 (2022; Zbl 07531114) Full Text: DOI OpenURL
Dukhnovsky, S. A. New exact solutions for the time fractional Broadwell system. (English) Zbl 07528824 Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 53-66 (2022). MSC: 35C07 35L60 35Q20 35R11 68W30 PDF BibTeX XML Cite \textit{S. A. Dukhnovsky}, Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 53--66 (2022; Zbl 07528824) Full Text: DOI OpenURL
Bhanotar, Shailesh A.; Belgacem, Fethi Bin Muhammad Theory and applications of distinctive conformable triple Laplace and sumudu transforms decomposition methods. (English) Zbl 07526997 J. Partial Differ. Equations 35, No. 1, 49-77 (2022). MSC: 35A25 35M12 35Q40 35R11 PDF BibTeX XML Cite \textit{S. A. Bhanotar} and \textit{F. B. M. Belgacem}, J. Partial Differ. Equations 35, No. 1, 49--77 (2022; Zbl 07526997) Full Text: DOI OpenURL
Srivastava, H. M.; Raghavan, Divya; Nagarajan, Sukavanam A comparative study of the stability of some fractional-order cobweb economic models. (English) Zbl 07524915 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 98, 20 p. (2022). MSC: 91B86 26A33 33E12 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 3, Paper No. 98, 20 p. (2022; Zbl 07524915) Full Text: DOI OpenURL
Lachouri, Adel; Ardjouni, Abdelouaheb; Djoudi, Ahcene Existence and uniqueness of solutions for fractional relaxation integro-differential equations with boundary conditions. (English) Zbl 07524414 Facta Univ., Ser. Math. Inf. 37, No. 1, 211-221 (2022). MSC: 34A08 34A12 34B15 PDF BibTeX XML Cite \textit{A. Lachouri} et al., Facta Univ., Ser. Math. Inf. 37, No. 1, 211--221 (2022; Zbl 07524414) Full Text: DOI OpenURL
Irgashev, B. Yu. Initial-boundary problem for degenerate high order equation with fractional derivative. (English) Zbl 07506501 Indian J. Pure Appl. Math. 53, No. 1, 170-180 (2022). MSC: 35R11 35C10 35G16 PDF BibTeX XML Cite \textit{B. Yu. Irgashev}, Indian J. Pure Appl. Math. 53, No. 1, 170--180 (2022; Zbl 07506501) Full Text: DOI OpenURL
Oliveira, D. S. Properties of \(\psi\)-Mittag-Leffler fractional integrals. (English) Zbl 07501035 Rend. Circ. Mat. Palermo (2) 71, No. 1, 233-246 (2022). MSC: 26A33 33E12 34A08 PDF BibTeX XML Cite \textit{D. S. Oliveira}, Rend. Circ. Mat. Palermo (2) 71, No. 1, 233--246 (2022; Zbl 07501035) Full Text: DOI OpenURL
Ngoc, Tran Bao; Tuan, Nguyen Huy; Sakthivel, R.; O’Regan, Donal Analysis of nonlinear fractional diffusion equations with a Riemann-Liouville derivative. (English) Zbl 07500386 Evol. Equ. Control Theory 11, No. 2, 439-455 (2022). MSC: 26A33 35B65 35B05 35R11 PDF BibTeX XML Cite \textit{T. B. Ngoc} et al., Evol. Equ. Control Theory 11, No. 2, 439--455 (2022; Zbl 07500386) Full Text: DOI OpenURL
Diethelm, Kai; Kitzing, Konrad; Picard, Rainer; Siegmund, Stefan; Trostorff, Sascha; Waurick, Marcus A Hilbert space approach to fractional differential equations. (English) Zbl 07491616 J. Dyn. Differ. Equations 34, No. 1, 481-504 (2022). MSC: 26A33 45D05 PDF BibTeX XML Cite \textit{K. Diethelm} et al., J. Dyn. Differ. Equations 34, No. 1, 481--504 (2022; Zbl 07491616) Full Text: DOI arXiv OpenURL
Alsaedi, Ahmed; Al-Hutami, Hana; Ahmad, Bashir; Agarwal, Ravi P. Existence results for a coupled system of nonlinear fractional \(q\)-integro-difference equations with \(q\)-integral-coupled boundary conditions. (English) Zbl 1485.39008 Fractals 30, No. 1, Article ID 2240042, 19 p. (2022). MSC: 39A13 39A27 34A08 26A33 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., Fractals 30, No. 1, Article ID 2240042, 19 p. (2022; Zbl 1485.39008) Full Text: DOI OpenURL
Ahmad, Bashir; Alghamdi, Badrah; Agarwal, Ravi P.; Alsaedi, Ahmed Riemann-Liouville fractional integro-differential equations with fractional nonlocal multi-point boundary conditions. (English) Zbl 07490638 Fractals 30, No. 1, Article ID 2240002, 11 p. (2022). MSC: 45J05 26A33 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Fractals 30, No. 1, Article ID 2240002, 11 p. (2022; Zbl 07490638) Full Text: DOI OpenURL
Beddani, Moustafa Solution set for impulsive fractional differential inclusions. (English) Zbl 07479311 Kragujevac J. Math. 46, No. 1, 49-64 (2022). MSC: 34A60 34A08 34A37 PDF BibTeX XML Cite \textit{M. Beddani}, Kragujevac J. Math. 46, No. 1, 49--64 (2022; Zbl 07479311) Full Text: DOI Link OpenURL
Abdelkawy, M. A.; Amin, A. Z. M.; Lopes, António M. Fractional-order shifted Legendre collocation method for solving non-linear variable-order fractional Fredholm integro-differential equations. (English) Zbl 07453264 Comput. Appl. Math. 41, No. 1, Paper No. 2, 21 p. (2022). MSC: 45B05 35R11 65M70 91G60 PDF BibTeX XML Cite \textit{M. A. Abdelkawy} et al., Comput. Appl. Math. 41, No. 1, Paper No. 2, 21 p. (2022; Zbl 07453264) Full Text: DOI OpenURL
Srivastava, H. M.; El-Sayed, A. M. A.; Hashem, H. H. G.; Al-Issa, Sh. M. Analytical investigation of nonlinear hybrid implicit functional differential inclusions of arbitrary fractional orders. (English) Zbl 07425422 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 1, Paper No. 26, 19 p. (2022). MSC: 34A08 26A33 34A60 34A09 34A38 47N20 34A12 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 1, Paper No. 26, 19 p. (2022; Zbl 07425422) Full Text: DOI OpenURL
Azhar, Noreen; Iqbal, Saleem Solution of fuzzy fractional order differential equations by fractional Mellin transform method. (English) Zbl 1481.34007 J. Comput. Appl. Math. 400, Article ID 113727, 11 p. (2022). Reviewer: Tatyana Komleva (Odessa) MSC: 34A07 26E50 44A05 PDF BibTeX XML Cite \textit{N. Azhar} and \textit{S. Iqbal}, J. Comput. Appl. Math. 400, Article ID 113727, 11 p. (2022; Zbl 1481.34007) Full Text: DOI OpenURL
Alam, Mehboob; Shah, Dildar Hyers-Ulam stability of coupled implicit fractional integro-differential equations with Riemann-Liouville derivatives. (English) Zbl 07544045 Chaos Solitons Fractals 150, Article ID 111122, 31 p. (2021). MSC: 26A33 34A08 34B37 PDF BibTeX XML Cite \textit{M. Alam} and \textit{D. Shah}, Chaos Solitons Fractals 150, Article ID 111122, 31 p. (2021; Zbl 07544045) Full Text: DOI OpenURL
Alsaedi, Ahmed; Ahmad, Bashir; Alblewi, Manal; Ntouyas, Sotiris K. Existence results for nonlinear fractional-order multi-term integro-multipoint boundary value problems. (English) Zbl 07543273 AIMS Math. 6, No. 4, 3319-3338 (2021). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., AIMS Math. 6, No. 4, 3319--3338 (2021; Zbl 07543273) Full Text: DOI OpenURL
Morales, María Guadalupe; Došlá, Zuzana Weighted Cauchy problem: fractional versus integer order. (English) Zbl 07543119 J. Integral Equations Appl. 33, No. 4, 497-509 (2021). MSC: 26A33 34A12 45D05 PDF BibTeX XML Cite \textit{M. G. Morales} and \textit{Z. Došlá}, J. Integral Equations Appl. 33, No. 4, 497--509 (2021; Zbl 07543119) Full Text: DOI OpenURL
Sabatier, Jocelyn; Farges, Christophe Initial value problems should not be associated to fractional model descriptions whatever the derivative definition used. (English) Zbl 07536393 AIMS Math. 6, No. 10, 11318-11329 (2021). MSC: 26A33 34A12 PDF BibTeX XML Cite \textit{J. Sabatier} and \textit{C. Farges}, AIMS Math. 6, No. 10, 11318--11329 (2021; Zbl 07536393) Full Text: DOI OpenURL
Bilgici, Sinan Serkan; Şan, Müfit Existence and uniqueness results for a nonlinear singular fractional differential equation of order \(\sigma\in(1, 2)\). (English) Zbl 07533470 AIMS Math. 6, No. 12, 13041-13056 (2021). MSC: 34A08 37C25 34A12 74G20 26A33 PDF BibTeX XML Cite \textit{S. S. Bilgici} and \textit{M. Şan}, AIMS Math. 6, No. 12, 13041--13056 (2021; Zbl 07533470) Full Text: DOI OpenURL
Haddouchi, Faouzi On the existence and uniqueness of solutions for fractional differential equations with nonlocal multi-point boundary conditions. (English) Zbl 07531097 Differ. Equ. Appl. 13, No. 3, 227-242 (2021). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{F. Haddouchi}, Differ. Equ. Appl. 13, No. 3, 227--242 (2021; Zbl 07531097) Full Text: DOI OpenURL
Kadkhoda, N.; Kalleji, Morteza Koozehgar; Khalili, Yasser Group analysis of time-fractional equation with Riemann-Liouville derivative. (English) Zbl 07530513 Casp. J. Math. Sci. 10, No. 1, 112-120 (2021). MSC: 35R03 35R11 PDF BibTeX XML Cite \textit{N. Kadkhoda} et al., Casp. J. Math. Sci. 10, No. 1, 112--120 (2021; Zbl 07530513) Full Text: DOI OpenURL
Moulai-Khatir, Anes On asymptotic properties of some neutral differential equations involving Riemann-Liouville fractional derivative. (English) Zbl 07530055 Fract. Differ. Calc. 11, No. 2, 193-201 (2021). MSC: 34K20 34K40 PDF BibTeX XML Cite \textit{A. Moulai-Khatir}, Fract. Differ. Calc. 11, No. 2, 193--201 (2021; Zbl 07530055) Full Text: DOI OpenURL
Zhang, Shuqin; Su, Xinwei Unique existence of solution to initial value problem for fractional differential equation involving with fractional derivative of variable order. (English) Zbl 1485.34061 Chaos Solitons Fractals 148, Article ID 111040, 12 p. (2021). MSC: 34A08 34A12 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{X. Su}, Chaos Solitons Fractals 148, Article ID 111040, 12 p. (2021; Zbl 1485.34061) Full Text: DOI OpenURL
Talib, Imran; Alam, Md. Nur; Baleanu, Dumitru; Zaidi, Danish; Marriyam, Ammarah A new integral operational matrix with applications to multi-order fractional differential equations. (English) Zbl 1484.34067 AIMS Math. 6, No. 8, 8742-8771 (2021). MSC: 34A45 34A08 65M99 PDF BibTeX XML Cite \textit{I. Talib} et al., AIMS Math. 6, No. 8, 8742--8771 (2021; Zbl 1484.34067) Full Text: DOI OpenURL
Ahmad, Bashir; Alghamdi, Badrah; Alsaedi, Ahmed; Ntouyas, Sotiris K. Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions. (English) Zbl 1484.34171 AIMS Math. 6, No. 7, 7093-7110 (2021). MSC: 34K37 34B10 34K09 34K10 45J05 PDF BibTeX XML Cite \textit{B. Ahmad} et al., AIMS Math. 6, No. 7, 7093--7110 (2021; Zbl 1484.34171) Full Text: DOI OpenURL
Èneeva, L. M. Mixed boundary value problem for an ordinary differential equation with fractional derivatives with different origins. (Russian. English summary) Zbl 07512599 Vestn. KRAUNTS, Fiz.-Mat. Nauki 36, No. 3, 65-71 (2021). MSC: 26A33 PDF BibTeX XML Cite \textit{L. M. Èneeva}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 36, No. 3, 65--71 (2021; Zbl 07512599) Full Text: DOI MNR OpenURL
Nikan, O.; Machado, J. A. Tenreiro; Golbabai, A.; Rashidinia, J. Numerical evaluation of the fractional Klein-Kramers model arising in molecular dynamics. (English) Zbl 07511421 J. Comput. Phys. 428, Article ID 109983, 21 p. (2021). MSC: 76-XX 92-XX PDF BibTeX XML Cite \textit{O. Nikan} et al., J. Comput. Phys. 428, Article ID 109983, 21 p. (2021; Zbl 07511421) Full Text: DOI OpenURL
Volkova, Anastasiya Romanovna; Izhberdeeva, Elizabeta Monirovna; Fedorov, Vladimir Evgen’evich Initial value problems for equations with a composition of fractional derivatives. (Russian. English summary) Zbl 07503910 Chelyabinskiĭ Fiz.-Mat. Zh. 6, No. 3, 269-277 (2021). MSC: 34A08 34G10 34A12 33E12 PDF BibTeX XML Cite \textit{A. R. Volkova} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 6, No. 3, 269--277 (2021; Zbl 07503910) Full Text: DOI MNR OpenURL
Medveď, Milan; Brestovanská, Eva Differential equations with tempered \(\Psi\)-Caputo fractional derivative. (English) Zbl 1483.34016 Math. Model. Anal. 26, No. 4, 631-650 (2021). MSC: 34A08 34A12 34A40 34D05 34A34 PDF BibTeX XML Cite \textit{M. Medveď} and \textit{E. Brestovanská}, Math. Model. Anal. 26, No. 4, 631--650 (2021; Zbl 1483.34016) Full Text: DOI OpenURL
Turov, Mikhail Mikhailovich; Fëdorov, Vladimir Evgen’evich; Kien, Bui Trong Linear inverse problems for multi-term equations with Riemann-Liouville derivatives. (English) Zbl 1483.34019 Izv. Irkutsk. Gos. Univ., Ser. Mat. 38, 36-53 (2021). MSC: 34A08 34A55 PDF BibTeX XML Cite \textit{M. M. Turov} et al., Izv. Irkutsk. Gos. Univ., Ser. Mat. 38, 36--53 (2021; Zbl 1483.34019) Full Text: DOI Link OpenURL
Yaslan, Ismail; Günendi, Mustafa Positive solutions for higher-order multi-point fractional boundary value problems. (English) Zbl 07493465 Miskolc Math. Notes 22, No. 2, 1013-1026 (2021). MSC: 34B07 34D05 34L20 34K37 PDF BibTeX XML Cite \textit{I. Yaslan} and \textit{M. Günendi}, Miskolc Math. Notes 22, No. 2, 1013--1026 (2021; Zbl 07493465) Full Text: DOI OpenURL
Ahmadova, Arzu; Mahmudov, Nazim I. Asymptotic stability analysis of Riemann-Liouville fractional stochastic neutral differential equations. (English) Zbl 07493425 Miskolc Math. Notes 22, No. 2, 503-520 (2021). MSC: 35J61 35B09 35B33 35B40 PDF BibTeX XML Cite \textit{A. Ahmadova} and \textit{N. I. Mahmudov}, Miskolc Math. Notes 22, No. 2, 503--520 (2021; Zbl 07493425) Full Text: DOI arXiv OpenURL
Mesgarani, H.; Esmaeelzade Aghdam, Y.; Tavakoli, H. Numerical simulation to solve two-dimensional temporal-space fractional Bloch-Torrey equation taken of the spin magnetic moment diffusion. (English) Zbl 07490025 Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 94, 14 p. (2021). MSC: 34A08 65L20 60J60 65M70 PDF BibTeX XML Cite \textit{H. Mesgarani} et al., Int. J. Appl. Comput. Math. 7, No. 3, Paper No. 94, 14 p. (2021; Zbl 07490025) Full Text: DOI OpenURL
Jonnalagadda, Jagan Mohan; Gopal, N. S. Linear Hilfer nabla fractional difference equations. (English) Zbl 1482.39006 Int. J. Dyn. Syst. Differ. Equ. 11, No. 3-4, 322-340 (2021). MSC: 39A13 39A12 44A10 44A55 26A33 PDF BibTeX XML Cite \textit{J. M. Jonnalagadda} and \textit{N. S. Gopal}, Int. J. Dyn. Syst. Differ. Equ. 11, No. 3--4, 322--340 (2021; Zbl 1482.39006) Full Text: DOI OpenURL
Jonnalagadda, Jagan Mohan; Basua, Debananda Lyapunov-type inequality for a Riemann-Liouville type fractional boundary value problem with anti-periodic boundary conditions. (English) Zbl 1481.34011 Proyecciones 40, No. 4, 873-884 (2021). MSC: 34A08 34A40 26D10 33E12 34C10 PDF BibTeX XML Cite \textit{J. M. Jonnalagadda} and \textit{D. Basua}, Proyecciones 40, No. 4, 873--884 (2021; Zbl 1481.34011) Full Text: DOI OpenURL
Mnguni, Nkosingiphile; Jamal, Sameerah Invariant solutions of fractional-order spatio-temporal partial differential equations. (English) Zbl 07486838 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 7-8, 1011-1022 (2021). MSC: 34-XX 35-XX PDF BibTeX XML Cite \textit{N. Mnguni} and \textit{S. Jamal}, Int. J. Nonlinear Sci. Numer. Simul. 22, No. 7--8, 1011--1022 (2021; Zbl 07486838) Full Text: DOI OpenURL
Alsaedi, Ahmed; Ahmad, Bashir; Alghamdi, Badrah; Ntouyas, Sotiris K. On a nonlinear system of Riemann-Liouville fractional differential equations with semi-coupled integro-multipoint boundary conditions. (English) Zbl 1481.34008 Open Math. 19, 760-772 (2021). MSC: 34A08 34B15 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., Open Math. 19, 760--772 (2021; Zbl 1481.34008) Full Text: DOI OpenURL
Naz, Samaira; Naeem, Muhammad Nawaz; Chu, Yu-Ming Some \(k\)-fractional extension of Grüss-type inequalities via generalized Hilfer-Katugampola derivative. (English) Zbl 1485.26006 Adv. Difference Equ. 2021, Paper No. 29, 16 p. (2021). MSC: 26A33 26D10 26D15 PDF BibTeX XML Cite \textit{S. Naz} et al., Adv. Difference Equ. 2021, Paper No. 29, 16 p. (2021; Zbl 1485.26006) Full Text: DOI OpenURL
Alsaedi, Ahmed; Albideewi, Amjad F.; Ntouyas, Sotiris K.; Ahmad, Bashir Existence results for a coupled system of Caputo type fractional integro-differential equations with multi-point and sub-strip boundary conditions. (English) Zbl 1485.45007 Adv. Difference Equ. 2021, Paper No. 19, 19 p. (2021). MSC: 45J05 34A08 26A33 47N20 PDF BibTeX XML Cite \textit{A. Alsaedi} et al., Adv. Difference Equ. 2021, Paper No. 19, 19 p. (2021; Zbl 1485.45007) Full Text: DOI OpenURL
Bayrak, Mine Aylin; Demir, Ali Determination of time dependent diffusion coefficient in time fractional diffusion equations by fractional scaling transformations method. (English) Zbl 1484.35403 Bull. Inst. Math., Acad. Sin. (N.S.) 16, No. 4, 303-319 (2021). MSC: 35R30 35K20 35R11 PDF BibTeX XML Cite \textit{M. A. Bayrak} and \textit{A. Demir}, Bull. Inst. Math., Acad. Sin. (N.S.) 16, No. 4, 303--319 (2021; Zbl 1484.35403) Full Text: DOI OpenURL
Iqbal, Sajid; Farid, Ghulam; Pečarić, Josip; Kashuri, Artion Hardy-type inequalities for an extension of the Riemann-Liouville fractional derivative operators. (English) Zbl 07477636 Kragujevac J. Math. 45, No. 5, 797-813 (2021). MSC: 26D15 26D10 26A33 PDF BibTeX XML Cite \textit{S. Iqbal} et al., Kragujevac J. Math. 45, No. 5, 797--813 (2021; Zbl 07477636) Full Text: DOI Link OpenURL
Zunnunov, R. T. Inverse problems of determining an order of fractional Riemann-Liouville time-fractional derivative for the subdiffusion equation in \(R^N\). (English) Zbl 07473633 Uzb. Math. J. 65, No. 3, 166-174 (2021). MSC: 35R11 PDF BibTeX XML Cite \textit{R. T. Zunnunov}, Uzb. Math. J. 65, No. 3, 166--174 (2021; Zbl 07473633) Full Text: DOI OpenURL
Fu, Xinyu; Liu, Song; Li, Xiaoyan Containment control for delayed fractional multiple agent systems in Riemann-Liouville sense. (English) Zbl 1483.93019 Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 52, No. 9, 1913-1924 (2021). MSC: 93A16 93C43 26A33 PDF BibTeX XML Cite \textit{X. Fu} et al., Int. J. Syst. Sci., Princ. Appl. Syst. Integr. 52, No. 9, 1913--1924 (2021; Zbl 1483.93019) Full Text: DOI OpenURL
Khalouta, Ali; Kadem, Abdelouahab Theories and analytical solutions for fractional differential equations. (English) Zbl 1478.34008 J. Math. Ext. 15, No. 3, Paper No. 12, 19 p. (2021). MSC: 34A08 35A22 33E12 35C10 PDF BibTeX XML Cite \textit{A. Khalouta} and \textit{A. Kadem}, J. Math. Ext. 15, No. 3, Paper No. 12, 19 p. (2021; Zbl 1478.34008) Full Text: DOI Link OpenURL
Naz, Samaira; Naeem, Muhammad Nawaz; Chu, Yu-Ming Ostrowski-type inequalities for \(n\)-polynomial \(\mathscr{P} \)-convex function for \(k\)-fractional Hilfer-Katugampola derivative. (English) Zbl 07465095 J. Inequal. Appl. 2021, Paper No. 117, 23 p. (2021). MSC: 26D10 26D15 90C23 PDF BibTeX XML Cite \textit{S. Naz} et al., J. Inequal. Appl. 2021, Paper No. 117, 23 p. (2021; Zbl 07465095) Full Text: DOI OpenURL
Yang, Min; Gu, Haibo Riemann-Liouville fractional stochastic evolution equations driven by both Wiener process and fractional Brownian motion. (English) Zbl 07464987 J. Inequal. Appl. 2021, Paper No. 8, 19 p. (2021). MSC: 00-XX PDF BibTeX XML Cite \textit{M. Yang} and \textit{H. Gu}, J. Inequal. Appl. 2021, Paper No. 8, 19 p. (2021; Zbl 07464987) Full Text: DOI OpenURL
Jamal, Sameerah; Mnguni, Nkosingiphile Moving front solutions of a time-fractional power-law fluid under gravity. (English) Zbl 07462344 Quaest. Math. 44, No. 10, 1295-1304 (2021). MSC: 35Qxx 26A33 34K37 35R11 PDF BibTeX XML Cite \textit{S. Jamal} and \textit{N. Mnguni}, Quaest. Math. 44, No. 10, 1295--1304 (2021; Zbl 07462344) Full Text: DOI OpenURL
Agarwal, Praveen; Jaimini, B. B.; Sharma, Manju Certain integral formulae involving generalized Hurwitz-Lerch zeta functions. (English) Zbl 07458988 J. Fract. Calc. Appl. 12, No. 2, 228-234 (2021). MSC: 26A33 33E20 PDF BibTeX XML Cite \textit{P. Agarwal} et al., J. Fract. Calc. Appl. 12, No. 2, 228--234 (2021; Zbl 07458988) Full Text: Link OpenURL
Omaba, McSylvester Ejighikeme On a mild solution to Hilfer time-fractional stochastic differential equation. (English) Zbl 07458969 J. Fract. Calc. Appl. 12, No. 2, 1-10 (2021). MSC: 26A33 34A08 60H15 82B44 PDF BibTeX XML Cite \textit{M. E. Omaba}, J. Fract. Calc. Appl. 12, No. 2, 1--10 (2021; Zbl 07458969) Full Text: Link OpenURL
Isife, K. I. Investigation of some stability properties of solutions for a class of nonlinear boundary value fractional differential equations. (English) Zbl 07458956 J. Fract. Calc. Appl. 12, No. 1, 90-100 (2021). MSC: 34Bxx 34Dxx PDF BibTeX XML Cite \textit{K. I. Isife}, J. Fract. Calc. Appl. 12, No. 1, 90--100 (2021; Zbl 07458956) Full Text: Link OpenURL
Ntouyas, Sotiris K.; Vivek, Devaraj Existence and uniqueness results for sequential \(\psi\)-Hilfer fractional differential equations with multi-point boundary conditions. (English) Zbl 07455886 Acta Math. Univ. Comen., New Ser. 90, No. 2, 171-185 (2021). Reviewer: Thanin Sitthiwirattham (Bangkok) MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{S. K. Ntouyas} and \textit{D. Vivek}, Acta Math. Univ. Comen., New Ser. 90, No. 2, 171--185 (2021; Zbl 07455886) Full Text: Link OpenURL
Zhang, Minling; Liu, Fawang; Anh, Vo An effective algorithm for computing fractional derivatives and application to fractional differential equations. (English) Zbl 07455345 Int. J. Numer. Anal. Model. 18, No. 4, 458-480 (2021). MSC: 26A33 65M06 65N12 65M70 PDF BibTeX XML Cite \textit{M. Zhang} et al., Int. J. Numer. Anal. Model. 18, No. 4, 458--480 (2021; Zbl 07455345) Full Text: Link OpenURL
Akhadkulov, Habibulla; Alsharari, Fahad; Ying, Teh Yuan Applications of Krasnoselskii-Dhage type fixed-point theorems to fractional hybrid differential equations. (English) Zbl 07444100 Tamkang J. Math. 52, No. 2, 281-292 (2021). MSC: 47-XX 47H09 47H10 26A33 PDF BibTeX XML Cite \textit{H. Akhadkulov} et al., Tamkang J. Math. 52, No. 2, 281--292 (2021; Zbl 07444100) Full Text: DOI OpenURL
Jiao, Caiyu; Khaliq, Abdul; Li, Changpin; Wang, Hexiang Difference between Riesz derivative and fractional Laplacian on the proper subset of \(\mathbb{R}\). (English) Zbl 07443869 Fract. Calc. Appl. Anal. 24, No. 6, 1716-1734 (2021). MSC: 26A33 47B06 PDF BibTeX XML Cite \textit{C. Jiao} et al., Fract. Calc. Appl. Anal. 24, No. 6, 1716--1734 (2021; Zbl 07443869) Full Text: DOI OpenURL
Zhang, Zhi-Yong; Guo, Lei-Lei An alternative technique for the symmetry reduction of time-fractional partial differential equation. (English) Zbl 1484.35399 Math. Methods Appl. Sci. 44, No. 18, 14957-14962 (2021). MSC: 35R11 26A33 35C05 35C10 76M60 PDF BibTeX XML Cite \textit{Z.-Y. Zhang} and \textit{L.-L. Guo}, Math. Methods Appl. Sci. 44, No. 18, 14957--14962 (2021; Zbl 1484.35399) Full Text: DOI OpenURL
Martínez-Fuentes, Oscar; Fernández-Anaya, Guillermo; Muñoz-Vázquez, Aldo Jonathan Lyapunov functions for fractional-order nonlinear systems with Atangana-Baleanu derivative of Riemann-Liouville type. (English) Zbl 07441952 Math. Methods Appl. Sci. 44, No. 18, 14206-14216 (2021). MSC: 34A08 26A33 34D20 PDF BibTeX XML Cite \textit{O. Martínez-Fuentes} et al., Math. Methods Appl. Sci. 44, No. 18, 14206--14216 (2021; Zbl 07441952) Full Text: DOI OpenURL
Matychyn, Ivan; Onyshchenko, Viktoriia Time-optimal control of linear fractional systems with variable coefficients. (English) Zbl 1479.49042 Int. J. Appl. Math. Comput. Sci. 31, No. 3, 375-386 (2021). MSC: 49K15 49N05 93C05 PDF BibTeX XML Cite \textit{I. Matychyn} and \textit{V. Onyshchenko}, Int. J. Appl. Math. Comput. Sci. 31, No. 3, 375--386 (2021; Zbl 1479.49042) Full Text: DOI OpenURL
Samei, Mohammad Esmael; Ranjbar, Ghorban Khalilzadeh; Susahab, Davoud Nazari Attractivity and global attractivity for system of fractional functional and nonlinear fractional \(q\)-differential equations. (English) Zbl 1479.39007 J. Math. Ext. 15, No. 2, Paper No. 10, 38 p. (2021). MSC: 39A13 39A12 26A33 PDF BibTeX XML Cite \textit{M. E. Samei} et al., J. Math. Ext. 15, No. 2, Paper No. 10, 38 p. (2021; Zbl 1479.39007) Full Text: Link OpenURL
Kumar, Yashveer; Singh, Vineet Kumar Computational approach based on wavelets for financial mathematical model governed by distributed order fractional differential equation. (English) Zbl 07431530 Math. Comput. Simul. 190, 531-569 (2021). MSC: 65-XX 93-XX PDF BibTeX XML Cite \textit{Y. Kumar} and \textit{V. K. Singh}, Math. Comput. Simul. 190, 531--569 (2021; Zbl 07431530) Full Text: DOI OpenURL
Zhang, Zhi-Yong; Li, Guo-Fang Invariant analysis and conservation laws of the time-fractional \(b\)-family peakon equations. (English) Zbl 1477.35306 Commun. Nonlinear Sci. Numer. Simul. 103, Article ID 106010, 13 p. (2021). MSC: 35R11 35B06 35C05 35C10 35G05 PDF BibTeX XML Cite \textit{Z.-Y. Zhang} and \textit{G.-F. Li}, Commun. Nonlinear Sci. Numer. Simul. 103, Article ID 106010, 13 p. (2021; Zbl 1477.35306) Full Text: DOI OpenURL
Kadkhoda, Nematollah; Hadjian, Armin Group classification and constructing conservation laws for time-fractional Sawada-Kotera-Parker-Dye equation. (English) Zbl 1477.35299 J. Pseudo-Differ. Oper. Appl. 12, No. 4, Paper No. 51, 14 p. (2021). MSC: 35R11 35B06 35G20 PDF BibTeX XML Cite \textit{N. Kadkhoda} and \textit{A. Hadjian}, J. Pseudo-Differ. Oper. Appl. 12, No. 4, Paper No. 51, 14 p. (2021; Zbl 1477.35299) Full Text: DOI OpenURL
Aljoudi, Shorog Exact solutions of the fractional Sharma-Tasso-Olver equation and the fractional Bogoyavlenskii’s breaking soliton equations. (English) Zbl 07424148 Appl. Math. Comput. 405, Article ID 126237, 10 p. (2021). MSC: 26Axx 92Dxx 92Cxx PDF BibTeX XML Cite \textit{S. Aljoudi}, Appl. Math. Comput. 405, Article ID 126237, 10 p. (2021; Zbl 07424148) Full Text: DOI OpenURL
Allahviranloo, Tofigh; Sahihi, Hussein Reproducing kernel method to solve fractional delay differential equations. (English) Zbl 07423529 Appl. Math. Comput. 400, Article ID 126095, 9 p. (2021). MSC: 65-XX 34-XX PDF BibTeX XML Cite \textit{T. Allahviranloo} and \textit{H. Sahihi}, Appl. Math. Comput. 400, Article ID 126095, 9 p. (2021; Zbl 07423529) Full Text: DOI OpenURL
Luc, Nguyen Hoang; Lan, Do; O’Regan, Donal; Tuan, Nguyen Anh; Zhou, Yong On the initial value problem for the nonlinear fractional Rayleigh-Stokes equation. (English) Zbl 1477.35174 J. Fixed Point Theory Appl. 23, No. 4, Paper No. 60, 28 p. (2021). MSC: 35Q35 76A05 35B44 35B65 35A01 35A02 26A33 35R11 PDF BibTeX XML Cite \textit{N. H. Luc} et al., J. Fixed Point Theory Appl. 23, No. 4, Paper No. 60, 28 p. (2021; Zbl 1477.35174) Full Text: DOI OpenURL
Fedorov, Vladimir E.; Nagumanova, Anna V.; Avilovich, Anna S. A class of inverse problems for evolution equations with the Riemann-Liouville derivative in the sectorial case. (English) Zbl 1476.35330 Math. Methods Appl. Sci. 44, No. 15, 11961-11969 (2021). MSC: 35R30 35R11 35K90 PDF BibTeX XML Cite \textit{V. E. Fedorov} et al., Math. Methods Appl. Sci. 44, No. 15, 11961--11969 (2021; Zbl 1476.35330) Full Text: DOI OpenURL
Bezziou, Mohamed; Dahmani, Zoubir; Slimane, Ibrahim A class of differential equations of combined Hadamard and Riemann-Liouville operators. (English) Zbl 07414918 Sarajevo J. Math. 17(30), No. 1, 45-59 (2021). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{M. Bezziou} et al., Sarajevo J. Math. 17(30), No. 1, 45--59 (2021; Zbl 07414918) Full Text: DOI OpenURL
Loreti, Paola; Sforza, Daniela Fractional diffusion-wave equations: hidden regularity for weak solutions. (English) Zbl 07414211 Fract. Calc. Appl. Anal. 24, No. 4, 1015-1034 (2021). MSC: 35R11 26A33 35L05 PDF BibTeX XML Cite \textit{P. Loreti} and \textit{D. Sforza}, Fract. Calc. Appl. Anal. 24, No. 4, 1015--1034 (2021; Zbl 07414211) Full Text: DOI arXiv OpenURL
Khan, Zareen A.; Gul, Rozi; Shah, Kamal On impulsive boundary value problem with Riemann-Liouville fractional order derivative. (English) Zbl 1483.34015 J. Funct. Spaces 2021, Article ID 8331731, 11 p. (2021). Reviewer: Snezhana Hristova (Plovdiv) MSC: 34A08 34A37 34B37 PDF BibTeX XML Cite \textit{Z. A. Khan} et al., J. Funct. Spaces 2021, Article ID 8331731, 11 p. (2021; Zbl 1483.34015) Full Text: DOI OpenURL
Li, Chao; Guo, Qilong On the solutions of the space-time fractional coupled Jaulent-Miodek equation associated with energy-dependent Schrödinger potential. (English) Zbl 1475.35392 Appl. Math. Lett. 121, Article ID 107517, 8 p. (2021). MSC: 35R11 35C05 PDF BibTeX XML Cite \textit{C. Li} and \textit{Q. Guo}, Appl. Math. Lett. 121, Article ID 107517, 8 p. (2021; Zbl 1475.35392) Full Text: DOI OpenURL
Shahmorad, S.; Pashaei, S.; Hashemi, M. S. Numerical solution of a nonlinear fractional integro-differential equation by a geometric approach. (English) Zbl 1483.65232 Differ. Equ. Dyn. Syst. 29, No. 3, 585-596 (2021). MSC: 65R20 26A33 45J05 PDF BibTeX XML Cite \textit{S. Shahmorad} et al., Differ. Equ. Dyn. Syst. 29, No. 3, 585--596 (2021; Zbl 1483.65232) Full Text: DOI OpenURL
Fedorov, V. E.; Turov, M. M. The defect of a Cauchy type problem for linear equations with several Riemann-Liouville derivatives. (English. Russian original) Zbl 07401186 Sib. Math. J. 62, No. 5, 925-942 (2021); translation from Sib. Mat. Zh. 62, No. 5, 1143-1162 (2021). MSC: 34A08 34A30 34A12 34G10 PDF BibTeX XML Cite \textit{V. E. Fedorov} and \textit{M. M. Turov}, Sib. Math. J. 62, No. 5, 925--942 (2021; Zbl 07401186); translation from Sib. Mat. Zh. 62, No. 5, 1143--1162 (2021) Full Text: DOI OpenURL
Saratha, S. R.; Sai Sundara Krishnan, G.; Bagyalakshmi, M. Analysis of a fractional epidemic model by fractional generalised homotopy analysis method using modified Riemann-Liouville derivative. (English) Zbl 1481.92161 Appl. Math. Modelling 92, 525-545 (2021). MSC: 92D30 26A33 35R11 PDF BibTeX XML Cite \textit{S. R. Saratha} et al., Appl. Math. Modelling 92, 525--545 (2021; Zbl 1481.92161) Full Text: DOI OpenURL
Hashemi, M. S.; Ashpazzadeh, E.; Moharrami, M.; Lakestani, M. Fractional order Alpert multiwavelets for discretizing delay fractional differential equation of pantograph type. (English) Zbl 1482.65102 Appl. Numer. Math. 170, 1-13 (2021). MSC: 65L03 34K37 PDF BibTeX XML Cite \textit{M. S. Hashemi} et al., Appl. Numer. Math. 170, 1--13 (2021; Zbl 1482.65102) Full Text: DOI OpenURL
Nikan, O.; Machado, J. A. Tenreiro; Golbabai, A. Numerical solution of time-fractional fourth-order reaction-diffusion model arising in composite environments. (English) Zbl 1481.65196 Appl. Math. Modelling 89, Part 1, 819-836 (2021). MSC: 65M70 35R11 65M12 PDF BibTeX XML Cite \textit{O. Nikan} et al., Appl. Math. Modelling 89, Part 1, 819--836 (2021; Zbl 1481.65196) Full Text: DOI OpenURL
Akhadkulov, H.; Ying, T. Y.; Saaban, A. B.; Noorani, M. S.; Ibrahim, H. Notes on Krasnoselskii-type fixed-point theorems and their application to fractional hybrid differential problems. (English) Zbl 07396555 Fixed Point Theory 22, No. 2, 465-480 (2021). Reviewer: Renu Chaudhary (Sohna) MSC: 26A33 34A08 34A12 47H07 47H10 PDF BibTeX XML Cite \textit{H. Akhadkulov} et al., Fixed Point Theory 22, No. 2, 465--480 (2021; Zbl 07396555) Full Text: arXiv Link OpenURL
Seba, Djamila; Rebai, Hamza; Henderson, Johnny Existence result for nonlinear fractional differential equations with nonlocal fractional integro-differential boundary conditions in Banach spaces. (English) Zbl 1478.34070 Georgian Math. J. 28, No. 1, 141-147 (2021). MSC: 34G20 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{D. Seba} et al., Georgian Math. J. 28, No. 1, 141--147 (2021; Zbl 1478.34070) Full Text: DOI OpenURL
Zhu, Tao Weakly singular integral inequalities and global solutions for fractional differential equations of Riemann-Liouville type. (English) Zbl 07388037 Mediterr. J. Math. 18, No. 5, Paper No. 184, 17 p. (2021). MSC: 34A08 34A12 26D15 PDF BibTeX XML Cite \textit{T. Zhu}, Mediterr. J. Math. 18, No. 5, Paper No. 184, 17 p. (2021; Zbl 07388037) Full Text: DOI OpenURL
Zhang, Zhi-Yong; Lin, Zhi-Xiang Local symmetry structure and potential symmetries of time-fractional partial differential equations. (English) Zbl 1471.35013 Stud. Appl. Math. 147, No. 1, 363-389 (2021). MSC: 35B06 35R11 PDF BibTeX XML Cite \textit{Z.-Y. Zhang} and \textit{Z.-X. Lin}, Stud. Appl. Math. 147, No. 1, 363--389 (2021; Zbl 1471.35013) Full Text: DOI OpenURL
Padhi, Seshadev; Prasad, B. S. R. V.; Mahendru, Divya Systems of Riemann-Liouville fractional differential equations with nonlocal boundary conditions. Existence, nonexistence, and multiplicity of solutions: method of fixed point index. (English) Zbl 1476.34069 Math. Methods Appl. Sci. 44, No. 10, 8266-8285 (2021). MSC: 34B10 34A08 34B18 47N20 PDF BibTeX XML Cite \textit{S. Padhi} et al., Math. Methods Appl. Sci. 44, No. 10, 8266--8285 (2021; Zbl 1476.34069) Full Text: DOI OpenURL
Padhi, Seshadev; Prasad, B. S. R. V.; Mahendru, Divya System of Riemann-Liouville fractional differential equations with nonlocal boundary conditions: existence, uniqueness, and multiplicity of solutions. (English) Zbl 1476.34033 Math. Methods Appl. Sci. 44, No. 10, 8125-8149 (2021). MSC: 34A08 34B10 34B18 47N20 PDF BibTeX XML Cite \textit{S. Padhi} et al., Math. Methods Appl. Sci. 44, No. 10, 8125--8149 (2021; Zbl 1476.34033) Full Text: DOI OpenURL
Abdi, Sarkout; Azizi, Aram; Shafiee, Mahmoud; Saeidian, Jamshid A numerical method based on three-dimensional Legendre wavelet method for two-dimensional time-fractional diffusion equation. (English) Zbl 07384807 Int. J. Wavelets Multiresolut. Inf. Process. 19, No. 4, Article ID 2150008, 15 p. (2021). MSC: 65-XX 26A33 46F12 80M25 PDF BibTeX XML Cite \textit{S. Abdi} et al., Int. J. Wavelets Multiresolut. Inf. Process. 19, No. 4, Article ID 2150008, 15 p. (2021; Zbl 07384807) Full Text: DOI OpenURL
Agarwal, Ravi; Hristova, Snezhana; O’Regan, Donal Practical stability for Riemann-Liouville delay fractional differential equations. (English) Zbl 1479.34127 Arab. J. Math. 10, No. 2, 271-283 (2021). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34K37 34K20 PDF BibTeX XML Cite \textit{R. Agarwal} et al., Arab. J. Math. 10, No. 2, 271--283 (2021; Zbl 1479.34127) Full Text: DOI OpenURL
Nedaiasl, Khadijeh; Dehbozorgi, Raziyeh Galerkin finite element method for nonlinear fractional differential equations. (English) Zbl 07384497 Numer. Algorithms 88, No. 1, 113-141 (2021). Reviewer: Kai Diethelm (Schweinfurt) MSC: 65L10 65L60 34A08 PDF BibTeX XML Cite \textit{K. Nedaiasl} and \textit{R. Dehbozorgi}, Numer. Algorithms 88, No. 1, 113--141 (2021; Zbl 07384497) Full Text: DOI arXiv OpenURL
Aljaaidi, Tariq A.; Pachpatte, Deepak B. The Minkowski’s inequalities via \(\psi\)-Riemann-Liouville fractional integral operators. (English) Zbl 1471.26006 Rend. Circ. Mat. Palermo (2) 70, No. 2, 893-906 (2021). MSC: 26D10 26A33 PDF BibTeX XML Cite \textit{T. A. Aljaaidi} and \textit{D. B. Pachpatte}, Rend. Circ. Mat. Palermo (2) 70, No. 2, 893--906 (2021; Zbl 1471.26006) Full Text: DOI OpenURL
Ganesh, Anumanthappa; Govindan, Vediyappan; Lee, Jung Rye; Mohanapriya, Arusamy; Park, Choonkil Mittag-Leffler-Hyers-Ulam stability of delay fractional differential equation via fractional Fourier transform. (English) Zbl 1476.34022 Result. Math. 76, No. 4, Paper No. 180, 17 p. (2021). MSC: 34A08 34D10 34K37 34K27 42B10 PDF BibTeX XML Cite \textit{A. Ganesh} et al., Result. Math. 76, No. 4, Paper No. 180, 17 p. (2021; Zbl 1476.34022) Full Text: DOI OpenURL
Vu Kim Tuan; Dinh Thanh Duc; Tran Dinh Phung Multi-term fractional integro-differential equations in power growth function spaces. (English) Zbl 07382478 Fract. Calc. Appl. Anal. 24, No. 3, 739-754 (2021). MSC: 44A10 26A33 45J05 PDF BibTeX XML Cite \textit{Vu Kim Tuan} et al., Fract. Calc. Appl. Anal. 24, No. 3, 739--754 (2021; Zbl 07382478) Full Text: DOI OpenURL
Ruziev, Menglibay A boundary value problem for a partial differential equation with fractional derivative. (English) Zbl 07382466 Fract. Calc. Appl. Anal. 24, No. 2, 509-517 (2021). MSC: 35M10 35M12 35Q05 35R11 PDF BibTeX XML Cite \textit{M. Ruziev}, Fract. Calc. Appl. Anal. 24, No. 2, 509--517 (2021; Zbl 07382466) Full Text: DOI OpenURL
Duhé, Jean-François; Victor, Stéphane; Melchior, Pierre Contributions on artificial potential field method for effective obstacle avoidance. (English) Zbl 07382463 Fract. Calc. Appl. Anal. 24, No. 2, 421-446 (2021). MSC: 26A33 34A08 35R11 31B15 44A20 93D09 12-02 12E12 31-00 PDF BibTeX XML Cite \textit{J.-F. Duhé} et al., Fract. Calc. Appl. Anal. 24, No. 2, 421--446 (2021; Zbl 07382463) Full Text: DOI OpenURL
Saqib, Muhammad; Hussain, Qamar; Kara, Abdul Hamid; Zaman, Fiazuddin On Lie symmetry analysis of nonhomogeneous generalized inviscid and fractional Burgers’ equation. (English) Zbl 1470.35410 Math. Methods Appl. Sci. 44, No. 11, 8726-8738 (2021). MSC: 35R11 35B06 PDF BibTeX XML Cite \textit{M. Saqib} et al., Math. Methods Appl. Sci. 44, No. 11, 8726--8738 (2021; Zbl 1470.35410) Full Text: DOI OpenURL
Abdel Kader, Abass H.; Abdel Latif, Mohamed S.; Baleanu, Dumitru Some exact solutions of a variable coefficients fractional biological population model. (English) Zbl 1475.35345 Math. Methods Appl. Sci. 44, No. 6, 4701-4714 (2021). MSC: 35Q92 92D25 26A33 35R11 PDF BibTeX XML Cite \textit{A. H. Abdel Kader} et al., Math. Methods Appl. Sci. 44, No. 6, 4701--4714 (2021; Zbl 1475.35345) Full Text: DOI OpenURL
Zhou, Yong; Wang, Jing Na The nonlinear Rayleigh-Stokes problem with Riemann-Liouville fractional derivative. (English) Zbl 1475.35297 Math. Methods Appl. Sci. 44, No. 3, 2431-2438 (2021). MSC: 35Q35 76A05 35E15 35A01 26A33 35R11 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{J. N. Wang}, Math. Methods Appl. Sci. 44, No. 3, 2431--2438 (2021; Zbl 1475.35297) Full Text: DOI OpenURL
Li, Jing; Qi, Jiangang On a nonlocal Sturm-Liouville problem with composite fractional derivatives. (English) Zbl 1472.34047 Math. Methods Appl. Sci. 44, No. 2, 1931-1941 (2021). MSC: 34B24 34A08 34B09 34L15 26A33 PDF BibTeX XML Cite \textit{J. Li} and \textit{J. Qi}, Math. Methods Appl. Sci. 44, No. 2, 1931--1941 (2021; Zbl 1472.34047) Full Text: DOI OpenURL
Roul, Pradip; Goura, VMK Prasad A high-order B-spline collocation scheme for solving a nonhomogeneous time-fractional diffusion equation. (English) Zbl 07376549 Math. Methods Appl. Sci. 44, No. 1, 546-567 (2021). MSC: 65L10 65L60 34B16 PDF BibTeX XML Cite \textit{P. Roul} and \textit{V. P. Goura}, Math. Methods Appl. Sci. 44, No. 1, 546--567 (2021; Zbl 07376549) Full Text: DOI OpenURL