Do, Quan H.; Ngo, Hoa T. B.; Razzaghi, Mohsen A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations. (English) Zbl 07299009 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105597, 16 p. (2021). MSC: 65M70 34A08 35R11 41A50 65T60 PDF BibTeX XML Cite \textit{Q. H. Do} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105597, 16 p. (2021; Zbl 07299009) Full Text: DOI
Kassymov, Aidyn; Ruzhansky, Michael; Tokmagambetov, Niyaz; Torebek, Berikbol T. Sobolev, Hardy, Gagliardo-Nirenberg, and Caffarelli-Kohn-Nirenberg-type inequalities for some fractional derivatives. (English) Zbl 07296625 Banach J. Math. Anal. 15, No. 1, Paper No. 6, 23 p. (2021). Reviewer: George Stoica (Saint John) MSC: 26D10 45J05 PDF BibTeX XML Cite \textit{A. Kassymov} et al., Banach J. Math. Anal. 15, No. 1, Paper No. 6, 23 p. (2021; Zbl 07296625) Full Text: DOI
Agarwal, P.; El-Sayed, A. A.; Tariboon, J. Vieta-Fibonacci operational matrices for spectral solutions of variable-order fractional integro-differential equations. (English) Zbl 07241393 J. Comput. Appl. Math. 382, Article ID 113063, 10 p. (2021). MSC: 45J05 26A33 33C47 45J99 65R20 65Z05 PDF BibTeX XML Cite \textit{P. Agarwal} et al., J. Comput. Appl. Math. 382, Article ID 113063, 10 p. (2021; Zbl 07241393) Full Text: DOI
Namba, T.; Rybka, P.; Voller, V. R. Some comments on using fractional derivative operators in modeling non-local diffusion processes. (English) Zbl 1446.35252 J. Comput. Appl. Math. 381, Article ID 113040, 16 p. (2021). MSC: 35R11 35K20 70H33 PDF BibTeX XML Cite \textit{T. Namba} et al., J. Comput. Appl. Math. 381, Article ID 113040, 16 p. (2021; Zbl 1446.35252) Full Text: DOI
Ubaĭdullaev, U. Sh. The inverse problem for a mixed loaded equation with the Riemann-Liouville operator in a rectangular domain. (Russian. English summary) Zbl 07314722 Vestn. KRAUNTS, Fiz.-Mat. Nauki 2020, No. 2(31), 18-31 (2020). MSC: 35M10 35M20 PDF BibTeX XML Cite \textit{U. Sh. Ubaĭdullaev}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 2020, No. 2(31), 18--31 (2020; Zbl 07314722) Full Text: DOI MNR
Gekkieva, Sakinat Khasanovna; Karmokov, Mukhamed Matsevich; Kerefov, Marat Aslanbievich On boundary value problem for generalized aller equation. (Russian. English summary) Zbl 07312516 Vestn. Samar. Univ., Estestvennonauchn. Ser. 26, No. 2, 7-14 (2020). MSC: 35G 35B PDF BibTeX XML Cite \textit{S. K. Gekkieva} et al., Vestn. Samar. Univ., Estestvennonauchn. Ser. 26, No. 2, 7--14 (2020; Zbl 07312516) Full Text: DOI MNR
Terchi, Messaouda.; Hassouna, Houda The blow-up solutions to nonlinear fractional differential Caputo-system. (English) Zbl 07293375 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 1, 52-63 (2020). MSC: 34A08 34A34 34C11 PDF BibTeX XML Cite \textit{Messaouda. Terchi} and \textit{H. Hassouna}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 13, No. 1, 52--63 (2020; Zbl 07293375) Full Text: DOI MNR
Eloe, Paul; Jonnalagadda, Jaganmohan Quasilinearization applied to boundary value problems at resonance for Riemann-Liouville fractional differential equations. (English) Zbl 07292859 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2719-2734 (2020). Reviewer: Ndolane Sene (Dakar) MSC: 34A08 34A45 34B15 47N20 PDF BibTeX XML Cite \textit{P. Eloe} and \textit{J. Jonnalagadda}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2719--2734 (2020; Zbl 07292859) Full Text: DOI
Iqbal, Sajid; Pecaric, Josip; Samraiz, Muhammad; Tehmeena, Hassan; Tomovski, Zivorad On some weighted Hardy-type inequalities involving extended Riemann-Liouville fractional calculus operators. (English) Zbl 1451.26027 Commun. Korean Math. Soc. 35, No. 1, 161-184 (2020). MSC: 26D15 26A33 26D10 PDF BibTeX XML Cite \textit{S. Iqbal} et al., Commun. Korean Math. Soc. 35, No. 1, 161--184 (2020; Zbl 1451.26027) Full Text: DOI
Ben Makhlouf, Sonia; Chaieb, Majda; Zine El Abidine, Zagharide Existence and asymptotic behavior of positive solutions for a coupled fractional differential system. (English) Zbl 07270823 Differ. Equ. Dyn. Syst. 28, No. 4, 953-998 (2020). MSC: 34A08 34B18 34B27 47N20 34B16 PDF BibTeX XML Cite \textit{S. Ben Makhlouf} et al., Differ. Equ. Dyn. Syst. 28, No. 4, 953--998 (2020; Zbl 07270823) Full Text: DOI
Lan, Kunquan Equivalence of higher order linear Riemann-Liouville fractional differential and integral equations. (English) Zbl 07268388 Proc. Am. Math. Soc. 148, No. 12, 5225-5234 (2020). MSC: 34A08 34A30 34A12 45D05 PDF BibTeX XML Cite \textit{K. Lan}, Proc. Am. Math. Soc. 148, No. 12, 5225--5234 (2020; Zbl 07268388) Full Text: DOI
Gekkieva, S. Kh. Gevrey problem for a loaded mixed parabolic equation with a fractional derivative. (English. Russian original) Zbl 1450.35266 J. Math. Sci., New York 250, No. 5, 746-752 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 31-37 (2018). MSC: 35R11 35M13 PDF BibTeX XML Cite \textit{S. Kh. Gekkieva}, J. Math. Sci., New York 250, No. 5, 746--752 (2020; Zbl 1450.35266); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 31--37 (2018) Full Text: DOI
Rizqan, Bakr Hussein; Dhaigude, Dnyanoba B. Nonlinear boundary value problem of fractional differential equations with arguments under integral boundary condition. (English) Zbl 07263090 Tamkang J. Math. 51, No. 2, 101-112 (2020). MSC: 34K37 34K07 34K10 47N20 PDF BibTeX XML Cite \textit{B. H. Rizqan} and \textit{D. B. Dhaigude}, Tamkang J. Math. 51, No. 2, 101--112 (2020; Zbl 07263090) Full Text: DOI
Kaur, Bikramjeet; Gupta, R. K. Time fractional (2+1)-dimensional Wu-Zhang system: dispersion analysis, similarity reductions, conservation laws, and exact solutions. (English) Zbl 1450.35272 Comput. Math. Appl. 79, No. 4, 1031-1048 (2020). MSC: 35R11 35A30 35B06 PDF BibTeX XML Cite \textit{B. Kaur} and \textit{R. K. Gupta}, Comput. Math. Appl. 79, No. 4, 1031--1048 (2020; Zbl 1450.35272) Full Text: DOI
Agarwal, Praveen; Abdullaev, Obidjon Kh. A nonlocal problem with integral gluing condition for a third-order loaded equation with parabolic-hyperbolic operator involving fractional derivatives. (English) Zbl 1447.35344 Math. Methods Appl. Sci. 43, No. 6, 3716-3726 (2020). MSC: 35R11 35M10 35A01 35A02 PDF BibTeX XML Cite \textit{P. Agarwal} and \textit{O. Kh. Abdullaev}, Math. Methods Appl. Sci. 43, No. 6, 3716--3726 (2020; Zbl 1447.35344) Full Text: DOI
Xie, Changping; Fang, Shaomei Finite difference scheme for time-space fractional diffusion equation with fractional boundary conditions. (English) Zbl 1447.65034 Math. Methods Appl. Sci. 43, No. 6, 3473-3487 (2020). MSC: 65M06 65M12 35R11 26A33 PDF BibTeX XML Cite \textit{C. Xie} and \textit{S. Fang}, Math. Methods Appl. Sci. 43, No. 6, 3473--3487 (2020; Zbl 1447.65034) Full Text: DOI
Karapetyants, Alexey; Louhichi, Issam Fractional integrodifferentiation and Toeplitz operators with vertical symbols. (English) Zbl 07244858 Bauer, Wolfram (ed.) et al., Operator algebras, Toeplitz operators and related topics. Selected papers based on the presentations at the international workshop, Boca del Rio, Veracruz, Mexico, November 13–19, 2018. In honor of Nikolai Vasilevskin on the occasion of his 70th birthday. Cham: Springer (ISBN 978-3-030-44650-5/hbk; 978-3-030-44651-2/ebook). Operator Theory: Advances and Applications 279, 175-187 (2020). MSC: 47 46Lxx PDF BibTeX XML Cite \textit{A. Karapetyants} and \textit{I. Louhichi}, Oper. Theory: Adv. Appl. 279, 175--187 (2020; Zbl 07244858) Full Text: DOI
Li, Mengting; Zhang, Kemei Existence of positive solutions for a kind of nonlinear fractional differential equation with nonlinear boundary value conditions. (English) Zbl 1449.34078 Math. Appl. 33, No. 1, 126-137 (2020). MSC: 34B18 34A08 34B45 PDF BibTeX XML Cite \textit{M. Li} and \textit{K. Zhang}, Math. Appl. 33, No. 1, 126--137 (2020; Zbl 1449.34078)
Xiao, Fuyu Sharp bound for the weighted bilinear Hardy operator on the \({L^p}\) space with power weight. (Chinese. English summary) Zbl 1449.42022 J. Math., Wuhan Univ. 40, No. 1, 119-126 (2020). MSC: 42B20 42B35 PDF BibTeX XML Cite \textit{F. Xiao}, J. Math., Wuhan Univ. 40, No. 1, 119--126 (2020; Zbl 1449.42022) Full Text: DOI
Ramlau, Ronny; Koutschan, Christoph; Hofmann, Bernd On the singular value decomposition of \(n\)-fold integration operators. (English) Zbl 07224831 Cheng, Jin (ed.) et al., Inverse problems and related topics. Extended versions of papers based on the international conference on inverse problems, Shanghai, China, October 12–14, 2018. In honor of Masahiro Yamamoto on the occasion of his 60th anniversary. Singapore: Springer (ISBN 978-981-15-1591-0/hbk; 978-981-15-1592-7/ebook). Springer Proceedings in Mathematics & Statistics 310, 237-256 (2020). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 47A52 65L08 PDF BibTeX XML Cite \textit{R. Ramlau} et al., in: Inverse problems and related topics. Extended versions of papers based on the international conference on inverse problems, Shanghai, China, October 12--14, 2018. In honor of Masahiro Yamamoto on the occasion of his 60th anniversary. Singapore: Springer. 237--256 (2020; Zbl 07224831) Full Text: DOI
Morales, María Guadalupe; Došlá, Zuzana; Mendoza, Francisco J. Riemann-Liouville derivative over the space of integrable distributions. (English) Zbl 07220320 Electron Res. Arch. 28, No. 2, 567-587 (2020). MSC: 47G20 26A33 26A39 46F12 PDF BibTeX XML Cite \textit{M. G. Morales} et al., Electron Res. Arch. 28, No. 2, 567--587 (2020; Zbl 07220320) Full Text: DOI
Luca, Rodica Existence of solutions for a system of fractional boundary value problems. (English) Zbl 1446.34013 Math. Commun. 25, No. 1, 87-105 (2020). Reviewer: Syed Abbas (Mandi) MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{R. Luca}, Math. Commun. 25, No. 1, 87--105 (2020; Zbl 1446.34013) Full Text: Link
Mittal, Ekta; Joshi, Sunil Note on a \(k\)-generalised fractional derivative. (English) Zbl 1437.26011 Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 797-804 (2020). MSC: 26A33 33B15 33C05 PDF BibTeX XML Cite \textit{E. Mittal} and \textit{S. Joshi}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 3, 797--804 (2020; Zbl 1437.26011) Full Text: DOI
Xu, Jianzhong; Wang, Wen Hermite-Hadamard type inequalities for the \(s\)-HH convex functions via \(k\)-fractional integrals and applications. (English) Zbl 1439.26048 J. Math. Inequal. 14, No. 1, 291-303 (2020). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D15 26A51 47A64 PDF BibTeX XML Cite \textit{J. Xu} and \textit{W. Wang}, J. Math. Inequal. 14, No. 1, 291--303 (2020; Zbl 1439.26048) Full Text: DOI
Agarwal, P.; Restrepo, J. E. An extension by means of \(\omega\)-weighted classes of the generalized Riemann-Liouville \(k\)-fractional integral inequalities. (English) Zbl 1437.26023 J. Math. Inequal. 14, No. 1, 35-46 (2020). MSC: 26D15 26A33 26D10 PDF BibTeX XML Cite \textit{P. Agarwal} and \textit{J. E. Restrepo}, J. Math. Inequal. 14, No. 1, 35--46 (2020; Zbl 1437.26023) Full Text: DOI
Saemi, Fereshteh; Ebrahimi, Hamideh; Shafiee, Mahmoud An effective scheme for solving system of fractional Volterra-Fredholm integro-differential equations based on the Müntz-Legendre wavelets. (English) Zbl 1445.65051 J. Comput. Appl. Math. 374, Article ID 112773, 22 p. (2020). Reviewer: S. F. Lukomskii (Saratov) MSC: 65R20 65T60 45D05 26A33 PDF BibTeX XML Cite \textit{F. Saemi} et al., J. Comput. Appl. Math. 374, Article ID 112773, 22 p. (2020; Zbl 1445.65051) Full Text: DOI
Abbas, Saïd; Benchohra, Mouffak; Darwish, Mohamed Abdalla Fractional differential inclusions of Hilfer type under weak topologies in Banach spaces. (English) Zbl 1442.34004 Asian-Eur. J. Math. 13, No. 1, Article ID 2050015, 16 p. (2020). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 34A08 34G20 26A33 47N20 PDF BibTeX XML Cite \textit{S. Abbas} et al., Asian-Eur. J. Math. 13, No. 1, Article ID 2050015, 16 p. (2020; Zbl 1442.34004) Full Text: DOI
Kashuri, Artion; Liko, Rozana Ostrowski type fractional integral operators for generalized \((r;s,m,\varphi)\)-preinvex functions. (English) Zbl 1450.26011 Lib. Math. (N.S.) 39, No. 1, 71-93 (2019). MSC: 26D15 26A33 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Lib. Math. (N.S.) 39, No. 1, 71--93 (2019; Zbl 1450.26011) Full Text: DOI
Guo, Yuchen; Shu, Xiaobao An investigation on the existence and Ulam stability of solution for an impulsive fractional differential equation. (English) Zbl 1449.34275 J. Math., Wuhan Univ. 39, No. 6, 835-851 (2019). MSC: 34K37 34K40 34K45 34K27 47N20 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{X. Shu}, J. Math., Wuhan Univ. 39, No. 6, 835--851 (2019; Zbl 1449.34275) Full Text: DOI
Agarwal, Praveen; Rassias, Themistocles M.; Singh, Gurmej; Jain, Shilpi Certain fractional integral and differential formulas involving the extended incomplete generalized hypergeometric functions. (English) Zbl 1442.26008 Rassias, Themistocles M. (ed.) et al., Mathematical analysis and applications. Cham: Springer. Springer Optim. Appl. 154, 217-272 (2019). MSC: 26A33 33B20 33C20 44A20 65R10 PDF BibTeX XML Cite \textit{P. Agarwal} et al., Springer Optim. Appl. 154, 217--272 (2019; Zbl 1442.26008) Full Text: DOI
El-Sayed, Ahmed M. A.; Abd El-Salam, Sheren A. Coupled system of a fractional order differential equations with weighted initial conditions. (English) Zbl 1452.34010 Open Math. 17, 1737-1749 (2019). MSC: 34A08 34A12 47N20 PDF BibTeX XML Cite \textit{A. M. A. El-Sayed} and \textit{S. A. Abd El-Salam}, Open Math. 17, 1737--1749 (2019; Zbl 1452.34010) Full Text: DOI
Kukushkin, Maksim V. Riemann-Liouville operator in weighted \(L_p\) spaces via the Jacobi series expansion. (English) Zbl 1437.47022 Axioms 8, No. 2, Paper No. 75, 22 p. (2019). MSC: 47G10 26A33 47A46 33C45 PDF BibTeX XML Cite \textit{M. V. Kukushkin}, Axioms 8, No. 2, Paper No. 75, 22 p. (2019; Zbl 1437.47022) Full Text: DOI
Kerefov, Marat Aslanbievich; Gekkieva, Sakinat Khadanovna Second boundary-value problem for the generalized Aller-Lykov equation. (Russian. English summary) Zbl 1449.35444 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 23, No. 4, 607-621 (2019). MSC: 35R11 35Q35 35E99 PDF BibTeX XML Cite \textit{M. A. Kerefov} and \textit{S. K. Gekkieva}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 23, No. 4, 607--621 (2019; Zbl 1449.35444) Full Text: DOI MNR
Ahmad, Bashir; Ntouyas, Sotiris K.; Alsaedi, Ahmed On nonlinear neutral Liouville-Caputo-type fractional differential equations with Riemann-Liouville integral boundary conditions. (English) Zbl 1435.34010 J. Appl. Anal. 25, No. 2, 119-130 (2019). Reviewer: Syed Abbas (Mandi) MSC: 34A08 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{B. Ahmad} et al., J. Appl. Anal. 25, No. 2, 119--130 (2019; Zbl 1435.34010) Full Text: DOI
Gupta, Vidushi; Dabas, Jaydev Positive solutions for fractional integro-boundary value problem of order \((1,2)\) on an unbounded domain. (English) Zbl 1434.34011 Differ. Equ. Appl. 11, No. 3, 319-333 (2019). MSC: 34A08 34B18 34B40 34B27 47N20 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{J. Dabas}, Differ. Equ. Appl. 11, No. 3, 319--333 (2019; Zbl 1434.34011) Full Text: DOI
Xue, Tingting; Fan, Xiaolin; Xu, Jiabo The existence of extremal solutions for fractional \(p\)-Laplacian problems with the right-handed Riemann-Liouville fractional derivative. (English) Zbl 1449.34038 J. Shanghai Norm. Univ., Nat. Sci. 48, No. 3, 280-291 (2019). MSC: 34A08 34B15 34A45 47N20 PDF BibTeX XML Cite \textit{T. Xue} et al., J. Shanghai Norm. Univ., Nat. Sci. 48, No. 3, 280--291 (2019; Zbl 1449.34038) Full Text: DOI
Li, Lin; Jia, Mei; Liu, Xiping; Song, Junqiu Existence of positive solutions for nonhomogeneous boundary value problems of fractional differential equations with sign changing nonlinearities. (Chinese. English summary) Zbl 1449.34077 J. Jilin Univ., Sci. 57, No. 2, 219-228 (2019). MSC: 34B18 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{L. Li} et al., J. Jilin Univ., Sci. 57, No. 2, 219--228 (2019; Zbl 1449.34077) Full Text: DOI
Bahaa, G. M. Optimal control problem and maximum principle for fractional order cooperative systems. (English) Zbl 07144941 Kybernetika 55, No. 2, 337-358 (2019). MSC: 49J20 35R11 49J15 49K20 93C20 PDF BibTeX XML Cite \textit{G. M. Bahaa}, Kybernetika 55, No. 2, 337--358 (2019; Zbl 07144941) Full Text: DOI
Kazantsev, Sergeĭ Gavrilovich Factorization of the Green’s operator in the Dirichlet problem for \((-1)^m(d/dt)^{2m}\). (Russian. English summary) Zbl 1440.34027 Sib. Èlektron. Mat. Izv. 16, 1662-1688 (2019). MSC: 34B27 34B05 34B30 33C45 33C52 42C05 PDF BibTeX XML Cite \textit{S. G. Kazantsev}, Sib. Èlektron. Mat. Izv. 16, 1662--1688 (2019; Zbl 1440.34027) Full Text: DOI
Bansal, Manish Kumar; Choi, Junesang A note on pathway fractional integral formulas associated with the incomplete \(H\)-functions. (English) Zbl 1428.26010 Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 133, 10 p. (2019). MSC: 26A33 33B20 33C60 33E20 44A40 PDF BibTeX XML Cite \textit{M. K. Bansal} and \textit{J. Choi}, Int. J. Appl. Comput. Math. 5, No. 5, Paper No. 133, 10 p. (2019; Zbl 1428.26010) Full Text: DOI
Benchohra, Mouffak; Bouriah, Soufyane; Nieto, Juan J. Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative. (English) Zbl 1431.34006 Demonstr. Math. 52, 437-450 (2019). MSC: 34A08 34A12 34D10 47N20 34A09 PDF BibTeX XML Cite \textit{M. Benchohra} et al., Demonstr. Math. 52, 437--450 (2019; Zbl 1431.34006) Full Text: DOI
Xue, Tingting; Liu, Wenbin; Shen, Tengfei Extremal solutions for \(p\)-Laplacian boundary value problems with the right-handed Riemann-Liouville fractional derivative. (English) Zbl 1427.34019 Math. Methods Appl. Sci. 42, No. 12, 4394-4407 (2019). MSC: 34A08 34B15 34A45 47N20 PDF BibTeX XML Cite \textit{T. Xue} et al., Math. Methods Appl. Sci. 42, No. 12, 4394--4407 (2019; Zbl 1427.34019) Full Text: DOI
Mejjaoli, H. Spectral theorems associated with the Riemann-Liouville two-wavelet localization operators. (English) Zbl 1438.44001 Anal. Math. 45, No. 2, 347-374 (2019). MSC: 44A05 42B10 42B15 42C40 PDF BibTeX XML Cite \textit{H. Mejjaoli}, Anal. Math. 45, No. 2, 347--374 (2019; Zbl 1438.44001) Full Text: DOI
Kolokoltsov, Vassili N. The probabilistic point of view on the generalized fractional partial differential equations. (English) Zbl 07115448 Fract. Calc. Appl. Anal. 22, No. 3, 543-600 (2019). MSC: 34A08 35S05 35S11 35S15 60J25 60J35 60J50 60J75 PDF BibTeX XML Cite \textit{V. N. Kolokoltsov}, Fract. Calc. Appl. Anal. 22, No. 3, 543--600 (2019; Zbl 07115448) Full Text: DOI
Fedorov, Vladimir E.; Nazhimov, Roman R. Inverse problems for a class of degenerate evolution equations with Riemann - Liouville derivative. (English) Zbl 1423.35440 Fract. Calc. Appl. Anal. 22, No. 2, 271-286 (2019). MSC: 35R30 35R11 PDF BibTeX XML Cite \textit{V. E. Fedorov} and \textit{R. R. Nazhimov}, Fract. Calc. Appl. Anal. 22, No. 2, 271--286 (2019; Zbl 1423.35440) Full Text: DOI
Seemab, Arjumand; ur Rehman, Mujeeb On oscillatory and nonoscillatory behavior of solutions for a class of fractional order differential equations. (English) Zbl 1427.34013 Turk. J. Math. 43, No. 3, 1182-1194 (2019). MSC: 34A08 34L10 34C10 PDF BibTeX XML Cite \textit{A. Seemab} and \textit{M. ur Rehman}, Turk. J. Math. 43, No. 3, 1182--1194 (2019; Zbl 1427.34013) Full Text: DOI
Besma, Amri; Aymen, Hammami Orthonormal sequences and time frequency localization related to the Riemann-Liouville operator. (English) Zbl 1440.42116 Oper. Matrices 13, No. 1, 35-59 (2019). MSC: 42C05 42A38 44A35 42B37 PDF BibTeX XML Cite \textit{A. Besma} and \textit{H. Aymen}, Oper. Matrices 13, No. 1, 35--59 (2019; Zbl 1440.42116) Full Text: DOI
Gulgowski, Jacek On integral bounded variation. (English) Zbl 1428.26019 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 399-422 (2019). Reviewer: Piotr Sworowski (Bydgoszcz) MSC: 26A45 45G10 45G05 47H30 PDF BibTeX XML Cite \textit{J. Gulgowski}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 399--422 (2019; Zbl 1428.26019) Full Text: DOI
Ding, Hengfei; Li, Changpin A high-order algorithm for time-Caputo-tempered partial differential equation with Riesz derivatives in two spatial dimensions. (English) Zbl 1447.35351 J. Sci. Comput. 80, No. 1, 81-109 (2019). MSC: 35R11 65M06 PDF BibTeX XML Cite \textit{H. Ding} and \textit{C. Li}, J. Sci. Comput. 80, No. 1, 81--109 (2019; Zbl 1447.35351) Full Text: DOI
Fedorov, V. E.; Avilovich, A. S. A Cauchy type problem for a degenerate equation with the Riemann-Liouville derivative in the sectorial case. (English. Russian original) Zbl 1419.34018 Sib. Math. J. 60, No. 2, 359-372 (2019); translation from Sib. Mat. Zh. 60, No. 2, 461-477 (2019). MSC: 34A08 34G10 34A12 PDF BibTeX XML Cite \textit{V. E. Fedorov} and \textit{A. S. Avilovich}, Sib. Math. J. 60, No. 2, 359--372 (2019; Zbl 1419.34018); translation from Sib. Mat. Zh. 60, No. 2, 461--477 (2019) Full Text: DOI
Zada, Akbar; Ali, Sartaj Stability of integral Caputo-type boundary value problem with noninstantaneous impulses. (English) Zbl 1419.34045 Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 55, 18 p. (2019). MSC: 34A08 34B37 34D10 47N20 PDF BibTeX XML Cite \textit{A. Zada} and \textit{S. Ali}, Int. J. Appl. Comput. Math. 5, No. 3, Paper No. 55, 18 p. (2019; Zbl 1419.34045) Full Text: DOI
Turmetov, Batirkhan; Nazarova, Kulzina On fractional analogs of Dirichlet and Neumann problems for the Laplace equation. (English) Zbl 1418.31007 Mediterr. J. Math. 16, No. 3, Paper No. 59, 17 p. (2019). MSC: 31B05 35J05 PDF BibTeX XML Cite \textit{B. Turmetov} and \textit{K. Nazarova}, Mediterr. J. Math. 16, No. 3, Paper No. 59, 17 p. (2019; Zbl 1418.31007) Full Text: DOI
Liu, Yuji A new method for converting boundary value problems for impulsive fractional differential equations to integral equations and its applications. (English) Zbl 1416.34003 Adv. Nonlinear Anal. 8, 386-454 (2019). MSC: 34A08 34B37 34B15 34B10 34B16 34A45 47N20 45G10 PDF BibTeX XML Cite \textit{Y. Liu}, Adv. Nonlinear Anal. 8, 386--454 (2019; Zbl 1416.34003) Full Text: DOI
Mejjaoli, Hatem; Trimèche, Khalifa Spectral theorems associated with the Riemann-Liouville-Wigner localization operators. (English) Zbl 1408.33040 Rocky Mt. J. Math. 49, No. 1, 247-281 (2019). MSC: 33E30 43A32 PDF BibTeX XML Cite \textit{H. Mejjaoli} and \textit{K. Trimèche}, Rocky Mt. J. Math. 49, No. 1, 247--281 (2019; Zbl 1408.33040) Full Text: DOI Euclid
Yakar, Coşkun; Arslan, Mehmet Quasilinearization method for causal terminal value problems involving Riemann-Liouville fractional derivatives. (English) Zbl 1406.34025 Electron. J. Differ. Equ. 2019, Paper No. 11, 11 p. (2019). MSC: 34A08 34A34 34A45 34A99 PDF BibTeX XML Cite \textit{C. Yakar} and \textit{M. Arslan}, Electron. J. Differ. Equ. 2019, Paper No. 11, 11 p. (2019; Zbl 1406.34025) Full Text: Link
Li, Weinian; Sheng, Weihong; Zhang, Pingping Oscillatory properties of certain nonlinear fractional nabla difference equations. (English) Zbl 07303503 J. Appl. Anal. Comput. 8, No. 6, 1910-1918 (2018). MSC: 39A21 39A13 39A12 39A70 26A33 PDF BibTeX XML Cite \textit{W. Li} et al., J. Appl. Anal. Comput. 8, No. 6, 1910--1918 (2018; Zbl 07303503) Full Text: DOI
Xie, Shengli; Xie, Yiming Nontrivial solutions of nonlocal boundary value problems for nonlinear higher-order singular fractional differential equations. (English) Zbl 07303376 J. Appl. Anal. Comput. 8, No. 3, 938-953 (2018). MSC: 34A08 34B10 34B16 34B27 47N20 PDF BibTeX XML Cite \textit{S. Xie} and \textit{Y. Xie}, J. Appl. Anal. Comput. 8, No. 3, 938--953 (2018; Zbl 07303376) Full Text: DOI
Liu, Han-Ze; Wang, Zeng-Gui; Xin, Xiang-Peng; Liu, Xi-Qiang Symmetries, symmetry reductions and exact solutions to the generalized nonlinear fractional wave equations. (English) Zbl 1451.35254 Commun. Theor. Phys. 70, No. 1, 14-18 (2018). MSC: 35R11 34A08 35B06 PDF BibTeX XML Cite \textit{H.-Z. Liu} et al., Commun. Theor. Phys. 70, No. 1, 14--18 (2018; Zbl 1451.35254) Full Text: DOI
Mejjaoli, Hatem; Omri, Slim Boundedness and compactness of Riemann-Liouville two-wavelet multipliers. (English) Zbl 1448.42019 J. Pseudo-Differ. Oper. Appl. 9, No. 2, 189-213 (2018). MSC: 42B15 42B10 44A05 42C40 PDF BibTeX XML Cite \textit{H. Mejjaoli} and \textit{S. Omri}, J. Pseudo-Differ. Oper. Appl. 9, No. 2, 189--213 (2018; Zbl 1448.42019) Full Text: DOI
Zabreĭko, Petr Petrovich; Ponomareva, Svetlana Vladimirovna On continuous solutions of the Cauchy problem for equations of fractional order. (Russian. English summary) Zbl 1447.34016 Zh. Beloruss. Gos. Univ., Mat., Inform. 2018, No. 3, 39-45 (2018). Reviewer: Klaus R. Schneider (Berlin) MSC: 34A08 34A12 47N20 PDF BibTeX XML Cite \textit{P. P. Zabreĭko} and \textit{S. V. Ponomareva}, Zh. Beloruss. Gos. Univ., Mat., Inform. 2018, No. 3, 39--45 (2018; Zbl 1447.34016) Full Text: Link
Gaafar, Fatma M. The existence of solutions for a nonlocal problem of an implicit fractional-order differential equation. (English) Zbl 1437.34005 J. Egypt. Math. Soc. 26, 184-195 (2018). MSC: 34A08 34A09 34A12 47N20 PDF BibTeX XML Cite \textit{F. M. Gaafar}, J. Egypt. Math. Soc. 26, 184--195 (2018; Zbl 1437.34005) Full Text: DOI
Rahman, Gauhar; Sooppy Nisar, Kottakkaran; Qi, Feng Some new inequalities of the Grüss type for conformable fractional integrals. (English) Zbl 1428.26014 AIMS Math. 3, No. 4, 575-583 (2018). MSC: 26A33 26D10 26D15 PDF BibTeX XML Cite \textit{G. Rahman} et al., AIMS Math. 3, No. 4, 575--583 (2018; Zbl 1428.26014) Full Text: DOI
Zada, Akbar; Yar, Mohammad; Li, Tongxing Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions. (English) Zbl 1427.34020 Ann. Univ. Paedagog. Crac., Stud. Math. 233(17), 103-125 (2018). MSC: 34A08 34B15 34B10 34D10 47N20 PDF BibTeX XML Cite \textit{A. Zada} et al., Ann. Univ. Paedagog. Crac., Stud. Math. 233(17), 103--125 (2018; Zbl 1427.34020) Full Text: DOI
Li, Jialu; Kou, Chunhai Stability analysis of nonlinear fractional differential equations by fixed point theorem. (English) Zbl 1438.34041 Commun. Appl. Math. Comput. 32, No. 4, 772-785 (2018). MSC: 34A08 34D20 47N20 PDF BibTeX XML Cite \textit{J. Li} and \textit{C. Kou}, Commun. Appl. Math. Comput. 32, No. 4, 772--785 (2018; Zbl 1438.34041) Full Text: DOI
Houas, Mohamed Existence of solutions for fractional differential equations involving two Riemann-Liouville fractional orders. (English) Zbl 1438.34036 Anal. Theory Appl. 34, No. 3, 253-274 (2018). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{M. Houas}, Anal. Theory Appl. 34, No. 3, 253--274 (2018; Zbl 1438.34036) Full Text: DOI
Kashuri, Artion; Liko, Rozana Ostrowski type fractional integral operators for generalized \((r; g, s, m, \varphi)\)-preinvex functions. (English) Zbl 1438.26075 Stud. Univ. Babeş-Bolyai, Math. 63, No. 1, 155-173 (2018). MSC: 26D15 26A33 26A51 PDF BibTeX XML Cite \textit{A. Kashuri} and \textit{R. Liko}, Stud. Univ. Babeş-Bolyai, Math. 63, No. 1, 155--173 (2018; Zbl 1438.26075) Full Text: DOI
Bezziou, Mohamed; Dahmani, Zoubir; Khameli, Amina Some weighted inequalities of Chebyshev type via RL-approach. (English) Zbl 1438.26032 Mathematica 60(83), No. 1, 21-31 (2018). MSC: 26D10 26A33 PDF BibTeX XML Cite \textit{M. Bezziou} et al., Mathematica 60(83), No. 1, 21--31 (2018; Zbl 1438.26032) Full Text: DOI
Luca, Rodica Positive solutions for a system of fractional differential equations with \(p\)-Laplacian operator and multi-point boundary conditions. (English) Zbl 1420.34020 Nonlinear Anal., Model. Control 23, No. 5, 771-801 (2018). MSC: 34A08 34B10 34B18 34B08 47B20 PDF BibTeX XML Cite \textit{R. Luca}, Nonlinear Anal., Model. Control 23, No. 5, 771--801 (2018; Zbl 1420.34020) Full Text: DOI
Abbas, Saïd; Benchohra, Mouffak; Lazreg, Jamal E.; N’Guérékata, Gaston M. Coupled systems of Hilfer fractional differential equations with maxima. (English) Zbl 1421.34051 J. Nonlinear Evol. Equ. Appl. 2018, 11-24 (2018). MSC: 34K37 34K30 47N20 PDF BibTeX XML Cite \textit{S. Abbas} et al., J. Nonlinear Evol. Equ. Appl. 2018, 11--24 (2018; Zbl 1421.34051) Full Text: Link
Akram, Ghazala; Anjum, Fareeha Existence and uniqueness of solution for differential equation of fractional order \(2<\alpha\leq 3\) with nonlocal multipoint integral boundary conditions. (English) Zbl 1424.34009 Turk. J. Math. 42, No. 5, 2304-2324 (2018). MSC: 34A08 34B10 34B15 47N20 PDF BibTeX XML Cite \textit{G. Akram} and \textit{F. Anjum}, Turk. J. Math. 42, No. 5, 2304--2324 (2018; Zbl 1424.34009) Full Text: DOI
Isife, Kenneth Ifeanyi Existence of solution for some two-point boundary value fractional differential equations. (English) Zbl 1424.34025 Turk. J. Math. 42, No. 6, 2953-2964 (2018). MSC: 34A08 34B15 47N20 34A45 PDF BibTeX XML Cite \textit{K. I. Isife}, Turk. J. Math. 42, No. 6, 2953--2964 (2018; Zbl 1424.34025) Full Text: DOI
Kashuri, Artion; Liko, Rozana; Du, Tingsong Ostrowski type fractional integral operators for generalized beta \((r,g)\)-preinvex functions. (English) Zbl 1412.26016 Khayyam J. Math. 4, No. 1, 39-58 (2018). MSC: 26A51 26A33 26D07 26D10 PDF BibTeX XML Cite \textit{A. Kashuri} et al., Khayyam J. Math. 4, No. 1, 39--58 (2018; Zbl 1412.26016) Full Text: DOI
Dannawi, I.; Kirane, M.; Fino, A. Z. Finite time blow-up for damped wave equations with space-time dependent potential and nonlinear memory. (English) Zbl 1415.35201 NoDEA, Nonlinear Differ. Equ. Appl. 25, No. 5, Paper No. 38, 19 p. (2018). Reviewer: Claudia Simionescu-Badea (Wien) MSC: 35L71 35L15 35B33 35B44 PDF BibTeX XML Cite \textit{I. Dannawi} et al., NoDEA, Nonlinear Differ. Equ. Appl. 25, No. 5, Paper No. 38, 19 p. (2018; Zbl 1415.35201) Full Text: DOI
Pshibikhova, R. A. Darboux problem for fractional telegraph equation. (Russian. English summary) Zbl 1407.35218 Vestn. KRAUNTS, Fiz.-Mat. Nauki 2018, No. 3(23), 91-97 (2018). MSC: 35R11 PDF BibTeX XML Cite \textit{R. A. Pshibikhova}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 2018, No. 3(23), 91--97 (2018; Zbl 1407.35218) Full Text: DOI MNR
Masaeva, O. Kh. The Neumann problem for the generalized Laplace equation. (Russian. English summary) Zbl 1406.35471 Vestn. KRAUNTS, Fiz.-Mat. Nauki 2018, No. 3(23), 83-90 (2018). MSC: 35R11 35L05 PDF BibTeX XML Cite \textit{O. Kh. Masaeva}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 2018, No. 3(23), 83--90 (2018; Zbl 1406.35471) Full Text: DOI MNR
Adiguzel, Hakan Oscillatory behavior of solutions of certain fractional difference equations. (English) Zbl 1448.39010 Adv. Difference Equ. 2018, Paper No. 445, 13 p. (2018). MSC: 39A21 39A13 26A33 PDF BibTeX XML Cite \textit{H. Adiguzel}, Adv. Difference Equ. 2018, Paper No. 445, 13 p. (2018; Zbl 1448.39010) Full Text: DOI
Khan, Hasib; Chen, Wen; Khan, Aziz; Khan, Tahir S.; Al-Madlal, Qasem M. Hyers-Ulam stability and existence criteria for coupled fractional differential equations involving \(p\)-Laplacian operator. (English) Zbl 1448.34019 Adv. Difference Equ. 2018, Paper No. 455, 16 p. (2018). MSC: 34A08 39B82 26A33 PDF BibTeX XML Cite \textit{H. Khan} et al., Adv. Difference Equ. 2018, Paper No. 455, 16 p. (2018; Zbl 1448.34019) Full Text: DOI
Asawasamrit, Suphawat; Kijjathanakorn, Atthapol; Ntouyas, Sotiris K.; Tariboon, Jessada Nonlocal boundary value problems for hilfer fractional differential equations. (English) Zbl 1408.34004 Bull. Korean Math. Soc. 55, No. 6, 1639-1657 (2018). MSC: 34A08 34B15 47N20 PDF BibTeX XML Cite \textit{S. Asawasamrit} et al., Bull. Korean Math. Soc. 55, No. 6, 1639--1657 (2018; Zbl 1408.34004) Full Text: Link
Tokmagambetov, Niyaz; Torebek, Berikbol Anomalous diffusion phenomena with conservation law for the fractional kinetic process. (English) Zbl 1405.35231 Math. Methods Appl. Sci. 41, No. 17, 8161-8170 (2018). MSC: 35Q92 35S15 PDF BibTeX XML Cite \textit{N. Tokmagambetov} and \textit{B. Torebek}, Math. Methods Appl. Sci. 41, No. 17, 8161--8170 (2018; Zbl 1405.35231) Full Text: DOI
Shadab, M.; Khan, M. Faisal; Lopez-Bonilla, J. Luis A new Riemann-Liouville type fractional derivative operator and its application in generating functions. (English) Zbl 1446.26005 Adv. Difference Equ. 2018, Paper No. 167, 16 p. (2018). MSC: 26A33 33C05 33C20 33C65 33B15 PDF BibTeX XML Cite \textit{M. Shadab} et al., Adv. Difference Equ. 2018, Paper No. 167, 16 p. (2018; Zbl 1446.26005) Full Text: DOI
Padhi, Seshadev; Graef, John R.; Pati, Smita Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann-Stieltjes integral boundary conditions. (English) Zbl 1406.34015 Fract. Calc. Appl. Anal. 21, No. 3, 716-745 (2018). MSC: 34A08 34B18 34B15 34B10 47N20 PDF BibTeX XML Cite \textit{S. Padhi} et al., Fract. Calc. Appl. Anal. 21, No. 3, 716--745 (2018; Zbl 1406.34015) Full Text: DOI
Rahimkhani, Parisa; Ordokhani, Yadollah Numerical solution a class of 2D fractional optimal control problems by using 2D Müntz-Legendre wavelets. (English) Zbl 1406.49031 Optim. Control Appl. Methods 39, No. 6, 1916-1934 (2018). MSC: 49M25 65T60 34A08 PDF BibTeX XML Cite \textit{P. Rahimkhani} and \textit{Y. Ordokhani}, Optim. Control Appl. Methods 39, No. 6, 1916--1934 (2018; Zbl 1406.49031) Full Text: DOI
Shanker Dubey, Ravi; Sharma, Anil; Jain, Monika Study of incomplete elliptic integrals pertaining to \(_p\Psi_q\) function. (English) Zbl 07002740 J. Appl. Math. Stat. Inform. 14, No. 2, 11-18 (2018). MSC: 26A33 33C65 33E05 33C75 78A40 78A45 PDF BibTeX XML Cite \textit{R. Shanker Dubey} et al., J. Appl. Math. Stat. Inform. 14, No. 2, 11--18 (2018; Zbl 07002740) Full Text: DOI
Gaafar, Fatma M. The existence of solutions for a nonlinear first-order differential equation involving the Riemann-Liouville fractional-order and nonlocal condition. (English) Zbl 1407.34010 Mediterr. J. Math. 15, No. 5, Paper No. 191, 14 p. (2018). MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{F. M. Gaafar}, Mediterr. J. Math. 15, No. 5, Paper No. 191, 14 p. (2018; Zbl 1407.34010) Full Text: DOI
Bira, Bibekananda; Sekhar, Tungala Raja; Zeidan, Dia Exact solutions for some time-fractional evolution equations using Lie group theory. (English) Zbl 06986320 Math. Methods Appl. Sci. 41, No. 16, 6717-6725 (2018). MSC: 35 PDF BibTeX XML Cite \textit{B. Bira} et al., Math. Methods Appl. Sci. 41, No. 16, 6717--6725 (2018; Zbl 06986320) Full Text: DOI
He, Jiankun; Jia, Mei; Chen, Hui Existence and nonexistence of positive solutions of three-point boundary value problems for a class of fractional differential equations. (Chinese. English summary) Zbl 1413.34025 J. Jilin Univ., Sci. 56, No. 1, 6-14 (2018). MSC: 34A08 34B10 34B18 47N20 34B08 PDF BibTeX XML Cite \textit{J. He} et al., J. Jilin Univ., Sci. 56, No. 1, 6--14 (2018; Zbl 1413.34025) Full Text: DOI
Mejjaoli, Hatem; Omri, Slim Time-frequency analysis associated with some partial differential operators. (English) Zbl 1400.44001 Mediterr. J. Math. 15, No. 4, Paper No. 161, 1-38 (2018). MSC: 44A05 42B10 42B15 PDF BibTeX XML Cite \textit{H. Mejjaoli} and \textit{S. Omri}, Mediterr. J. Math. 15, No. 4, Paper No. 161, 1--38 (2018; Zbl 1400.44001) Full Text: DOI
Tokmagambetov, Niyaz; Torebek, Berikbol T. Green’s formula for integro-differential operators. (English) Zbl 06937864 J. Math. Anal. Appl. 468, No. 1, 473-479 (2018). MSC: 26 47 PDF BibTeX XML Cite \textit{N. Tokmagambetov} and \textit{B. T. Torebek}, J. Math. Anal. Appl. 468, No. 1, 473--479 (2018; Zbl 06937864) Full Text: DOI
Rguigui, Hafedh Fractional number operator and associated fractional diffusion equations. (English) Zbl 1396.35072 Math. Phys. Anal. Geom. 21, No. 1, Paper No. 1, 17 p. (2018). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 35R11 46G20 60H05 PDF BibTeX XML Cite \textit{H. Rguigui}, Math. Phys. Anal. Geom. 21, No. 1, Paper No. 1, 17 p. (2018; Zbl 1396.35072) Full Text: DOI
Liu, Yuji Solvability of anti-periodic BVPs for impulsive fractional differential systems involving Caputo and Riemann-Liouville fractional derivatives. (English) Zbl 1401.34013 Int. J. Nonlinear Sci. Numer. Simul. 19, No. 2, 125-152 (2018). MSC: 34A08 34B16 34B37 39A12 45G10 47N20 PDF BibTeX XML Cite \textit{Y. Liu}, Int. J. Nonlinear Sci. Numer. Simul. 19, No. 2, 125--152 (2018; Zbl 1401.34013) Full Text: DOI
Khushtova, F. G. The second boundary-value problem in a half-strip for a parabolic-type equation with Bessel operator and Riemann-Liouville partial derivative. (English. Russian original) Zbl 06909355 Math. Notes 103, No. 3, 474-482 (2018); translation from Mat. Zametki 103, No. 3, 460-470 (2018). MSC: 35K PDF BibTeX XML Cite \textit{F. G. Khushtova}, Math. Notes 103, No. 3, 474--482 (2018; Zbl 06909355); translation from Mat. Zametki 103, No. 3, 460--470 (2018) Full Text: DOI
Baltaeva, Umida; Agarwal, Praveen Boundary-value problems for the third-order loaded equation with noncharacteristic type-change boundaries. (English) Zbl 1393.35261 Math. Methods Appl. Sci. 41, No. 9, 3307-3315 (2018). MSC: 35R09 35M10 35M12 35K20 PDF BibTeX XML Cite \textit{U. Baltaeva} and \textit{P. Agarwal}, Math. Methods Appl. Sci. 41, No. 9, 3307--3315 (2018; Zbl 1393.35261) Full Text: DOI
Dai, Hongshuai; Shen, Guangjun; Xia, Liangwen Operator fractional Brownian sheet and martingale differences. (English) Zbl 1391.60077 Bull. Korean Math. Soc. 55, No. 1, 9-23 (2018). MSC: 60G22 60G15 60G44 PDF BibTeX XML Cite \textit{H. Dai} et al., Bull. Korean Math. Soc. 55, No. 1, 9--23 (2018; Zbl 1391.60077) Full Text: Link
Fedorov, V. E.; Plekhanova, M. V.; Nazhimov, R. R. Degenerate linear evolution equations with the Riemann-Liouville fractional derivative. (English. Russian original) Zbl 1392.34007 Sib. Math. J. 59, No. 1, 136-146 (2018); translation from Sib. Mat. Zh. 59, No. 1, 171-184 (2018). MSC: 34A08 34G10 34A09 34A12 PDF BibTeX XML Cite \textit{V. E. Fedorov} et al., Sib. Math. J. 59, No. 1, 136--146 (2018; Zbl 1392.34007); translation from Sib. Mat. Zh. 59, No. 1, 171--184 (2018) Full Text: DOI
Al-Omari, Shrideh Khalaf Q. Class of Weyl integral operators associated with some generalized function spaces. (English) Zbl 1394.44003 Nonlinear Stud. 25, No. 1, 149-157 (2018). MSC: 44A15 26A33 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari}, Nonlinear Stud. 25, No. 1, 149--157 (2018; Zbl 1394.44003) Full Text: Link
Liu, Zhenhai; Li, Xuemei; Zeng, Biao Optimal feedback control for fractional neutral dynamical systems. (English) Zbl 1397.49051 Optimization 67, No. 5, 549-564 (2018). MSC: 49N35 34A08 34K40 47N70 PDF BibTeX XML Cite \textit{Z. Liu} et al., Optimization 67, No. 5, 549--564 (2018; Zbl 1397.49051) Full Text: DOI
Abbas, S.; Benchohra, M.; Graef, J. R. Weak solutions to implicit differential equations involving the Hilfer fractional derivative. (English) Zbl 1391.34128 Nonlinear Dyn. Syst. Theory 18, No. 1, 1-11 (2018). MSC: 34K37 34K32 47N20 PDF BibTeX XML Cite \textit{S. Abbas} et al., Nonlinear Dyn. Syst. Theory 18, No. 1, 1--11 (2018; Zbl 1391.34128)
Repin, O. A. Boundary-value problem with Saigo operators for mixed type equation with fractional derivative. (English. Russian original) Zbl 06864386 Russ. Math. 62, No. 1, 70-75 (2018); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2018, No. 1, 81-86 (2018). MSC: 35 34 PDF BibTeX XML Cite \textit{O. A. Repin}, Russ. Math. 62, No. 1, 70--75 (2018; Zbl 06864386); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2018, No. 1, 81--86 (2018) Full Text: DOI
Tokmagambetov, Niyaz; Torebek, Berikbol T. Well-posed problems for the fractional Laplace equation with integral boundary conditions. (English) Zbl 1390.35426 Electron. J. Differ. Equ. 2018, Paper No. 90, 10 p. (2018). MSC: 35R30 35K05 35K20 PDF BibTeX XML Cite \textit{N. Tokmagambetov} and \textit{B. T. Torebek}, Electron. J. Differ. Equ. 2018, Paper No. 90, 10 p. (2018; Zbl 1390.35426) Full Text: Link
Hleili, Khaled Calderón’s reproducing formulas and extremal functions for the Riemann-Liouville \(L^2\)-multiplier operators. (English) Zbl 1387.43005 J. Pseudo-Differ. Oper. Appl. 9, No. 1, 125-141 (2018). Reviewer: Krzysztof Stempak (Wrocław) MSC: 43A32 42B10 PDF BibTeX XML Cite \textit{K. Hleili}, J. Pseudo-Differ. Oper. Appl. 9, No. 1, 125--141 (2018; Zbl 1387.43005) Full Text: DOI