Xing, Zhiyong; Wen, Liping; Xiao, Hanyu A fourth-order conservative difference scheme for the Riesz space-fractional Sine-Gordon equations and its fast implementation. (English) Zbl 07310754 Appl. Numer. Math. 159, 221-238 (2021). MSC: 35R 35Q 35A PDF BibTeX XML Cite \textit{Z. Xing} et al., Appl. Numer. Math. 159, 221--238 (2021; Zbl 07310754) Full Text: DOI
Hao, Zhaopeng; Cao, Wanrong; Li, Shengyue Numerical correction of finite difference solution for two-dimensional space-fractional diffusion equations with boundary singularity. (English) Zbl 07307380 Numer. Algorithms 86, No. 3, 1071-1087 (2021). MSC: 65 26A33 65M06 65M12 65M55 65T50 PDF BibTeX XML Cite \textit{Z. Hao} et al., Numer. Algorithms 86, No. 3, 1071--1087 (2021; Zbl 07307380) Full Text: DOI
Kubin, A.; Ponsiglione, M. Attractive Riesz potentials acting on hard spheres. (English) Zbl 07303401 Nonlinearity 34, No. 1, 350-371 (2021). MSC: 49J45 49J10 80 PDF BibTeX XML Cite \textit{A. Kubin} and \textit{M. Ponsiglione}, Nonlinearity 34, No. 1, 350--371 (2021; Zbl 07303401) Full Text: DOI
Popov, Mikhail Horizontal Egorov property of Riesz spaces. (English) Zbl 07301339 Proc. Am. Math. Soc. 149, No. 1, 323-332 (2021). MSC: 46A40 46B42 PDF BibTeX XML Cite \textit{M. Popov}, Proc. Am. Math. Soc. 149, No. 1, 323--332 (2021; Zbl 07301339) Full Text: DOI
Bellido, José C.; Cueto, Javier; Mora-Corral, Carlos \( \Gamma\)-convergence of polyconvex functionals involving \(s\)-fractional gradients to their local counterparts. (English) Zbl 07296599 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 7, 29 p. (2021). Reviewer: Sorin-Mihai Grad (Wien) MSC: 49J45 PDF BibTeX XML Cite \textit{J. C. Bellido} et al., Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 7, 29 p. (2021; Zbl 07296599) Full Text: DOI
Macías-Díaz, J. E. A parallelized computational model for multidimensional systems of coupled nonlinear fractional hyperbolic equations. (English) Zbl 07302400 J. Comput. Phys. 402, Article ID 109043, 19 p. (2020). MSC: 65M06 65M12 35R11 65Y05 35B36 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, J. Comput. Phys. 402, Article ID 109043, 19 p. (2020; Zbl 07302400) Full Text: DOI
Hu, Dongdong; Cai, Wenjun; Song, Yongzhong; Wang, Yushun A fourth-order dissipation-preserving algorithm with fast implementation for space fractional nonlinear damped wave equations. (English) Zbl 1448.65105 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105432, 26 p. (2020). MSC: 65M06 65M12 26A33 35L05 35R11 PDF BibTeX XML Cite \textit{D. Hu} et al., Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105432, 26 p. (2020; Zbl 1448.65105) Full Text: DOI
Castillo, Paul.; Gómez, Sergio Alejandro On the convergence of the local discontinuous Galerkin method applied to a stationary one dimensional fractional diffusion problem. (English) Zbl 1452.65325 J. Sci. Comput. 85, No. 2, Paper No. 32, 21 p. (2020). MSC: 65N30 65M60 65N12 65N15 35R11 26A33 PDF BibTeX XML Cite \textit{Paul. Castillo} and \textit{S. A. Gómez}, J. Sci. Comput. 85, No. 2, Paper No. 32, 21 p. (2020; Zbl 1452.65325) Full Text: DOI
Macías-Díaz, J. E. Fractional generalization of the Fermi-Pasta-Ulam-Tsingou media and theoretical analysis of an explicit variational scheme. (English) Zbl 1452.65202 Commun. Nonlinear Sci. Numer. Simul. 88, Article ID 105158, 22 p. (2020). MSC: 65M22 65M12 65M15 35R11 82C20 82D25 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Commun. Nonlinear Sci. Numer. Simul. 88, Article ID 105158, 22 p. (2020; Zbl 1452.65202) Full Text: DOI
Aydin, Abdullah The statistically unbounded \(\tau \)-convergence on locally solid Riesz spaces. (English) Zbl 07257614 Turk. J. Math. 44, No. 3, 949-956 (2020). MSC: 40A35 46A40 40J05 PDF BibTeX XML Cite \textit{A. Aydin}, Turk. J. Math. 44, No. 3, 949--956 (2020; Zbl 07257614) Full Text: DOI
Abbaszadeh, Mostafa; Dehghan, Mehdi A POD-based reduced-order Crank-Nicolson/fourth-order alternating direction implicit (ADI) finite difference scheme for solving the two-dimensional distributed-order Riesz space-fractional diffusion equation. (English) Zbl 1452.65145 Appl. Numer. Math. 158, 271-291 (2020). MSC: 65M06 65N06 65M99 65M15 65M12 65D30 35R11 26A33 35K57 PDF BibTeX XML Cite \textit{M. Abbaszadeh} and \textit{M. Dehghan}, Appl. Numer. Math. 158, 271--291 (2020; Zbl 1452.65145) Full Text: DOI
Chen, Jiecheng; Fan, Dashan; Zhao, Fayou Bochner-Riesz means on block-Sobolev spaces in compact Lie group. (English) Zbl 1441.43007 J. Aust. Math. Soc. 109, No. 2, 176-192 (2020). MSC: 43A22 43A32 42B25 42B35 PDF BibTeX XML Cite \textit{J. Chen} et al., J. Aust. Math. Soc. 109, No. 2, 176--192 (2020; Zbl 1441.43007) Full Text: DOI
Ye, Wenrui Almost everywhere convergence of the Bochner-Riesz means for the Dunkl transforms of weighted \(L^p\)-functions. (English) Zbl 1446.42011 Ann. Funct. Anal. 11, No. 4, 981-1006 (2020). MSC: 42B10 42B15 42A45 40A10 33C10 PDF BibTeX XML Cite \textit{W. Ye}, Ann. Funct. Anal. 11, No. 4, 981--1006 (2020; Zbl 1446.42011) Full Text: DOI
Zhao, Jingjun; Zhang, Yanming; Xu, Yang Implicit Runge-Kutta and spectral Galerkin methods for the two-dimensional nonlinear Riesz space distributed-order diffusion equation. (English) Zbl 1446.65136 Appl. Numer. Math. 157, 223-235 (2020). MSC: 65M70 65N35 65L06 65D32 35R11 26A33 65M12 PDF BibTeX XML Cite \textit{J. Zhao} et al., Appl. Numer. Math. 157, 223--235 (2020; Zbl 1446.65136) Full Text: DOI
Berić, Tomislav; Šikić, Hrvoje Sequence dominance in shift-invariant spaces. (English) Zbl 1439.42042 J. Fourier Anal. Appl. 26, No. 4, Paper No. 55, 14 p. (2020). MSC: 42C15 42A20 PDF BibTeX XML Cite \textit{T. Berić} and \textit{H. Šikić}, J. Fourier Anal. Appl. 26, No. 4, Paper No. 55, 14 p. (2020; Zbl 1439.42042) Full Text: DOI
Das, Pratulananda; Savas, Ekrem On \(\mathcal{I} \)-statistically order pre Cauchy sequences in Riesz spaces. (English) Zbl 07224866 Roy, Priti Kumar (ed.) et al., Mathematical analysis and applications in modeling. Selected papers presented at the international conference, ICMAAM 2018, Kolkata, India, January 9–12, 2018. Singapore: Springer (ISBN 978-981-15-0421-1/hbk; 978-981-15-0422-8/ebook). Springer Proceedings in Mathematics & Statistics 302, 133-144 (2020). MSC: 40A35 46A40 40J05 PDF BibTeX XML Cite \textit{P. Das} and \textit{E. Savas}, in: Mathematical analysis and applications in modeling. Selected papers presented at the international conference, ICMAAM 2018, Kolkata, India, January 9--12, 2018. Singapore: Springer. 133--144 (2020; Zbl 07224866) Full Text: DOI
Muñoz-Pérez, Luis F.; Macías-Díaz, J. E. On the solution of a generalized Higgs boson equation in the de Sitter space-time through an efficient and Hamiltonian scheme. (English) Zbl 1437.65109 J. Comput. Phys. 417, Article ID 109568, 23 p. (2020). MSC: 65M06 65Z05 81R20 35R11 PDF BibTeX XML Cite \textit{L. F. Muñoz-Pérez} and \textit{J. E. Macías-Díaz}, J. Comput. Phys. 417, Article ID 109568, 23 p. (2020; Zbl 1437.65109) Full Text: DOI
Kandić, M.; Kaplin, M. Relatively uniformly continuous semigroups on vector lattices. (English) Zbl 07210859 J. Math. Anal. Appl. 489, No. 1, Article ID 124139, 23 p. (2020). MSC: 47D03 06F20 46A40 PDF BibTeX XML Cite \textit{M. Kandić} and \textit{M. Kaplin}, J. Math. Anal. Appl. 489, No. 1, Article ID 124139, 23 p. (2020; Zbl 07210859) Full Text: DOI
Bellido, José C.; Cueto, Javier; Mora-Corral, Carlos Fractional Piola identity and polyconvexity in fractional spaces. (English) Zbl 1442.35445 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 955-981 (2020). MSC: 35Q74 26A33 35R11 49J45 35A15 74B99 74G65 PDF BibTeX XML Cite \textit{J. C. Bellido} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 955--981 (2020; Zbl 1442.35445) Full Text: DOI
Lipecki, Zbigniew Correction to: “Order-theoretic properties and separability of some sets of quasi-measures”. (English) Zbl 1435.28003 Ric. Mat. 69, No. 1, 385-386 (2020). MSC: 28A12 06F20 28A33 46A55 46B42 PDF BibTeX XML Cite \textit{Z. Lipecki}, Ric. Mat. 69, No. 1, 385--386 (2020; Zbl 1435.28003) Full Text: DOI
Zhao, Jingjun; Zhang, Yanming; Xu, Yang Implicit Runge-Kutta and spectral Galerkin methods for Riesz space fractional/distributed-order diffusion equation. (English) Zbl 1449.65283 Comput. Appl. Math. 39, No. 2, Paper No. 47, 27 p. (2020). MSC: 65M70 65M12 65M15 65L06 35R11 26A33 PDF BibTeX XML Cite \textit{J. Zhao} et al., Comput. Appl. Math. 39, No. 2, Paper No. 47, 27 p. (2020; Zbl 1449.65283) Full Text: DOI
Macías-Díaz, J. E. A fully explicit variational integrator for multidimensional systems of coupled nonlinear fractional hyperbolic equations. (English) Zbl 1437.65106 Appl. Numer. Math. 154, 149-171 (2020). MSC: 65M06 35R09 26A33 35R11 65M12 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Appl. Numer. Math. 154, 149--171 (2020; Zbl 1437.65106) Full Text: DOI
Fei, Mingfa; Wang, Nan; Huang, Chengming; Ma, Xiaohua A second-order implicit difference scheme for the nonlinear time-space fractional Schrödinger equation. (English) Zbl 1436.65099 Appl. Numer. Math. 153, 399-411 (2020). MSC: 65M06 65M12 35Q41 35R11 26A33 PDF BibTeX XML Cite \textit{M. Fei} et al., Appl. Numer. Math. 153, 399--411 (2020; Zbl 1436.65099) Full Text: DOI
Magron, Victor; Prieur, Christophe Optimal control of linear PDEs using occupation measures and SDP relaxations. (English) Zbl 1436.49030 IMA J. Math. Control Inf. 37, No. 1, 159-174 (2020). MSC: 49K20 49J45 PDF BibTeX XML Cite \textit{V. Magron} and \textit{C. Prieur}, IMA J. Math. Control Inf. 37, No. 1, 159--174 (2020; Zbl 1436.49030) Full Text: DOI
Iqbal, Mobashir; Bashir, Zia The existence of fuzzy Dedekind completion of Archimedean fuzzy Riesz space. (English) Zbl 1449.46063 Comput. Appl. Math. 39, No. 2, Paper No. 116, 15 p. (2020). MSC: 46S40 03E72 06D72 PDF BibTeX XML Cite \textit{M. Iqbal} and \textit{Z. Bashir}, Comput. Appl. Math. 39, No. 2, Paper No. 116, 15 p. (2020; Zbl 1449.46063) Full Text: DOI
Rupčić, Jelena Convergence of lacunary SU(1,1)-valued trigonometric products. (English) Zbl 1434.42006 Commun. Pure Appl. Anal. 19, No. 3, 1275-1289 (2020). MSC: 42A55 40A20 PDF BibTeX XML Cite \textit{J. Rupčić}, Commun. Pure Appl. Anal. 19, No. 3, 1275--1289 (2020; Zbl 1434.42006) Full Text: DOI
Zhang, Yuxin; Ding, Hengfei Numerical algorithm for the time-Caputo and space-Riesz fractional diffusion equation. (English) Zbl 1449.65212 Commun. Appl. Math. Comput. 2, No. 1, 57-72 (2020). MSC: 65M06 65M12 35R11 26A33 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{H. Ding}, Commun. Appl. Math. Comput. 2, No. 1, 57--72 (2020; Zbl 1449.65212) Full Text: DOI
Kovács, Mihály; Larsson, Stig; Saedpanah, Fardin Mittag-Leffler Euler integrator for a stochastic fractional order equation with additive noise. (English) Zbl 1429.65018 SIAM J. Numer. Anal. 58, No. 1, 66-85 (2020). MSC: 65C30 60H15 60H35 34A08 45D05 45K05 65M12 65M60 PDF BibTeX XML Cite \textit{M. Kovács} et al., SIAM J. Numer. Anal. 58, No. 1, 66--85 (2020; Zbl 1429.65018) Full Text: DOI arXiv
Xu, Yang; Zhang, Yanming; Zhao, Jingjun General linear and spectral Galerkin methods for the Riesz space fractional diffusion equation. (English) Zbl 1433.65142 Appl. Math. Comput. 364, Article ID 124664, 12 p. (2020). MSC: 65L20 65L60 PDF BibTeX XML Cite \textit{Y. Xu} et al., Appl. Math. Comput. 364, Article ID 124664, 12 p. (2020; Zbl 1433.65142) Full Text: DOI
Kuo, Wen-Chi; Rodda, David F.; Watson, Bruce A. The Hájek-Rényi-Chow maximal inequality and a strong law of large numbers in Riesz spaces. (English) Zbl 1436.60045 J. Math. Anal. Appl. 481, No. 1, Article ID 123462, 10 p. (2020). Reviewer: George Stoica (Saint John) MSC: 60G48 46A40 PDF BibTeX XML Cite \textit{W.-C. Kuo} et al., J. Math. Anal. Appl. 481, No. 1, Article ID 123462, 10 p. (2020; Zbl 1436.60045) Full Text: DOI
Castillo, Paul; Gómez, Sergio Optimal stabilization and time step constraints for the forward Euler-local discontinuous Galerkin method applied to fractional diffusion equations. (English) Zbl 1452.65228 J. Comput. Phys. 394, 503-521 (2019). MSC: 65M60 35R11 65M15 65M12 PDF BibTeX XML Cite \textit{P. Castillo} and \textit{S. Gómez}, J. Comput. Phys. 394, 503--521 (2019; Zbl 1452.65228) Full Text: DOI
Sayevand, K.; Machado, J. Tenreiro; Moradi, V. A new non-standard finite difference method for analyzing the fractional Navier-Stokes equations. (English) Zbl 1442.65177 Comput. Math. Appl. 78, No. 5, 1681-1694 (2019). MSC: 65M06 65M12 76D05 35Q30 35R11 PDF BibTeX XML Cite \textit{K. Sayevand} et al., Comput. Math. Appl. 78, No. 5, 1681--1694 (2019; Zbl 1442.65177) Full Text: DOI
Liu, Fawang; Feng, Libo; Anh, Vo; Li, Jing Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equations on irregular convex domains. (English) Zbl 1442.65268 Comput. Math. Appl. 78, No. 5, 1637-1650 (2019). MSC: 65M60 65M12 35R11 82C70 PDF BibTeX XML Cite \textit{F. Liu} et al., Comput. Math. Appl. 78, No. 5, 1637--1650 (2019; Zbl 1442.65268) Full Text: DOI
Goginava, Ushangi Subsequences of spherical sums of double Walsh-Fourier series. (English) Zbl 1443.42017 Nonlinear Stud. 26, No. 4, 821-830 (2019). MSC: 42C10 42A20 42A55 PDF BibTeX XML Cite \textit{U. Goginava}, Nonlinear Stud. 26, No. 4, 821--830 (2019; Zbl 1443.42017) Full Text: Link
Kalauch, Anke; van Gaans, Onno Relatively uniform convergence in partially ordered vector spaces revisited. (English) Zbl 07201928 Buskes, Gerard (ed.) et al., Positivity and noncommutative analysis. Festschrift in honour of Ben de Pagter on the occasion of his 65th birthday. Based on the workshop “Positivity and Noncommutative Analysis”, Delft, The Netherlands, September 26–28, 2018. Cham: Birkhäuser (ISBN 978-3-030-10849-6/hbk; 978-3-030-10850-2/ebook). Trends in Mathematics, 269-280 (2019). MSC: 46A40 PDF BibTeX XML Cite \textit{A. Kalauch} and \textit{O. van Gaans}, in: Positivity and noncommutative analysis. Festschrift in honour of Ben de Pagter on the occasion of his 65th birthday. Based on the workshop ``Positivity and Noncommutative Analysis'', Delft, The Netherlands, September 26--28, 2018. Cham: Birkhäuser. 269--280 (2019; Zbl 07201928) Full Text: DOI
Kartal, Bağdagül New results for almost increasing sequences. (English) Zbl 1448.40006 Ann. Univ. Paedagog. Crac., Stud. Math. 277, No. 18, 85-91 (2019). MSC: 40D15 26D15 40F05 40G99 PDF BibTeX XML Cite \textit{B. Kartal}, Ann. Univ. Paedagog. Crac., Stud. Math. 277, No. 18, 85--91 (2019; Zbl 1448.40006) Full Text: DOI
Ding, Hengfei; Li, Changpin High-order algorithms for Riesz derivative and their applications. IV. (English) Zbl 1434.65112 Fract. Calc. Appl. Anal. 22, No. 6, 1537-1560 (2019). MSC: 65M06 35R11 65D25 65M12 PDF BibTeX XML Cite \textit{H. Ding} and \textit{C. Li}, Fract. Calc. Appl. Anal. 22, No. 6, 1537--1560 (2019; Zbl 1434.65112) Full Text: DOI
Chil, Elmiloud; Assili, Marwa Korovkin-type approximation by operators in Riesz spaces via power series method. (English) Zbl 07187711 Demonstr. Math. 52, 490-495 (2019). MSC: 06F25 46A40 PDF BibTeX XML Cite \textit{E. Chil} and \textit{M. Assili}, Demonstr. Math. 52, 490--495 (2019; Zbl 07187711) Full Text: DOI
Shi, Y. H.; Liu, F.; Zhao, Y. M.; Wang, F. L.; Turner, I. An unstructured mesh finite element method for solving the multi-term time fractional and Riesz space distributed-order wave equation on an irregular convex domain. (English) Zbl 07187165 Appl. Math. Modelling 73, 615-636 (2019). MSC: 65 76 PDF BibTeX XML Cite \textit{Y. H. Shi} et al., Appl. Math. Modelling 73, 615--636 (2019; Zbl 07187165) Full Text: DOI
Sonker, Smita; Munjal, Alka Sufficient conditions for infinite series by absolute \(\varphi \)-product summable factor. (English) Zbl 1445.40004 Tbil. Math. J. 12, No. 4, 29-41 (2019). MSC: 40F05 40D15 40G05 PDF BibTeX XML Cite \textit{S. Sonker} and \textit{A. Munjal}, Tbil. Math. J. 12, No. 4, 29--41 (2019; Zbl 1445.40004) Full Text: DOI Euclid
Javidi, Mohammad; Heris, Mahdi Saedshoar Analysis and numerical methods for the Riesz space distributed-order advection-diffusion equation with time delay. (English) Zbl 1446.35249 S\(\vec{\text{e}}\)MA J. 76, No. 4, 533-551 (2019). MSC: 35R11 35R09 65L06 65L20 65N06 PDF BibTeX XML Cite \textit{M. Javidi} and \textit{M. S. Heris}, S\(\vec{\text{e}}\)MA J. 76, No. 4, 533--551 (2019; Zbl 1446.35249) Full Text: DOI
Hendy, Ahmed S.; Macías-Díaz, Jorge E. A conservative scheme with optimal error estimates for a multidimensional space-fractional Gross-Pitaevskii equation. (English) Zbl 1434.65119 Int. J. Appl. Math. Comput. Sci. 29, No. 4, 713-723 (2019). MSC: 65M06 35R11 39A60 65M12 35Q55 PDF BibTeX XML Cite \textit{A. S. Hendy} and \textit{J. E. Macías-Díaz}, Int. J. Appl. Math. Comput. Sci. 29, No. 4, 713--723 (2019; Zbl 1434.65119) Full Text: DOI
Cai, Li; Guo, Meifang; Li, Yiqiang; Ying, Wenjun; Gao, Hao; Luo, Xiaoyu; Nonst Nonstandard finite difference method for nonlinear Riesz space fractional reaction-diffusion equation. (English) Zbl 1434.65108 Int. J. Numer. Anal. Model. 16, No. 6, 925-938 (2019). MSC: 65M06 65M12 35R11 26A33 65M55 65F10 35Q53 PDF BibTeX XML Cite \textit{L. Cai} et al., Int. J. Numer. Anal. Model. 16, No. 6, 925--938 (2019; Zbl 1434.65108) Full Text: Link
Zhang, Qifeng; Li, Tingyue Asymptotic stability of compact and linear \(\theta \)-methods for space fractional delay generalized diffusion equation. (English) Zbl 1433.65172 J. Sci. Comput. 81, No. 3, 2413-2446 (2019). MSC: 65M06 65M15 65M12 35B40 35R11 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{T. Li}, J. Sci. Comput. 81, No. 3, 2413--2446 (2019; Zbl 1433.65172) Full Text: DOI
Kpata, Bérenger Akon On a decomposition of non-negative Radon measures. (English) Zbl 07144735 Arch. Math., Brno 55, No. 4, 203-210 (2019). MSC: 28A33 28A78 28A12 42B25 PDF BibTeX XML Cite \textit{B. A. Kpata}, Arch. Math., Brno 55, No. 4, 203--210 (2019; Zbl 07144735) Full Text: DOI
Hu, Nan; Liu, Yu Bilinear operators associated with generalized Schrödinger operators. (English) Zbl 1440.42012 J. Pseudo-Differ. Oper. Appl. 10, No. 4, 837-854 (2019). MSC: 42A20 42B30 35J10 47B38 PDF BibTeX XML Cite \textit{N. Hu} and \textit{Y. Liu}, J. Pseudo-Differ. Oper. Appl. 10, No. 4, 837--854 (2019; Zbl 1440.42012) Full Text: DOI
Zhao, Jingjun; Li, Yu; Xu, Yang An explicit fourth-order energy-preserving scheme for Riesz space fractional nonlinear wave equations. (English) Zbl 1429.65209 Appl. Math. Comput. 351, 124-138 (2019). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{J. Zhao} et al., Appl. Math. Comput. 351, 124--138 (2019; Zbl 1429.65209) Full Text: DOI
Cheng, Xiujun; Duan, Jinqiao; Li, Dongfang A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equations. (English) Zbl 1429.65216 Appl. Math. Comput. 346, 452-464 (2019). MSC: 65M12 65M06 35R11 PDF BibTeX XML Cite \textit{X. Cheng} et al., Appl. Math. Comput. 346, 452--464 (2019; Zbl 1429.65216) Full Text: DOI
Bor, Hüseyin On absolute Riesz summability factors of infinite series and their application to Fourier series. (English) Zbl 07129206 Georgian Math. J. 26, No. 3, 361-366 (2019). MSC: 26D15 40D15 40F05 40G99 42A24 46A45 PDF BibTeX XML Cite \textit{H. Bor}, Georgian Math. J. 26, No. 3, 361--366 (2019; Zbl 07129206) Full Text: DOI
Konca, Şükran; Küçükaslan, Mehmet; Genç, Ergin \(I\)-statistical convergence of double sequences defined by weight functions in a locally solid Riesz space. (English) Zbl 1438.40018 Konuralp J. Math. 7, No. 1, 55-61 (2019). MSC: 40A35 40G15 46A40 46A45 40B05 PDF BibTeX XML Cite \textit{Ş. Konca} et al., Konuralp J. Math. 7, No. 1, 55--61 (2019; Zbl 1438.40018) Full Text: Link
Subramanian, N.; Esi, A.; Aiyub, M. Riesz triple almost lacunary \(\chi^3\) sequence spaces defined by a Orlicz function. I. (English) Zbl 1449.46009 J. Appl. Math. Inform. 37, No. 1-2, 37-52 (2019). MSC: 46A45 40A35 PDF BibTeX XML Cite \textit{N. Subramanian} et al., J. Appl. Math. Inform. 37, No. 1--2, 37--52 (2019; Zbl 1449.46009) Full Text: DOI
Raj, Kuldip; Esi, Ayhan; Pandoh, Suruchi Applications of Riesz mean and lacunary sequences to generate Banach spaces and AK-BK spaces. (English) Zbl 1449.46007 An. Univ. Craiova, Ser. Mat. Inf. 46, No. 1, 150-163 (2019). MSC: 46A45 40C05 40A05 PDF BibTeX XML Cite \textit{K. Raj} et al., An. Univ. Craiova, Ser. Mat. Inf. 46, No. 1, 150--163 (2019; Zbl 1449.46007)
Gát, György On the convergence of Fejér means of some subsequences of partial sums of Walsh-Fourier series. (English) Zbl 1449.42046 Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 49, 187-198 (2019). Reviewer: Ferenc Weisz (Budapest) MSC: 42C10 42A55 42A20 PDF BibTeX XML Cite \textit{G. Gát}, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 49, 187--198 (2019; Zbl 1449.42046) Full Text: Link
Yang, Jinping; Li, Zhiqiang; Yan, Yubin A new numerical method for solving Riesz space-fractional diffusion equation. (Chinese. English summary) Zbl 1438.65197 Math. Numer. Sin. 41, No. 2, 170-190 (2019). MSC: 65M06 65M12 26A33 35R11 65M15 PDF BibTeX XML Cite \textit{J. Yang} et al., Math. Numer. Sin. 41, No. 2, 170--190 (2019; Zbl 1438.65197)
Cicone, Antonio; Garoni, Carlo; Serra-Capizzano, Stefano Spectral and convergence analysis of the discrete ALIF method. (English) Zbl 07106815 Linear Algebra Appl. 580, 62-95 (2019). MSC: 94A12 68W40 15A18 47B06 15B05 PDF BibTeX XML Cite \textit{A. Cicone} et al., Linear Algebra Appl. 580, 62--95 (2019; Zbl 07106815) Full Text: DOI
Martínez, Romeo; Macías-Díaz, J. E.; Hendy, Ahmed S. Theoretical analysis of an explicit energy-conserving scheme for a fractional Klein-Gordon-Zakharov system. (English) Zbl 1428.35595 Appl. Numer. Math. 146, 245-259 (2019). MSC: 35Q82 82D10 35R11 65M06 65M12 PDF BibTeX XML Cite \textit{R. Martínez} et al., Appl. Numer. Math. 146, 245--259 (2019; Zbl 1428.35595) Full Text: DOI
Özarslan, H. S. On a new application of quasi power increasing sequences. (English) Zbl 1436.40006 Carpathian Math. Publ. 11, No. 1, 152-157 (2019). MSC: 40D15 40F05 40G99 PDF BibTeX XML Cite \textit{H. S. Özarslan}, Carpathian Math. Publ. 11, No. 1, 152--157 (2019; Zbl 1436.40006) Full Text: DOI
Heris, Mahdi Saedshoar; Javidi, Mohammad Fractional backward differential formulas for the distributed-order differential equation with time delay. (English) Zbl 07097841 Bull. Iran. Math. Soc. 45, No. 4, 1159-1176 (2019). MSC: 34A30 35R11 65L06 65L20 65N06 PDF BibTeX XML Cite \textit{M. S. Heris} and \textit{M. Javidi}, Bull. Iran. Math. Soc. 45, No. 4, 1159--1176 (2019; Zbl 07097841) Full Text: DOI
Kelly, James F.; Sankaranarayanan, Harish; Meerschaert, Mark M. Boundary conditions for two-sided fractional diffusion. (English) Zbl 1416.35296 J. Comput. Phys. 376, 1089-1107 (2019). MSC: 35R11 65M12 35B30 PDF BibTeX XML Cite \textit{J. F. Kelly} et al., J. Comput. Phys. 376, 1089--1107 (2019; Zbl 1416.35296) Full Text: DOI
Hendy, Ahmed S.; Macías-Díaz, Jorge E. An efficient Hamiltonian numerical model for a fractional Klein-Gordon equation through weighted-shifted Grünwald differences. (English) Zbl 1417.81128 J. Math. Chem. 57, No. 5, 1394-1412 (2019). MSC: 81Q05 35R11 65L05 65L20 PDF BibTeX XML Cite \textit{A. S. Hendy} and \textit{J. E. Macías-Díaz}, J. Math. Chem. 57, No. 5, 1394--1412 (2019; Zbl 1417.81128) Full Text: DOI
Li, Meng; Huang, Chengming An efficient difference scheme for the coupled nonlinear fractional Ginzburg-Landau equations with the fractional Laplacian. (English) Zbl 1419.65024 Numer. Methods Partial Differ. Equations 35, No. 1, 394-421 (2019). MSC: 65M06 65M12 35Q56 35R11 PDF BibTeX XML Cite \textit{M. Li} and \textit{C. Huang}, Numer. Methods Partial Differ. Equations 35, No. 1, 394--421 (2019; Zbl 1419.65024) Full Text: DOI
Macías-Díaz, J. E.; Alba-Pérez, J. A structure-preserving Bhattacharya method for nonlinear parabolic equations with fractional diffusion and advection. (English) Zbl 1428.65012 J. Comput. Appl. Math. 354, 623-640 (2019). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65M06 65M12 65M15 35R11 35Q53 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz} and \textit{J. Alba-Pérez}, J. Comput. Appl. Math. 354, 623--640 (2019; Zbl 1428.65012) Full Text: DOI
Indumathi, A.; Subramanian, Nagarajan; Esi, Ayhan Geometric difference of six-dimensional Riesz almost lacunary rough statistical convergence in probabilistic space of \(\chi_{f}^{3}\). (English) Zbl 1428.40002 Analysis, München 39, No. 1, 7-17 (2019). MSC: 40A35 40J05 40G05 PDF BibTeX XML Cite \textit{A. Indumathi} et al., Analysis, München 39, No. 1, 7--17 (2019; Zbl 1428.40002) Full Text: DOI
Ball, R. N.; Hager, A. W. The completeness characterization of \(C(\mathcal {L})\), \(\mathcal {L}\) a locale. (English) Zbl 07053423 Positivity 23, No. 1, 89-95 (2019). MSC: 06D22 06F20 18A40 46A40 46E05 54A20 54B35 54C30 PDF BibTeX XML Cite \textit{R. N. Ball} and \textit{A. W. Hager}, Positivity 23, No. 1, 89--95 (2019; Zbl 07053423) Full Text: DOI
Zhao, Junyan; Fan, Dashan The rate of almost-everywhere convergence of Bochner-Riesz means on Sobolev spaces. (English) Zbl 1414.42013 Ann. Funct. Anal. 10, No. 1, 29-45 (2019). Reviewer: Javier Soria (Madrid) MSC: 42B15 41A35 46E35 47B38 PDF BibTeX XML Cite \textit{J. Zhao} and \textit{D. Fan}, Ann. Funct. Anal. 10, No. 1, 29--45 (2019; Zbl 1414.42013) Full Text: DOI Euclid
Chen, Minghua; Yu, Wenshan Energy estimates for two-dimensional space-Riesz fractional wave equation. (English) Zbl 07037514 Numer. Algorithms 80, No. 3, 989-1014 (2019). MSC: 65 PDF BibTeX XML Cite \textit{M. Chen} and \textit{W. Yu}, Numer. Algorithms 80, No. 3, 989--1014 (2019; Zbl 07037514) Full Text: DOI arXiv
Hu, Dongdong; Cao, Xuenian The implicit midpoint method for Riesz tempered fractional diffusion equation with a nonlinear source term. (English) Zbl 07031852 Adv. Difference Equ. 2019, Paper No. 66, 14 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{D. Hu} and \textit{X. Cao}, Adv. Difference Equ. 2019, Paper No. 66, 14 p. (2019; Zbl 07031852) Full Text: DOI
Abbaszadeh, Mostafa Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation. (English) Zbl 1410.65351 Appl. Math. Lett. 88, 179-185 (2019). MSC: 65M15 65M06 65M12 35R11 35K57 PDF BibTeX XML Cite \textit{M. Abbaszadeh}, Appl. Math. Lett. 88, 179--185 (2019; Zbl 1410.65351) Full Text: DOI
Subramanian, N.; Rajagopal, N.; Thirunavukarasu, P. Riesz almost lacunary triple sequence spaces of \(\Gamma^{3}\) defined by a Musielak-Orlicz function. (English) Zbl 1438.46010 Bol. Soc. Parana. Mat. (3) 37, No. 4, 47-59 (2019). MSC: 46A45 40A05 40C05 40D05 40B05 PDF BibTeX XML Cite \textit{N. Subramanian} et al., Bol. Soc. Parana. Mat. (3) 37, No. 4, 47--59 (2019; Zbl 1438.46010) Full Text: Link
Subramanian, N.; Esi, A. The backward operator of double almost \(\left(\lambda_{m}\mu_{n}\right)\) convergence in \(\chi^{2}\)-Riesz space defined by a Musielak-Orlicz function. (English) Zbl 1424.40010 Bol. Soc. Parana. Mat. (3) 37, No. 3, 85-97 (2019). MSC: 40A05 40C05 40D05 40B05 40J05 PDF BibTeX XML Cite \textit{N. Subramanian} and \textit{A. Esi}, Bol. Soc. Parana. Mat. (3) 37, No. 3, 85--97 (2019; Zbl 1424.40010) Full Text: Link
Subramanian, Nagarajan; Esi, Ayhan Triple almost \(\Big(\lambda_{m_i}\mu_{n_\ell}\gamma_{k_j}\Big)\) lacunary Riesz \(\chi^3_{R_{\lambda_{m_i}\mu_{n_\ell}\gamma_{k_j}}}\) sequence spaces defined by Orlicz function. (English) Zbl 1424.46011 Bol. Soc. Parana. Mat. (3) 37, No. 2, 129-144 (2019). MSC: 46A45 40A35 40B05 PDF BibTeX XML Cite \textit{N. Subramanian} and \textit{A. Esi}, Bol. Soc. Parana. Mat. (3) 37, No. 2, 129--144 (2019; Zbl 1424.46011) Full Text: Link
Dai, Feng; Ye, Wenrui Local restriction theorem and maximal Bochner-Riesz operators for the Dunkl transforms. (English) Zbl 1410.42011 Trans. Am. Math. Soc. 371, No. 1, 641-679 (2019). Reviewer: Elijah Liflyand (Ramat-Gan) MSC: 42B10 42B15 40A10 33C10 PDF BibTeX XML Cite \textit{F. Dai} and \textit{W. Ye}, Trans. Am. Math. Soc. 371, No. 1, 641--679 (2019; Zbl 1410.42011) Full Text: DOI
Zheng, Guang-Hui Solving the backward problem in Riesz-Feller fractional diffusion by a new nonlocal regularization method. (English) Zbl 1404.65147 Appl. Numer. Math. 135, 99-128 (2019). MSC: 65M32 35R11 35R60 65T50 49N60 65N20 42A38 PDF BibTeX XML Cite \textit{G.-H. Zheng}, Appl. Numer. Math. 135, 99--128 (2019; Zbl 1404.65147) Full Text: DOI
Ding, Hengfei A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation. (English) Zbl 1404.65085 Appl. Numer. Math. 135, 30-46 (2019). MSC: 65M06 35R11 26A33 65M12 PDF BibTeX XML Cite \textit{H. Ding}, Appl. Numer. Math. 135, 30--46 (2019; Zbl 1404.65085) Full Text: DOI
Macías-Díaz, J. E. An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions. (English) Zbl 07263328 Commun. Nonlinear Sci. Numer. Simul. 59, 67-87 (2018). MSC: 00 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Commun. Nonlinear Sci. Numer. Simul. 59, 67--87 (2018; Zbl 07263328) Full Text: DOI
Zhang, Hui; Liu, Fawang; Jiang, Xiaoyun; Zeng, Fanhai; Turner, Ian A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation. (English) Zbl 1442.65301 Comput. Math. Appl. 76, No. 10, 2460-2476 (2018). MSC: 65M70 65M12 35R09 35R11 PDF BibTeX XML Cite \textit{H. Zhang} et al., Comput. Math. Appl. 76, No. 10, 2460--2476 (2018; Zbl 1442.65301) Full Text: DOI
Yildiz, Şebnem A matrix application on absolute weighted arithmetic mean summability factors of infinite series. (English) Zbl 1440.40005 Tbil. Math. J. 11, No. 2, 59-65 (2018). Reviewer: Włodzimierz Łenski (Poznań) MSC: 40D15 26D15 40F05 40G99 42A24 46A45 PDF BibTeX XML Cite \textit{Ş. Yildiz}, Tbil. Math. J. 11, No. 2, 59--65 (2018; Zbl 1440.40005) Full Text: DOI Euclid
Macías-Díaz, J. E.; Hendy, A. S.; De Staelen, R. H. A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations. (English) Zbl 1429.65190 Appl. Math. Comput. 325, 1-14 (2018). MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz} et al., Appl. Math. Comput. 325, 1--14 (2018; Zbl 1429.65190) Full Text: DOI
Macías-Díaz, J. E. A numerically efficient Hamiltonian method for fractional wave equations. (English) Zbl 1427.65175 Appl. Math. Comput. 338, 231-248 (2018). MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Appl. Math. Comput. 338, 231--248 (2018; Zbl 1427.65175) Full Text: DOI
Zhang, Jingyuan A stable explicitly solvable numerical method for the Riesz fractional advection-dispersion equations. (English) Zbl 1427.65200 Appl. Math. Comput. 332, 209-227 (2018). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{J. Zhang}, Appl. Math. Comput. 332, 209--227 (2018; Zbl 1427.65200) Full Text: DOI
Singh, Uaday; Rathore, Arti A note on the degree of approximation of functions belonging to certain Lipschitz class by almost Riesz means. (English) Zbl 1438.42003 Stud. Univ. Babeş-Bolyai, Math. 63, No. 3, 371-379 (2018). MSC: 42A10 42A24 41A25 PDF BibTeX XML Cite \textit{U. Singh} and \textit{A. Rathore}, Stud. Univ. Babeş-Bolyai, Math. 63, No. 3, 371--379 (2018; Zbl 1438.42003) Full Text: DOI
Özgen, H. N. On two integrability methods. (English) Zbl 1416.26015 Acta Comment. Univ. Tartu. Math. 22, No. 2, 257-260 (2018). MSC: 26A42 26D15 40A30 PDF BibTeX XML Cite \textit{H. N. Özgen}, Acta Comment. Univ. Tartu. Math. 22, No. 2, 257--260 (2018; Zbl 1416.26015) Full Text: DOI
Cao, Yanhua; Luo, Zhendong A reduced-order extrapolating Crank-Nicolson finite difference scheme for the Riesz space fractional order equations with a nonlinear source function and delay. (English) Zbl 1449.65173 J. Nonlinear Sci. Appl. 11, No. 5, 672-682 (2018). MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{Y. Cao} and \textit{Z. Luo}, J. Nonlinear Sci. Appl. 11, No. 5, 672--682 (2018; Zbl 1449.65173) Full Text: DOI
Yang, Shuiping Finite difference method for Riesz space fractional diffusion equations with delay and a nonlinear source term. (English) Zbl 1449.65207 J. Nonlinear Sci. Appl. 11, No. 1, 17-25 (2018). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{S. Yang}, J. Nonlinear Sci. Appl. 11, No. 1, 17--25 (2018; Zbl 1449.65207) Full Text: DOI
Macías-Díaz, J. E. A bounded and efficient scheme for multidimensional problems with anomalous convection and diffusion. (English) Zbl 1419.65025 Comput. Math. Appl. 75, No. 11, 3995-4011 (2018). MSC: 65M06 65M12 35R11 35Q53 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Comput. Math. Appl. 75, No. 11, 3995--4011 (2018; Zbl 1419.65025) Full Text: DOI
Ari, T. A new study on absolute matrix summability factors of infinite series. (English) Zbl 1424.40036 Southeast Asian Bull. Math. 42, No. 6, 801-808 (2018). MSC: 40D15 40F05 PDF BibTeX XML Cite \textit{T. Ari}, Southeast Asian Bull. Math. 42, No. 6, 801--808 (2018; Zbl 1424.40036)
Liu, Taohua; Hou, Muzhou Finite difference approximation for one-dimensional Riesz fractional diffusion equation with fractional boundary condition. (Chinese. English summary) Zbl 1424.65136 J. Sichuan Univ., Nat. Sci. Ed. 55, No. 5, 941-946 (2018). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{T. Liu} and \textit{M. Hou}, J. Sichuan Univ., Nat. Sci. Ed. 55, No. 5, 941--946 (2018; Zbl 1424.65136) Full Text: DOI
Gönüllü, Uğur Weyl- and Horn-type inequalities for cyclically compact operators. (English) Zbl 1424.47096 Turk. J. Math. 42, No. 3, 881-886 (2018). MSC: 47B60 47B06 47B07 15A42 46B99 46A19 46L08 47B38 PDF BibTeX XML Cite \textit{U. Gönüllü}, Turk. J. Math. 42, No. 3, 881--886 (2018; Zbl 1424.47096) Full Text: DOI
Değer, Uǧur On approximation by Nörlund and Riesz submethods in variable exponent Lebesgue spaces. (English) Zbl 1417.42002 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 67, No. 1, 46-59 (2018). Reviewer: Adhemar Bultheel (Leuven) MSC: 42A10 15A18 41A25 42A05 42A24 42A50 PDF BibTeX XML Cite \textit{U. Değer}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 67, No. 1, 46--59 (2018; Zbl 1417.42002) Full Text: DOI
Jafarov, Sadulla Z. Approximation by linear means of Fourier series in Orlicz spaces. (English) Zbl 1412.41017 Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 38, No. 4, Math., 93-105 (2018). Reviewer: T.S.S.R.K. Rao (Bangalore) MSC: 41A25 46E30 PDF BibTeX XML Cite \textit{S. Z. Jafarov}, Trans. Natl. Acad. Sci. Azerb., Ser. Phys.-Tech. Math. Sci. 38, No. 4, Math., 93--105 (2018; Zbl 1412.41017)
Wang, Nan; Huang, Chengming An efficient split-step quasi-compact finite difference method for the nonlinear fractional Ginzburg-Landau equations. (English) Zbl 1409.65057 Comput. Math. Appl. 75, No. 7, 2223-2242 (2018). MSC: 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{N. Wang} and \textit{C. Huang}, Comput. Math. Appl. 75, No. 7, 2223--2242 (2018; Zbl 1409.65057) Full Text: DOI
Vandana; Deepmala; Subramanian, N.; Mishra, Vishnu Narayan Riesz triple probabilisitic of almost lacunary Cesàro \(C_{111}\) statistical convergence of \(\chi^{3}\) defined by a Musielak Orlicz function. (English) Zbl 1424.40040 Bol. Soc. Parana. Mat. (3) 36, No. 4, 23-32 (2018). MSC: 40F05 40J05 40G05 40B05 PDF BibTeX XML Cite \textit{Vandana} et al., Bol. Soc. Parana. Mat. (3) 36, No. 4, 23--32 (2018; Zbl 1424.40040) Full Text: Link
Macías-Díaz, J. E. A dynamically consistent method to solve nonlinear multidimensional advection-reaction equations with fractional diffusion. (English) Zbl 1406.65076 J. Comput. Phys. 366, 71-88 (2018). MSC: 65M12 65M06 76M20 35R11 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, J. Comput. Phys. 366, 71--88 (2018; Zbl 1406.65076) Full Text: DOI
Özgen, H. N. On two integrability methods of improper integrals. (English) Zbl 1406.26016 Int. J. Math. Comput. Sci. 13, No. 1, 45-50 (2018). MSC: 26D15 35A23 40A30 PDF BibTeX XML Cite \textit{H. N. Özgen}, Int. J. Math. Comput. Sci. 13, No. 1, 45--50 (2018; Zbl 1406.26016) Full Text: Link
Debnath, Shyamal; Subramanian, N. On Riesz almost lacunary Cesàro \([C, 1; 1; 1]\) statistical convergence in probabilistic space of \(\chi_f^{3\Delta}\). (On Riesz almost lacunary Cesáro \([C, 1; 1; 1]\) statistical convergence in probabilistic space of \(\chi_f^{3\Delta}\).) (English) Zbl 1413.40016 Acta Math. Acad. Paedagog. Nyházi. (N.S.) 33, 221-231 (2018). MSC: 40J05 40G05 PDF BibTeX XML Cite \textit{S. Debnath} and \textit{N. Subramanian}, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 33, 221--231 (2018; Zbl 1413.40016)
Xing, Zhiyong; Wen, Liping A conservative difference scheme for the Riesz space-fractional sine-Gordon equation. (English) Zbl 1446.65094 Adv. Difference Equ. 2018, Paper No. 238, 22 p. (2018). MSC: 65M12 65M06 35R11 35Q51 PDF BibTeX XML Cite \textit{Z. Xing} and \textit{L. Wen}, Adv. Difference Equ. 2018, Paper No. 238, 22 p. (2018; Zbl 1446.65094) Full Text: DOI
Zhou, Yanjie; Luo, Zhendong A Crank-Nicolson finite difference scheme for the Riesz space fractional-order parabolic-type sine-Gordon equation. (English) Zbl 1446.65086 Adv. Difference Equ. 2018, Paper No. 216, 7 p. (2018). MSC: 65M06 65M12 35Q53 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{Z. Luo}, Adv. Difference Equ. 2018, Paper No. 216, 7 p. (2018; Zbl 1446.65086) Full Text: DOI
Macías-Díaz, Jorge E. A numerically efficient dissipation-preserving implicit method for a nonlinear multidimensional fractional wave equation. (English) Zbl 1407.65119 J. Sci. Comput. 77, No. 1, 1-26 (2018). MSC: 65M06 65M12 65Q10 34K37 35R11 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, J. Sci. Comput. 77, No. 1, 1--26 (2018; Zbl 1407.65119) Full Text: DOI
Lipecki, Zbigniew Order-theoretic properties and separability of some sets of quasi-measures. (English) Zbl 1435.28002 Ric. Mat. 67, No. 2, 581-595 (2018); correction ibid. 69, No. 1, 385-386 (2020). MSC: 28A12 06F20 28A33 46A55 46B42 PDF BibTeX XML Cite \textit{Z. Lipecki}, Ric. Mat. 67, No. 2, 581--595 (2018; Zbl 1435.28002) Full Text: DOI
Raj, Kuldip; Choudhary, Anu; Sharma, Charu Almost strongly Orlicz double sequence spaces of regular matrices and their applications to statistical convergence. (English) Zbl 1407.46007 Asian-Eur. J. Math. 11, No. 5, Article ID 1850073, 14 p. (2018). MSC: 46A45 40A05 40B05 PDF BibTeX XML Cite \textit{K. Raj} et al., Asian-Eur. J. Math. 11, No. 5, Article ID 1850073, 14 p. (2018; Zbl 1407.46007) Full Text: DOI