×

SV-rings and SV-porings. (English) Zbl 1220.06009

Author’s abstract: “SV-rings are commutative rings whose factor rings modulo prime ideals are valuation rings. SV-rings occur most naturally in connection with partially ordered rings (= porings) and have been studied only in this context so far. The present note first develops the theory of SV-rings systematically, without assuming the presence of a partial order. Particular attention is paid to the question of axiomatizability (in the sense of model theory). Partially ordered SV-rings (SV-porings) are introduced, and some elementary properties are exhibited. Finally, SV-rings are used to study convex subrings and convex extensions of porings, in particular of real closed rings.”

MSC:

06F25 Ordered rings, algebras, modules
03C60 Model-theoretic algebra
PDFBibTeX XMLCite
Full Text: DOI Numdam EuDML Link

References:

[1] Brumfiel (G.W.).— Partially Ordered Rings and Semi-Algebraic Geometry. London Math. Soc. Lecture Note Series, vol. 37, Camb. Univ. Press, Cambridge (1979). · Zbl 0415.13015
[2] Carral (M.), Coste (M.).— Normal spectral spaces and their dimensions. J. Pure Applied Alg. 30, p. 227-235 (1983). · Zbl 0525.14015
[3] Chang (C.C.), Keisler (H.J.).— Model Theory. 2nd edition. North Holland, Amsterdam (1977).
[4] Cherlin (G.), Dickmann (M.A.).— Real closed rings II. Model theory. Annals Pure Applied Logic 25, p. 213-231 (1983). · Zbl 0538.03028
[5] Cherlin (G.), Dickmann (M.A.).— Real closed rings I. Residue rings of rings of continuous functions. Fund. Math. 126, p. 147-183 (1986). · Zbl 0605.54014
[6] Delfs (H.), Knebusch (M.).— Semialgebraic Topology over a Real Closed Field II - Basic Theory of Semialgebraic Spaces. Math. Z. 178, p. 175-213 (1981). · Zbl 0447.14003
[7] Engler (A.J.), Prestel (A.).— Valued Fields. Springer-Verlag, Berlin Heidelberg (2005). · Zbl 1128.12009
[8] Gillman (L.), Jerison (M.).— Rings of Continuous Functions. Graduate Texts in Maths., Vol. 43, Springer, Berlin (1976). · Zbl 0339.46018
[9] Gilmer (R.).— Multiplicative Ideal Theory. Marcel Dekker, New York (1972). · Zbl 0248.13001
[10] Glaz (S.).— Commutative Coherent Rings. Lecture Notes in Maths., vol. 1371, Springer-Verlag, Berlin (1989). · Zbl 0745.13004
[11] Henriksen (M.), Isbell (J.R.), Johnson (D.G.).— Residue class fields of latticeordered algebras. Fund. Math. 50, p. 73-94 (1961). · Zbl 0099.10101
[12] Henriksen (M.), Jerison (M.).— The space of minimal prime ideals of a commutative ring. Trans. AMS 115, p. 110-130 (1965). · Zbl 0147.29105
[13] Henriksen (M.), Larson (S.).— Semiprime f \(f\)-rings that are subdirect products of valuation domains. In: Ordered Algebraic Structures (Eds. J. Martinez, W.C. Holland), Kluwer, Dordrecht, p. 159-168 (1993). · Zbl 0799.06031
[14] Henriksen (M.), Larson (S.), Martinez (J.), Woods (G.R.).— Lattice-ordered algebras that are subdirect products of valuation domains. Trans. Amer. Math. Soc. 345, p. 193-221 (1994). · Zbl 0817.06014
[15] Henriksen (M.), Wilson.— When is C(X)/\(PC(X)/P\) a valuation ring for every prime ideal P? Topology and its Applications 44, p. 175-180 (1992). · Zbl 0801.54014
[16] Henriksen (M.), Wilson.— Almost discrete SV \(SV\)-spaces. Topology and its Applications 46, p. 89-97 (1992). · Zbl 0791.54049
[17] Hochster (M.).— Prime ideal structure in commutative rings. Trans Amer. Math. Soc. 142, p. 43-60 (1969). · Zbl 0184.29401
[18] Hodges (W.).— Model Theory. Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge Univ. Press, Cambridge (1993). · Zbl 0789.03031
[19] Johnstone (P.).— Stone Spaces. Cambridge Univ. Press, Cambridge (1982). · Zbl 0499.54001
[20] Knebusch (M.), Scheiderer (C.).— Einführung in die reelle Algebra. Vieweg, Braunschweig (1989). · Zbl 0732.12001
[21] Knebusch (M.), Zhang (D.).— Manis valuations and Prüferextensions I - A new chapter in commutative algebra. Lecture Notes in Math., vol 1791, Springer, Berlin (2002). · Zbl 1033.13001
[22] Knebusch (M.), Zhang (D.).— Convexity, Valuations and PrüferExtensions in Real Algebra. Documenta Math. 10, p. 1-109 (2005). · Zbl 1120.13025
[23] Larson (S.).— Convexity conditions on f \(f\)-rings. Can. J. Math. 38, p. 48-64 (1986). · Zbl 0588.06011
[24] Larson (S.).— Constructing rings of continuous functions in which there are many maximal ideals with nontrivial rank. Comm. Alg. 31, p. 2183-2206 (2003). · Zbl 1024.54015
[25] Larson (S.).— Images and Open Subspaces of SV \(SV\)-Spaces. Preprint 2007. · Zbl 1147.54008
[26] Matsumura (H.).— Commutative Algebra. 2nd Ed. Benjamin/Cummings, Reading, Massachusetts 1980. · Zbl 0441.13001
[27] Prestel (A.), Schwartz (N.).— Model theory of real closed rings. In: Fields Institute Communications, vol. 32 (Eds. F.-V. Kuhlmann et al.), American Mathematical Society, Providence, p. 261-290 ( 2002). · Zbl 1018.12009
[28] Sch¨ulting (H.W.).— On real places of a field and their holomorphy ring. Comm. Alg. 10, p. 1239-1284 (1982). · Zbl 0509.14026
[29] Schwartz (N.).— Real Closed Rings. In: Algebra and Order (Ed. S. Wolfenstein), Heldermann Verlag, Berlin, p. 175-194 (1986). · Zbl 0616.14019
[30] Schwartz (N.).— The basic theory of real closed spaces. Memoirs Amer. Math. Soc. No. 397, Amer. Math. Soc., Providence (1989). · Zbl 0697.14015
[31] Schwartz (N.).— Eine universelle Eigenschaft reell abgeschlossener Räume. Comm. Alg. 18, p. 755-774 (1990). · Zbl 0726.14036
[32] Schwartz (N.).— Rings of continuous functions as real closed rings. In: Ordered Algebraic Structures (Eds. W.C. Holland, J. Martinez), Kluwer, Dordrecht, p. 277-313 (1997). · Zbl 0885.46024
[33] Schwartz (N.).— Epimorphic extensions and Prüfer extensions of partially ordered rings. Manuscripta mathematica 102, p. 347-381 (2000). · Zbl 0966.13018
[34] Schwartz (N.).— Convex subrings of partially ordered rings. To appear: Math. Nachr. · Zbl 1196.13015
[35] Schwartz (N.).— Real closed valuation rings. Comm. in Alg. 37, p. 3796-3814 (2009). · Zbl 1184.13072
[36] Schwartz (N.), Madden (J.J.).— Semi-algebraic Function Rings and Reflectors of Partially Ordered Rings. Lecture Notes in Mathematics, Vol. 1712, Springer-Verlag, Berlin (1999). · Zbl 0967.14038
[37] Schwartz (N.), Tressl (M.).— Elementary properties of minimal and maximal points in Zariski spectra., Journal of Algebra 323, p. 698-728 (2010). · Zbl 1198.13023
[38] Walker (R.C.).— The Stone-Cech Compactification. Springer, Berlin (1974). · Zbl 0292.54001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.