Chin, Siu A. Understanding Saul’yev-type unconditionally stable schemes from exponential splitting. (English) Zbl 1311.65120 Numer. Methods Partial Differ. Equations 30, No. 6, 1961-1983 (2014). MSC: 65M20 35K05 65M06 35L02 PDF BibTeX XML Cite \textit{S. A. Chin}, Numer. Methods Partial Differ. Equations 30, No. 6, 1961--1983 (2014; Zbl 1311.65120) Full Text: DOI OpenURL
Soheili, A. R.; Niasar, M. B.; Arezoomandan, M. Approximation of stochastic parabolic differential equations with two different finite difference schemes. (English) Zbl 1260.60124 Bull. Iran. Math. Soc. 37, No. 2, Part 1, 61-83 (2011). MSC: 60H15 65M06 60H35 PDF BibTeX XML Cite \textit{A. R. Soheili} et al., Bull. Iran. Math. Soc. 37, No. 2, Part 1, 61--83 (2011; Zbl 1260.60124) OpenURL
Fukuyo, Kazuhiro Conditional stability of Larkin methods with non-uniform grids. (English) Zbl 1265.80009 Theor. Appl. Mech. (Belgrade) 37, No. 2, 139-159 (2010). Reviewer: Božidar Jovanović (Beograd) MSC: 80M20 65M12 PDF BibTeX XML Cite \textit{K. Fukuyo}, Theor. Appl. Mech. (Belgrade) 37, No. 2, 139--159 (2010; Zbl 1265.80009) Full Text: DOI OpenURL
Li, Guiyan; Luo, Dongsheng A new parallel algorithm for convection diffusion equation. (Chinese. English summary) Zbl 1199.65360 J. Math., Wuhan Univ. 29, No. 2, 186-190 (2009). MSC: 65N06 65Y05 65N12 35J25 65N15 PDF BibTeX XML Cite \textit{G. Li} and \textit{D. Luo}, J. Math., Wuhan Univ. 29, No. 2, 186--190 (2009; Zbl 1199.65360) OpenURL
Borhanifar, A.; Abazari, Reza An unconditionally stable parallel difference scheme for telegraph equation. (English) Zbl 1181.78018 Math. Probl. Eng. 2009, Article ID 969610, 17 p. (2009). MSC: 78M20 65M06 65Y05 PDF BibTeX XML Cite \textit{A. Borhanifar} and \textit{R. Abazari}, Math. Probl. Eng. 2009, Article ID 969610, 17 p. (2009; Zbl 1181.78018) Full Text: DOI EuDML OpenURL
Feng, Qinghua A new exponential-type explicit difference scheme for convection-diffusion equation. (English) Zbl 1167.65420 Simos, Theodore E. (ed.) et al., Numerical analysis and applied mathematics. International conference on numerical analysis and applied mathematics 2008, Psalidi, Kos, Greece, 16–20 September 2008. Melville, NY: American Institute of Physics (AIP) (ISBN 978-0-7354-0576-9/hbk). AIP Conference Proceedings 1048, 190-196 (2008). MSC: 65M06 PDF BibTeX XML Cite \textit{Q. Feng}, AIP Conf. Proc. 1048, 190--196 (2008; Zbl 1167.65420) OpenURL
Jia, Yuntao; Sun, Fangyu; Zhang, Yong Parallel algorithm of alternating band Crank-Nicolson method for the two-dimensional convector diffusion equation. (Chinese. English summary) Zbl 1174.65504 J. Zhejiang Univ., Sci. Ed. 34, No. 2, 152-157, 162 (2007). MSC: 65N06 65Y05 35J25 65N12 PDF BibTeX XML Cite \textit{Y. Jia} et al., J. Zhejiang Univ., Sci. Ed. 34, No. 2, 152--157, 162 (2007; Zbl 1174.65504) OpenURL
Wang, Wenqia; Fu, Shujun An unconditionally stable alternating segment difference scheme of eight points for the dispersive equation. (English) Zbl 1110.76322 Int. J. Numer. Methods Eng. 67, No. 3, 435-447 (2006). MSC: 76M20 76R99 65M06 PDF BibTeX XML Cite \textit{W. Wang} and \textit{S. Fu}, Int. J. Numer. Methods Eng. 67, No. 3, 435--447 (2006; Zbl 1110.76322) Full Text: DOI OpenURL
Sun, Haiyan; Xie, Shusen A class of parallel alternating group method for one-dimensional Burgers’ equation. (Chinese. English summary) Zbl 1106.65076 Period. Ocean Univ. China 36, No. 3, Suppl., 215-218 (2006). MSC: 65M06 65M12 65Y05 35Q53 35K05 PDF BibTeX XML Cite \textit{H. Sun} and \textit{S. Xie}, Period. Ocean Univ. China 36, No. 3, 215--218 (2006; Zbl 1106.65076) OpenURL
Tavakoli, Rohallah; Davami, Parviz New stable group explicit finite difference method for solution of diffusion equation. (English) Zbl 1106.65077 Appl. Math. Comput. 181, No. 2, 1379-1386 (2006). MSC: 65M06 65M12 35K05 PDF BibTeX XML Cite \textit{R. Tavakoli} and \textit{P. Davami}, Appl. Math. Comput. 181, No. 2, 1379--1386 (2006; Zbl 1106.65077) Full Text: DOI OpenURL
Wang, Wenqia; Lu, Tongchao The alternating segment difference scheme for Burgers’ equation. (English) Zbl 1084.65084 Int. J. Numer. Methods Fluids 49, No. 12, 1347-1358 (2005). MSC: 65M06 35Q53 65M12 PDF BibTeX XML Cite \textit{W. Wang} and \textit{T. Lu}, Int. J. Numer. Methods Fluids 49, No. 12, 1347--1358 (2005; Zbl 1084.65084) Full Text: DOI OpenURL
Wang, Wenqia A class of alternating group method of Burgers’ equation. (English) Zbl 1145.76409 Appl. Math. Mech., Engl. Ed. 25, No. 2, 236-244 (2004). MSC: 76M20 76D99 35K60 65N12 65Y05 PDF BibTeX XML Cite \textit{W. Wang}, Appl. Math. Mech., Engl. Ed. 25, No. 2, 236--244 (2004; Zbl 1145.76409) Full Text: DOI OpenURL
Darvishi, Mohammad Taghi Forward-backward Saul’yev methods to solve PDEs. (English) Zbl 1359.65148 WSEAS Trans. Math. 2, No. 1-2, 21-25 (2003). MSC: 65M06 PDF BibTeX XML Cite \textit{M. T. Darvishi}, WSEAS Trans. Math. 2, No. 1--2, 21--25 (2003; Zbl 1359.65148) OpenURL
Zhang, Bao-Lin; Wan, Zheng-Su New techniques in designing finite-difference domain decomposition algorithm for the heat equation. (English) Zbl 1055.65108 Comput. Math. Appl. 45, No. 10-11, 1695-1705 (2003). Reviewer: Leonid B. Chubarov (Novosibirsk) MSC: 65M55 65M06 65Y05 35K05 65M12 65M15 PDF BibTeX XML Cite \textit{B.-L. Zhang} and \textit{Z.-S. Wan}, Comput. Math. Appl. 45, No. 10--11, 1695--1705 (2003; Zbl 1055.65108) Full Text: DOI OpenURL
Chen, Jing; Zhang, Baolin The variable coefficient ASE-I, ASC-N methods and their stability. (English) Zbl 0828.65108 Int. J. Comput. Math. 54, No. 3-4, 215-227 (1994). MSC: 65M06 65M12 35K15 PDF BibTeX XML Cite \textit{J. Chen} and \textit{B. Zhang}, Int. J. Comput. Math. 54, No. 3--4, 215--227 (1994; Zbl 0828.65108) Full Text: DOI OpenURL
Ramos, J. I. Numerical solution of reactive-diffusive systems. I: Explicit methods. (English) Zbl 0653.65069 Int. J. Comput. Math. 18, No. 1, 43-65 (1985). MSC: 65M12 65M15 35K57 65M50 PDF BibTeX XML Cite \textit{J. I. Ramos}, Int. J. Comput. Math. 18, No. 1, 43--65 (1985; Zbl 0653.65069) Full Text: DOI OpenURL