Zheng, Shijun; Zheng, Jiqiang Harmonic analysis of Schrödinger operators (to appear). (English) Zbl 07014165 Advances in Analysis and Geometry. Berlin: De Gruyter (ISBN 978-3-11-052499-4/hbk; 978-3-11-052738-4/ebook). x, 355 p. (2022). MSC: 35-02 35J10 35P05 PDF BibTeX XML Cite \textit{S. Zheng} and \textit{J. Zheng}, Harmonic analysis of Schrödinger operators (to appear). Berlin: De Gruyter (2022; Zbl 07014165)
Ben Aïcha, Ibtissem; Hu, Guang-Hui; Vashisth, Manmohan; Zou, Jun Uniqueness for time-dependent inverse problems with single dynamical data. (English) Zbl 07317495 J. Math. Anal. Appl. 497, No. 2, Article ID 124910, 22 p. (2021). MSC: 35 78 PDF BibTeX XML Cite \textit{I. Ben Aïcha} et al., J. Math. Anal. Appl. 497, No. 2, Article ID 124910, 22 p. (2021; Zbl 07317495) Full Text: DOI
Bal, Kaushik; Garain, Prashanta; Mandal, Indubaran; Sreenadh, Konijeti Multiplicity result to a singular quasilinear Schrödinger equation. (English) Zbl 07317491 J. Math. Anal. Appl. 497, No. 2, Article ID 124904, 21 p. (2021). MSC: 35 53 PDF BibTeX XML Cite \textit{K. Bal} et al., J. Math. Anal. Appl. 497, No. 2, Article ID 124904, 21 p. (2021; Zbl 07317491) Full Text: DOI
Frid, Hermano; Marroquin, Daniel; Nariyoshi, João F. C. Global smooth solutions with large data for a system modeling aurora type phenomena in the 2-torus. (English) Zbl 07317441 SIAM J. Math. Anal. 53, No. 1, 1122-1167 (2021). MSC: 35Q35 76A02 76N10 PDF BibTeX XML Cite \textit{H. Frid} et al., SIAM J. Math. Anal. 53, No. 1, 1122--1167 (2021; Zbl 07317441) Full Text: DOI
Buttazzo, Giuseppe; Casado-Díaz, Juan; Maestre, Faustino On the existence of optimal potentials on unbounded domains. (English) Zbl 07317440 SIAM J. Math. Anal. 53, No. 1, 1088-1121 (2021). MSC: 49J45 49Q10 35J10 35J25 PDF BibTeX XML Cite \textit{G. Buttazzo} et al., SIAM J. Math. Anal. 53, No. 1, 1088--1121 (2021; Zbl 07317440) Full Text: DOI
Mikami, Toshio Regularity of Schrödinger’s functional equation in the weak topology and moment measures. (English) Zbl 07317364 J. Math. Soc. Japan 73, No. 1, 99-123 (2021). MSC: 60G30 93E20 PDF BibTeX XML Cite \textit{T. Mikami}, J. Math. Soc. Japan 73, No. 1, 99--123 (2021; Zbl 07317364) Full Text: DOI Euclid
Sikora, Adam; Zienkiewicz, Jacek Probabilistic approach to the quantum separation effect for the Feynman-Kac semigroup. (English) Zbl 07317284 Stud. Math. 257, No. 1, 1-24 (2021). MSC: 60J35 35J10 PDF BibTeX XML Cite \textit{A. Sikora} and \textit{J. Zienkiewicz}, Stud. Math. 257, No. 1, 1--24 (2021; Zbl 07317284) Full Text: DOI
Borisov, D. I.; Golovina, A. M. On finitely many resonances emerging under distant perturbations in multi-dimensional cylinders. (English) Zbl 07316427 J. Math. Anal. Appl. 496, No. 2, Article ID 124809, 29 p. (2021). MSC: 81Q05 35B34 35B40 35J10 35B20 35P05 47A75 PDF BibTeX XML Cite \textit{D. I. Borisov} and \textit{A. M. Golovina}, J. Math. Anal. Appl. 496, No. 2, Article ID 124809, 29 p. (2021; Zbl 07316427) Full Text: DOI
Liu, Xiaonan; Ma, Shiwang; Xia, Jiankang Multiple bound states of higher topological type for semi-classical Choquard equations. (English) Zbl 07316402 Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 329-355 (2021). MSC: 35J61 35B25 35B40 35Q55 PDF BibTeX XML Cite \textit{X. Liu} et al., Proc. R. Soc. Edinb., Sect. A, Math. 151, No. 1, 329--355 (2021; Zbl 07316402) Full Text: DOI
Besse, Christophe; Descombes, Stéphane; Dujardin, Guillaume; Lacroix-Violet, Ingrid Energy-preserving methods for nonlinear Schrödinger equations. (English) Zbl 07315161 IMA J. Numer. Anal. 41, No. 1, 618-653 (2021). MSC: 65 PDF BibTeX XML Cite \textit{C. Besse} et al., IMA J. Numer. Anal. 41, No. 1, 618--653 (2021; Zbl 07315161) Full Text: DOI
Comech, Andrew; Cuccagna, Scipio On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. (English) Zbl 07314908 Discrete Contin. Dyn. Syst. 41, No. 3, 1225-1270 (2021). MSC: 35B35 35B40 35C08 35Q41 37K40 PDF BibTeX XML Cite \textit{A. Comech} and \textit{S. Cuccagna}, Discrete Contin. Dyn. Syst. 41, No. 3, 1225--1270 (2021; Zbl 07314908) Full Text: DOI
Phan, Tuoc; Todorova, Grozdena; Yordanov, Borislav Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. (English) Zbl 07314902 Discrete Contin. Dyn. Syst. 41, No. 3, 1071-1099 (2021). MSC: 35J10 35J15 35B45 PDF BibTeX XML Cite \textit{T. Phan} et al., Discrete Contin. Dyn. Syst. 41, No. 3, 1071--1099 (2021; Zbl 07314902) Full Text: DOI
Landoulsi, Oussama Construction of a solitary wave solution of the nonlinear focusing Schrödinger equation outside a strictly convex obstacle in the \(L^2\)-supercritical case. (English) Zbl 07314362 Discrete Contin. Dyn. Syst. 41, No. 2, 701-746 (2021). MSC: 35Q55 35C08 35B40 PDF BibTeX XML Cite \textit{O. Landoulsi}, Discrete Contin. Dyn. Syst. 41, No. 2, 701--746 (2021; Zbl 07314362) Full Text: DOI
Mei, Xinyu; Xiong, Yangmin; Sun, Chunyou Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. (English) Zbl 07314357 Discrete Contin. Dyn. Syst. 41, No. 2, 569-600 (2021). MSC: 35B41 35Q55 35Q56 37L40 76F20 PDF BibTeX XML Cite \textit{X. Mei} et al., Discrete Contin. Dyn. Syst. 41, No. 2, 569--600 (2021; Zbl 07314357) Full Text: DOI
Gerdjikov, Vladimir S.; Ivanov, Rossen I. Multicomponent Fokas-Lenells equations on Hermitian symmetric spaces. (English) Zbl 07312090 Nonlinearity 34, No. 2, 939-963 (2021). MSC: 37K10 37K30 PDF BibTeX XML Cite \textit{V. S. Gerdjikov} and \textit{R. I. Ivanov}, Nonlinearity 34, No. 2, 939--963 (2021; Zbl 07312090) Full Text: DOI
Dinh, Van Duong Dynamics of radial solutions for the focusing fourth-order nonlinear Schrödinger equations. (English) Zbl 07312085 Nonlinearity 34, No. 2, 776-821 (2021). MSC: 35Q55 35Q41 35B44 35P25 PDF BibTeX XML Cite \textit{V. D. Dinh}, Nonlinearity 34, No. 2, 776--821 (2021; Zbl 07312085) Full Text: DOI
Luo, Peng; Tian, Shuying; Zhou, Xiaodong Local uniqueness and the number of concentrated solutions for nonlinear Schrödinger equations with non-admissible potential. (English) Zbl 07312082 Nonlinearity 34, No. 2, 705-724 (2021). MSC: 35B40 35B45 35J40 PDF BibTeX XML Cite \textit{P. Luo} et al., Nonlinearity 34, No. 2, 705--724 (2021; Zbl 07312082) Full Text: DOI
Wang, Hua Corrigendum to: “Semigroup maximal functions, Riesz transforms, and Morrey spaces associated with Schrödinger operators on the Heisenberg groups”. (English) Zbl 07311239 J. Funct. Spaces 2021, Article ID 9613050, 2 p. (2021). MSC: 42B25 42B35 35J10 PDF BibTeX XML Cite \textit{H. Wang}, J. Funct. Spaces 2021, Article ID 9613050, 2 p. (2021; Zbl 07311239) Full Text: DOI
Li, Jiyong; Wang, Tingchun Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation. (English) Zbl 07311184 Appl. Numer. Math. 162, 150-170 (2021). MSC: 81Q05 81R20 35Q55 65L12 35R20 81R05 35G30 81-10 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Wang}, Appl. Numer. Math. 162, 150--170 (2021; Zbl 07311184) Full Text: DOI
Cazenave, Thierry; Han, Zheng; Naumkin, Ivan Asymptotic behavior for a dissipative nonlinear Schrödinger equation. (English) Zbl 07310979 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112243, 38 p. (2021). MSC: 35Q55 35B40 PDF BibTeX XML Cite \textit{T. Cazenave} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112243, 38 p. (2021; Zbl 07310979) Full Text: DOI
Juarez-Campos, Beatriz; Naumkin, Pavel I. Large time asymptotics for the higher-order nonlinear nonlocal Schrödinger equation. (English) Zbl 07310978 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112238, 27 p. (2021). MSC: 35B40 35Q55 PDF BibTeX XML Cite \textit{B. Juarez-Campos} and \textit{P. I. Naumkin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 205, Article ID 112238, 27 p. (2021; Zbl 07310978) Full Text: DOI
Cheng, Xing; Zhao, Zehua; Zheng, Jiqiang Well-posedness for energy-critical nonlinear Schrödinger equation on waveguide manifold. (English) Zbl 07310674 J. Math. Anal. Appl. 494, No. 2, Article ID 124654, 14 p. (2021). MSC: 35Q55 82 PDF BibTeX XML Cite \textit{X. Cheng} et al., J. Math. Anal. Appl. 494, No. 2, Article ID 124654, 14 p. (2021; Zbl 07310674) Full Text: DOI
Shen, Shunlin The rigorous derivation of the \(\mathbb{T}^2\) focusing cubic NLS from 3D. (English) Zbl 07310593 J. Funct. Anal. 280, No. 8, Article ID 108934, 73 p. (2021). MSC: 82 81 PDF BibTeX XML Cite \textit{S. Shen}, J. Funct. Anal. 280, No. 8, Article ID 108934, 73 p. (2021; Zbl 07310593) Full Text: DOI
Figueiredo, Giovany M.; Salirrosas, Segundo Manuel A. On multiplicity and concentration behavior of solutions for a critical system with equations in divergence form. (English) Zbl 07309675 J. Math. Anal. Appl. 494, No. 1, Article ID 124446, 30 p. (2021). MSC: 35B25 35J47 35J61 PDF BibTeX XML Cite \textit{G. M. Figueiredo} and \textit{S. M. A. Salirrosas}, J. Math. Anal. Appl. 494, No. 1, Article ID 124446, 30 p. (2021; Zbl 07309675) Full Text: DOI
Bez, Neal; Lee, Sanghyuk; Nakamura, Shohei Strichartz estimates for orthonormal families of initial data and weighted oscillatory integral estimates. (English) Zbl 07309662 Forum Math. Sigma 9, Paper No. e1, 52 p. (2021). MSC: 35B45 42B20 35P10 35B65 42B37 PDF BibTeX XML Cite \textit{N. Bez} et al., Forum Math. Sigma 9, Paper No. e1, 52 p. (2021; Zbl 07309662) Full Text: DOI
Hu, Beibei; Zhang, Ling; Zhang, Ning On the Riemann-Hilbert problem for the mixed Chen-Lee-Liu derivative nonlinear Schrödinger equation. (English) Zbl 07309653 J. Comput. Appl. Math. 390, Article ID 113393, 15 p. (2021). MSC: 35Q15 35G31 35Q55 37K15 PDF BibTeX XML Cite \textit{B. Hu} et al., J. Comput. Appl. Math. 390, Article ID 113393, 15 p. (2021; Zbl 07309653) Full Text: DOI
Fang, Xiang-Dong Multiple solutions of higher topological type for semiclassical nonlinear Schrödinger equations. (English) Zbl 07309485 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 10, 27 p. (2021). MSC: 35J20 35J60 49J35 PDF BibTeX XML Cite \textit{X.-D. Fang}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 1, Paper No. 10, 27 p. (2021; Zbl 07309485) Full Text: DOI
Chen, Li; Lee, Jinyeop; Liew, Matthew Combined mean-field and semiclassical limits of large fermionic systems. (English) Zbl 07308635 J. Stat. Phys. 182, No. 2, Paper No. 24, 42 p. (2021). MSC: 81V74 81Q20 81Q05 37K10 35Q40 81P16 35Q83 81R30 PDF BibTeX XML Cite \textit{L. Chen} et al., J. Stat. Phys. 182, No. 2, Paper No. 24, 42 p. (2021; Zbl 07308635) Full Text: DOI
Platonova, M. V.; Tsykin, S. V. Probabilistic approximation of the solution of the Cauchy problem for the higher-order Schrödinger equation. (English. Russian original) Zbl 07308475 Theory Probab. Appl. 65, No. 4, 558-569 (2021); translation from Teor. Veroyatn. Primen. 65, No. 4, 710-724 (2020). MSC: 60 65 PDF BibTeX XML Cite \textit{M. V. Platonova} and \textit{S. V. Tsykin}, Theory Probab. Appl. 65, No. 4, 558--569 (2021; Zbl 07308475); translation from Teor. Veroyatn. Primen. 65, No. 4, 710--724 (2020) Full Text: DOI
Ji, Chao; Rădulescu, Vicenţiu D. Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in \(\mathbb{R}^2 \). (English) Zbl 07307695 Manuscr. Math. 164, No. 3-4, 509-542 (2021). Reviewer: Patrick Winkert (Berlin) MSC: 35J60 35Q55 35B33 PDF BibTeX XML Cite \textit{C. Ji} and \textit{V. D. Rădulescu}, Manuscr. Math. 164, No. 3--4, 509--542 (2021; Zbl 07307695) Full Text: DOI
Yamano, Takuya; Ourabah, Kamel Gaussian traveling wave solutions for two argument-Schrödinger equations under potentials. (English) Zbl 07307165 Appl. Math. Lett. 113, Article ID 106889, 8 p. (2021). MSC: 35C07 35Q55 PDF BibTeX XML Cite \textit{T. Yamano} and \textit{K. Ourabah}, Appl. Math. Lett. 113, Article ID 106889, 8 p. (2021; Zbl 07307165) Full Text: DOI
Li, Jian; Xia, Tiecheng \(N\)-soliton solutions for the nonlocal Fokas-Lenells equation via RHP. (English) Zbl 07307151 Appl. Math. Lett. 113, Article ID 106850, 7 p. (2021). MSC: 35C08 35Q55 35Q15 PDF BibTeX XML Cite \textit{J. Li} and \textit{T. Xia}, Appl. Math. Lett. 113, Article ID 106850, 7 p. (2021; Zbl 07307151) Full Text: DOI
Zhang, Jian; Lou, Zhenluo Existence and concentration behavior of solutions to Kirchhoff type equation with steep potential well and critical growth. (English) Zbl 07306518 J. Math. Phys. 62, No. 1, 011506, 14 p. (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q55 35J60 35A15 35A01 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{Z. Lou}, J. Math. Phys. 62, No. 1, 011506, 14 p. (2021; Zbl 07306518) Full Text: DOI
Vodev, Georgi Improved resolvent bounds for radial potentials. (English) Zbl 07305721 Lett. Math. Phys. 111, No. 1, Paper No. 3, 21 p. (2021). MSC: 35P25 35J10 PDF BibTeX XML Cite \textit{G. Vodev}, Lett. Math. Phys. 111, No. 1, Paper No. 3, 21 p. (2021; Zbl 07305721) Full Text: DOI
Badanin, Andrey; Korotyaev, Evgeny L. Third-order operators with three-point conditions associated with Boussinesq’s equation. (English) Zbl 07305508 Appl. Anal. 100, No. 3, 527-560 (2021). MSC: 47E05 34L20 34L40 PDF BibTeX XML Cite \textit{A. Badanin} and \textit{E. L. Korotyaev}, Appl. Anal. 100, No. 3, 527--560 (2021; Zbl 07305508) Full Text: DOI
Severo, Uberlandio B.; de Carvalho, Gilson M. Quasilinear Schrödinger equations with a positive parameter and involving unbounded or decaying potentials. (English) Zbl 07305243 Appl. Anal. 100, No. 2, 229-252 (2021). MSC: 35J20 35J62 35J10 35J75 PDF BibTeX XML Cite \textit{U. B. Severo} and \textit{G. M. de Carvalho}, Appl. Anal. 100, No. 2, 229--252 (2021; Zbl 07305243) Full Text: DOI
Krämer, Patrick; Schratz, Katharina; Zhao, Xiaofei Splitting methods for nonlinear Dirac equations with Thirring type interaction in the nonrelativistic limit regime. (English) Zbl 07305177 J. Comput. Appl. Math. 387, Article ID 112494, 16 p. (2021). MSC: 78A35 78M20 78M22 65M06 65N35 65M12 65M15 81Q05 35Q41 PDF BibTeX XML Cite \textit{P. Krämer} et al., J. Comput. Appl. Math. 387, Article ID 112494, 16 p. (2021; Zbl 07305177) Full Text: DOI
Borrelli, William; Carlone, Raffaele; Tentarelli, Lorenzo On the nonlinear Dirac equation on noncompact metric graphs. (English) Zbl 07303711 J. Differ. Equations 278, 326-357 (2021). MSC: 35Q41 35Q55 35B25 35R02 81Q35 47J07 58E07 47A10 PDF BibTeX XML Cite \textit{W. Borrelli} et al., J. Differ. Equations 278, 326--357 (2021; Zbl 07303711) Full Text: DOI
Aharonov, Yakir; Behrndt, Jussi; Colombo, Fabrizio; Schlosser, Peter Green’s function for the Schrödinger equation with a generalized point interaction and stability of superoscillations. (English) Zbl 07303697 J. Differ. Equations 277, 153-190 (2021). MSC: 81Q05 35Q41 35J10 35J08 35A08 35L20 32A10 81S30 35B05 PDF BibTeX XML Cite \textit{Y. Aharonov} et al., J. Differ. Equations 277, 153--190 (2021; Zbl 07303697) Full Text: DOI
Magnus, Alphonse P.; Ndayiragije, François; Ronveaux, André About families of orthogonal polynomials satisfying Heun’s differential equation. (English) Zbl 07303674 J. Approx. Theory 263, Article ID 105522, 30 p. (2021). MSC: 33C 34M35 34M55 41A21 42C05 81Q05 PDF BibTeX XML Cite \textit{A. P. Magnus} et al., J. Approx. Theory 263, Article ID 105522, 30 p. (2021; Zbl 07303674) Full Text: DOI
Hryniv, Rostyslav; Melnyk, Bohdan; Mykytyuk, Yaroslav Inverse scattering for reflectionless Schrödinger operators with integrable potentials and generalized soliton solutions for the KdV equation. (English) Zbl 07303662 Ann. Henri Poincaré 22, No. 2, 487-527 (2021). MSC: 47A40 34L25 34L40 35C08 81U40 37K15 37K40 37K60 37J35 37K10 PDF BibTeX XML Cite \textit{R. Hryniv} et al., Ann. Henri Poincaré 22, No. 2, 487--527 (2021; Zbl 07303662) Full Text: DOI
Cárdenas, Esteban; Hundertmark, Dirk; Stockmeyer, Edgardo; Vugalter, Semjon On the asymptotic dynamics of 2-D magnetic quantum systems. (English) Zbl 07303660 Ann. Henri Poincaré 22, No. 2, 415-445 (2021). MSC: 81Q10 35Q41 35B30 35J10 35J15 35P20 81Q10 47B25 PDF BibTeX XML Cite \textit{E. Cárdenas} et al., Ann. Henri Poincaré 22, No. 2, 415--445 (2021; Zbl 07303660) Full Text: DOI
Golénia, Sylvain; Mandich, Marc-Adrien Limiting absorption principle for discrete Schrödinger operators with a Wigner-von Neumann potential and a slowly decaying potential. (English) Zbl 07303651 Ann. Henri Poincaré 22, No. 1, 83-120 (2021). Reviewer: Jonathan Rohleder (Stockholm) MSC: 81Q10 47B25 47A10 47A40 35J10 46E30 46E35 39A70 PDF BibTeX XML Cite \textit{S. Golénia} and \textit{M.-A. Mandich}, Ann. Henri Poincaré 22, No. 1, 83--120 (2021; Zbl 07303651) Full Text: DOI
Maia, L. A.; Raom, D.; Ruviaro, R.; Sobral, Y. D. Mini-max algorithm via Pohozaev manifold. (English) Zbl 07303412 Nonlinearity 34, No. 1, 642-668 (2021). MSC: 35J20 35J61 35J10 65N99 65N22 PDF BibTeX XML Cite \textit{L. A. Maia} et al., Nonlinearity 34, No. 1, 642--668 (2021; Zbl 07303412) Full Text: DOI
Saanouni, T. Global and non-global solutions for a class of damped fourth-order Schrödinger equations. (English) Zbl 07302084 Mediterr. J. Math. 18, No. 1, Paper No. 21, 23 p. (2021). MSC: 35Q55 35Q41 35B44 35A01 PDF BibTeX XML Cite \textit{T. Saanouni}, Mediterr. J. Math. 18, No. 1, Paper No. 21, 23 p. (2021; Zbl 07302084) Full Text: DOI
Ma, Wen-Xiu Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations. (English) Zbl 07301333 Proc. Am. Math. Soc. 149, No. 1, 251-263 (2021). MSC: 37K15 37K40 35Q55 35C08 PDF BibTeX XML Cite \textit{W.-X. Ma}, Proc. Am. Math. Soc. 149, No. 1, 251--263 (2021; Zbl 07301333) Full Text: DOI
Kang, Zhou-Zheng; Xia, Tie-Cheng; Ma, Wen-Xiu Riemann-Hilbert method for multi-soliton solutions of a fifth-order nonlinear Schrödinger equation. (English) Zbl 07301278 Anal. Math. Phys. 11, No. 1, Paper No. 14, 13 p. (2021). MSC: 35Q55 35Q15 37K10 35C08 82D40 PDF BibTeX XML Cite \textit{Z.-Z. Kang} et al., Anal. Math. Phys. 11, No. 1, Paper No. 14, 13 p. (2021; Zbl 07301278) Full Text: DOI
Düll, Wolf-Patrick Validity of the nonlinear Schrödinger approximation for the two-dimensional water wave problem with and without surface tension in the arc length formulation. (English) Zbl 07300725 Arch. Ration. Mech. Anal. 239, No. 2, 831-914 (2021). MSC: 35Q31 35Q55 76B15 76B45 PDF BibTeX XML Cite \textit{W.-P. Düll}, Arch. Ration. Mech. Anal. 239, No. 2, 831--914 (2021; Zbl 07300725) Full Text: DOI
Behrndt, Jussi On compressed resolvents of Schrödinger operators with complex potentials. (English) Zbl 07300027 Complex Anal. Oper. Theory 15, No. 1, Paper No. 12, 9 p. (2021). MSC: 47B28 47A10 35J10 81Q12 PDF BibTeX XML Cite \textit{J. Behrndt}, Complex Anal. Oper. Theory 15, No. 1, Paper No. 12, 9 p. (2021; Zbl 07300027) Full Text: DOI
Gutowski, Jan; Papadopoulos, George Eigenvalue estimates for multi-form modified Dirac operators. (English) Zbl 07299616 J. Geom. Phys. 160, Article ID 103954, 25 p. (2021). MSC: 35Q41 53C27 35P15 15A66 PDF BibTeX XML Cite \textit{J. Gutowski} and \textit{G. Papadopoulos}, J. Geom. Phys. 160, Article ID 103954, 25 p. (2021; Zbl 07299616) Full Text: DOI
Boscain, Ugo; Pozzoli, Eugenio; Sigalotti, Mario Classical and quantum controllability of a rotating symmetric molecule. (English) Zbl 07299442 SIAM J. Control Optim. 59, No. 1, 156-184 (2021). MSC: 68Q25 68R10 68U05 PDF BibTeX XML Cite \textit{U. Boscain} et al., SIAM J. Control Optim. 59, No. 1, 156--184 (2021; Zbl 07299442) Full Text: DOI
Lorin, Emmanuel Numerical analysis of the exact factorization of molecular time-dependent Schrödinger wavefunctions. (English) Zbl 07299031 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105627, 22 p. (2021). MSC: 35J 35 35L 35K PDF BibTeX XML Cite \textit{E. Lorin}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105627, 22 p. (2021; Zbl 07299031) Full Text: DOI
Yang, Yunqing; Suzuki, Takashi; Wang, Jianyong Bäcklund transformation and localized nonlinear wave solutions of the nonlocal defocusing coupled nonlinear Schrödinger equation. (English) Zbl 07299030 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105626, 12 p. (2021). MSC: 35Q55 35Q41 37K35 37K10 35C08 PDF BibTeX XML Cite \textit{Y. Yang} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105626, 12 p. (2021; Zbl 07299030) Full Text: DOI
Strohmaier, Alexander; Zelditch, Steve Semi-classical mass asymptotics on stationary spacetimes. (English) Zbl 07298856 Indag. Math., New Ser. 32, No. 1, 323-363 (2021). MSC: 83C40 83C15 83C05 83C47 53Z05 81Q05 PDF BibTeX XML Cite \textit{A. Strohmaier} and \textit{S. Zelditch}, Indag. Math., New Ser. 32, No. 1, 323--363 (2021; Zbl 07298856) Full Text: DOI
Clapp, Mónica; Maia, Liliane A.; Pellacci, Benedetta Positive multipeak solutions to a zero mass problem in exterior domains. (English) Zbl 07298832 Commun. Contemp. Math. 23, No. 2, Article ID 1950062, 22 p. (2021). MSC: 35Q55 35B09 35J20 PDF BibTeX XML Cite \textit{M. Clapp} et al., Commun. Contemp. Math. 23, No. 2, Article ID 1950062, 22 p. (2021; Zbl 07298832) Full Text: DOI
Cao, Daomin; Jia, Huifang; Luo, Xiao Standing waves with prescribed mass for the Schrödinger equations with van der Waals type potentials. (English) Zbl 07297749 J. Differ. Equations 276, 228-263 (2021). MSC: 35J61 35R11 35Q55 35Q40 35B35 PDF BibTeX XML Cite \textit{D. Cao} et al., J. Differ. Equations 276, 228--263 (2021; Zbl 07297749) Full Text: DOI
Perel, M. V. Quasiphotons for the nonstationary 2D Dirac equation. (English. Russian original) Zbl 07297524 J. Math. Sci., New York 252, No. 5, 687-694 (2021); translation from Zap. Nauchn. Semin. POMI 483, 178-188 (2019). MSC: 35Q41 81V74 82D80 35C20 78A25 PDF BibTeX XML Cite \textit{M. V. Perel}, J. Math. Sci., New York 252, No. 5, 687--694 (2021; Zbl 07297524); translation from Zap. Nauchn. Semin. POMI 483, 178--188 (2019) Full Text: DOI
Kozlov, V. A.; Nazarov, S. A.; Orlof, A. Trapped modes in armchair graphene nanoribbons. (English. Russian original) Zbl 07297520 J. Math. Sci., New York 252, No. 5, 624-645 (2021); translation from Zap. Nauchn. Semin. POMI 483, 85-115 (2019). MSC: 82D80 82B20 81Q05 35Q41 PDF BibTeX XML Cite \textit{V. A. Kozlov} et al., J. Math. Sci., New York 252, No. 5, 624--645 (2021; Zbl 07297520); translation from Zap. Nauchn. Semin. POMI 483, 85--115 (2019) Full Text: DOI
Fukaya, Noriyoshi; Hayashi, Masayuki Instability of algebraic standing waves for nonlinear Schrödinger equations with double power nonlinearities. (English) Zbl 07291903 Trans. Am. Math. Soc. 374, No. 2, 1421-1447 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q41 35A15 35B35 PDF BibTeX XML Cite \textit{N. Fukaya} and \textit{M. Hayashi}, Trans. Am. Math. Soc. 374, No. 2, 1421--1447 (2021; Zbl 07291903) Full Text: DOI
Pellacci, Benedetta; Pistoia, Angela; Vaira, Giusi; Verzini, Gianmaria Normalized concentrating solutions to nonlinear elliptic problems. (English) Zbl 07291361 J. Differ. Equations 275, 882-919 (2021). MSC: 35J91 35B09 35A01 PDF BibTeX XML Cite \textit{B. Pellacci} et al., J. Differ. Equations 275, 882--919 (2021; Zbl 07291361) Full Text: DOI
D. D. Qin, Dongdong; Rădulescu, Vicenţiu D.; X. H. Tang, Xianhua Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations. (English) Zbl 07291353 J. Differ. Equations 275, 652-683 (2021). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q55 35Q40 35J20 35J60 46N50 PDF BibTeX XML Cite \textit{D. D. D. Qin} et al., J. Differ. Equations 275, 652--683 (2021; Zbl 07291353) Full Text: DOI
Li, Gui-Dong; Li, Yong-Yong; Tang, Chun-Lei Existence and asymptotic behavior of ground state solutions for Schrödinger equations with Hardy potential and Berestycki-Lions type conditions. (English) Zbl 07291332 J. Differ. Equations 275, 77-115 (2021). MSC: 35J10 35A01 35A15 PDF BibTeX XML Cite \textit{G.-D. Li} et al., J. Differ. Equations 275, 77--115 (2021; Zbl 07291332) Full Text: DOI
Koch, Herbert; Liao, Xian Conserved energies for the one dimensional Gross-Pitaevskii equation. (English) Zbl 07289443 Adv. Math. 377, Article ID 107467, 84 p. (2021). MSC: 35Q55 35Q53 35A01 35A02 35B65 PDF BibTeX XML Cite \textit{H. Koch} and \textit{X. Liao}, Adv. Math. 377, Article ID 107467, 84 p. (2021; Zbl 07289443) Full Text: DOI
Kishimoto, Nobu Unconditional local well-posedness for periodic NLS. (English) Zbl 07289115 J. Differ. Equations 274, 766-787 (2021). MSC: 35Q55 35A02 PDF BibTeX XML Cite \textit{N. Kishimoto}, J. Differ. Equations 274, 766--787 (2021; Zbl 07289115) Full Text: DOI
Li, Jiongyue; Zang, Yunlong A vector field method for some nonlinear Dirac models in Minkowski spacetime. (English) Zbl 07289093 J. Differ. Equations 273, 58-82 (2021). MSC: 35Q41 35L05 35B40 35A01 PDF BibTeX XML Cite \textit{J. Li} and \textit{Y. Zang}, J. Differ. Equations 273, 58--82 (2021; Zbl 07289093) Full Text: DOI
Adami, Riccardo; Fukuizumi, Reika; Holmer, Justin Scattering for the \(L^2\) supercritical point NLS. (English) Zbl 07288849 Trans. Am. Math. Soc. 374, No. 1, 35-60 (2021). Reviewer: Ayman Kachmar (Nabaṭiyya) MSC: 35Q55 35B40 35P25 78A60 PDF BibTeX XML Cite \textit{R. Adami} et al., Trans. Am. Math. Soc. 374, No. 1, 35--60 (2021; Zbl 07288849) Full Text: DOI
Chaichenets, Leonid; Pattakos, Nikolaos The global Cauchy problem for the NLS with higher order anisotropic dispersion. (English) Zbl 07286310 Glasg. Math. J. 63, No. 1, 45-53 (2021). MSC: 35Q55 35A01 35A02 35B40 PDF BibTeX XML Cite \textit{L. Chaichenets} and \textit{N. Pattakos}, Glasg. Math. J. 63, No. 1, 45--53 (2021; Zbl 07286310) Full Text: DOI
Deng, Yinbin; Guo, Yujin; Xu, Liangshun Limit behavior of attractive Bose-Einstein condensates passing an obstacle. (English) Zbl 07285693 J. Differ. Equations 272, 370-398 (2021). MSC: 35J10 35Q55 35J91 35J20 PDF BibTeX XML Cite \textit{Y. Deng} et al., J. Differ. Equations 272, 370--398 (2021; Zbl 07285693) Full Text: DOI
Kairzhan, Adilbek; Marangell, Robert; Pelinovsky, Dmitry E.; Xiao, Ke Liang Standing waves on a flower graph. (English) Zbl 07283597 J. Differ. Equations 271, 719-763 (2021). MSC: 35R02 35Q55 35B32 PDF BibTeX XML Cite \textit{A. Kairzhan} et al., J. Differ. Equations 271, 719--763 (2021; Zbl 07283597) Full Text: DOI
Badanin, Andrey; Korotyaev, Evgeny L. Hill’s operators with the potentials analytically dependent on energy. (English) Zbl 07283595 J. Differ. Equations 271, 638-664 (2021). MSC: 47E05 34L20 34L40 PDF BibTeX XML Cite \textit{A. Badanin} and \textit{E. L. Korotyaev}, J. Differ. Equations 271, 638--664 (2021; Zbl 07283595) Full Text: DOI
Erdoğan, M. Burak; Green, William R.; Toprak, Ebru On the fourth order Schrödinger equation in three dimensions: dispersive estimates and zero energy resonances. (English) Zbl 07283579 J. Differ. Equations 271, 152-185 (2021). MSC: 35Q41 35B34 PDF BibTeX XML Cite \textit{M. B. Erdoğan} et al., J. Differ. Equations 271, 152--185 (2021; Zbl 07283579) Full Text: DOI
Li, Bang-Qing Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics. (English) Zbl 1453.78003 Appl. Math. Lett. 112, Article ID 106822, 8 p. (2021). MSC: 78A40 78A60 35Q51 35Q55 35C08 37K40 PDF BibTeX XML Cite \textit{B.-Q. Li}, Appl. Math. Lett. 112, Article ID 106822, 8 p. (2021; Zbl 1453.78003) Full Text: DOI
Cui, Jin; Xu, Zhuangzhi; Wang, Yushun; Jiang, Chaolong Mass- and energy-preserving exponential Runge-Kutta methods for the nonlinear Schrödinger equation. (English) Zbl 07281310 Appl. Math. Lett. 112, Article ID 106770, 8 p. (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65M06 65L06 65P10 35A22 35Q55 PDF BibTeX XML Cite \textit{J. Cui} et al., Appl. Math. Lett. 112, Article ID 106770, 8 p. (2021; Zbl 07281310) Full Text: DOI
Lin, Zeda; Xu, Xiaoxi; Chen, Zikang; Yan, Ziteng; Mai, Zhijie; Liu, Bin Two-dimensional vortex quantum droplets get thick. (English) Zbl 1452.35190 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105536, 8 p. (2021). MSC: 35Q55 82D50 82C10 PDF BibTeX XML Cite \textit{Z. Lin} et al., Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105536, 8 p. (2021; Zbl 1452.35190) Full Text: DOI
Zhang, Xiao; Yang, Bo; Wei, Chaozhen; Luo, Maokang Quantization method and Schrödinger equation of fractional time and their weak effects on Hamiltonian: phase transitions of energy and wave functions. (English) Zbl 1452.81110 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105531, 21 p. (2021). MSC: 81Q05 26A33 81S08 81S07 35P05 82B26 PDF BibTeX XML Cite \textit{X. Zhang} et al., Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105531, 21 p. (2021; Zbl 1452.81110) Full Text: DOI
Bayındır, Cihan; Altintas, Azmi Ali; Ozaydin, Fatih Self-localized solitons of a \(q\)-deformed quantum system. (English) Zbl 1453.35160 Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105474, 14 p. (2021). MSC: 35Q55 35Q41 35C08 35B35 35B44 65N35 65L06 60H40 81Q05 PDF BibTeX XML Cite \textit{C. Bayındır} et al., Commun. Nonlinear Sci. Numer. Simul. 92, Article ID 105474, 14 p. (2021; Zbl 1453.35160) Full Text: DOI
Feng, Xiaojing Nontrivial solution for Schrödinger-Poisson equations involving the fractional Laplacian with critical exponent. (English) Zbl 07273579 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 10, 18 p. (2021). MSC: 35J60 35R11 35B33 35A15 35A01 PDF BibTeX XML Cite \textit{X. Feng}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 1, Paper No. 10, 18 p. (2021; Zbl 07273579) Full Text: DOI
Schratz, Katharina; Wang, Yan; Zhao, Xiaofei Low-regularity integrators for nonlinear Dirac equations. (English) Zbl 1450.35231 Math. Comput. 90, No. 327, 189-214 (2021). MSC: 35Q41 65M70 65N35 65M12 65M15 65M06 35B65 35S30 PDF BibTeX XML Cite \textit{K. Schratz} et al., Math. Comput. 90, No. 327, 189--214 (2021; Zbl 1450.35231) Full Text: DOI
Campos, Luccas Scattering of radial solutions to the inhomogeneous nonlinear Schrödinger equation. (English) Zbl 1452.35179 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112118, 17 p. (2021). MSC: 35Q55 35P25 35B45 PDF BibTeX XML Cite \textit{L. Campos}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112118, 17 p. (2021; Zbl 1452.35179) Full Text: DOI
Wang, Li; Yan, Zhenya Rogue wave formation and interactions in the defocusing nonlinear Schrödinger equation with external potentials. (English) Zbl 1451.35201 Appl. Math. Lett. 111, Article ID 106670, 9 p. (2021). MSC: 35Q55 81Q05 35C08 PDF BibTeX XML Cite \textit{L. Wang} and \textit{Z. Yan}, Appl. Math. Lett. 111, Article ID 106670, 9 p. (2021; Zbl 1451.35201) Full Text: DOI
Wang, Xiu-Bin; Han, Bo Solitons in nonlinear systems with higher-order effects. (English) Zbl 1451.35202 Appl. Math. Lett. 111, Article ID 106656, 5 p. (2021). MSC: 35Q55 78A60 35C08 65D18 PDF BibTeX XML Cite \textit{X.-B. Wang} and \textit{B. Han}, Appl. Math. Lett. 111, Article ID 106656, 5 p. (2021; Zbl 1451.35202) Full Text: DOI
Xing, F. New optimized Schwarz algorithms for one dimensional Schrödinger equation with general potential. (English) Zbl 07246880 J. Comput. Appl. Math. 383, Article ID 113018, 12 p. (2021). MSC: 65N55 65M55 65M06 65F05 65F08 65F10 65Y05 35Q55 PDF BibTeX XML Cite \textit{F. Xing}, J. Comput. Appl. Math. 383, Article ID 113018, 12 p. (2021; Zbl 07246880) Full Text: DOI
Binhua, Feng; Chen, Ruipeng; Liu, Jiayin Blow-up criteria and instability of normalized standing waves for the fractional Schrödinger-Choquard equation. (English) Zbl 1447.35291 Adv. Nonlinear Anal. 10, 311-330 (2021). MSC: 35Q55 35J10 35B44 35B35 35R11 26A33 PDF BibTeX XML Cite \textit{F. Binhua} et al., Adv. Nonlinear Anal. 10, 311--330 (2021; Zbl 1447.35291) Full Text: DOI
Zheng, Guang-Hui; Miao, Zhi-Qiang On uniqueness and nonuniqueness for internal potential reconstruction in quantum fields from one measurement. (English) Zbl 07241297 J. Comput. Appl. Math. 381, Article ID 113029, 7 p. (2021). MSC: 35 81 PDF BibTeX XML Cite \textit{G.-H. Zheng} and \textit{Z.-Q. Miao}, J. Comput. Appl. Math. 381, Article ID 113029, 7 p. (2021; Zbl 07241297) Full Text: DOI
Decleer, Pieter; Van Londersele, Arne; Rogier, Hendrik; Vande Ginste, Dries Nonuniform and higher-order FDTD methods for the Schrödinger equation. (English) Zbl 07241291 J. Comput. Appl. Math. 381, Article ID 113023, 18 p. (2021). MSC: 65 78 PDF BibTeX XML Cite \textit{P. Decleer} et al., J. Comput. Appl. Math. 381, Article ID 113023, 18 p. (2021; Zbl 07241291) Full Text: DOI
Liu, Yueli; Li, Xu; Ji, Chao Multiplicity of concentrating solutions for a class of magnetic Schrödinger-Poisson type equation. (English) Zbl 1440.35138 Adv. Nonlinear Anal. 10, 131-151 (2021). MSC: 35J61 35J25 35A15 PDF BibTeX XML Cite \textit{Y. Liu} et al., Adv. Nonlinear Anal. 10, 131--151 (2021; Zbl 1440.35138) Full Text: DOI
Aktosun, Tuncay; Weder, Ricardo Direct and inverse scattering for the matrix Schrödinger equation. (English) Zbl 07183319 Applied Mathematical Sciences 203. Cham: Springer (ISBN 978-3-030-38430-2/hbk; 978-3-030-38431-9/ebook). xiii, 624 p. (2021). Reviewer: Jiři Lipovský (Hradec Králové) MSC: 34-02 35-02 47-02 81-02 35P15 PDF BibTeX XML Cite \textit{T. Aktosun} and \textit{R. Weder}, Direct and inverse scattering for the matrix Schrödinger equation. Cham: Springer (2021; Zbl 07183319) Full Text: DOI
Du, Xiumin; Kim, Jongchon; Wang, Hong; Zhang, Ruixiang Lower bounds for estimates of the Schrödinger maximal function. (English) Zbl 07317390 Math. Res. Lett. 27, No. 3, 687-692 (2020). MSC: 35J10 35Q41 PDF BibTeX XML Cite \textit{X. Du} et al., Math. Res. Lett. 27, No. 3, 687--692 (2020; Zbl 07317390) Full Text: DOI
Dinh, Van Duong Existence, non-existence and blow-up behaviour of minimizers for the mass-critical fractional non-linear Schrödinger equations with periodic potentials. (English) Zbl 07316380 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3252-3292 (2020). MSC: 35A15 35B44 35J35 35Q55 PDF BibTeX XML Cite \textit{V. D. Dinh}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 3252--3292 (2020; Zbl 07316380) Full Text: DOI
Soccorsi, Éric Multidimensional Borg-Levinson inverse spectral problems. (English) Zbl 07315995 Ammari, Kaïs (ed.) et al., Identification and control: some challenges. Summer school, Monastir, Tunisia, June 18–20, 2019. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-5547-7/pbk; 978-1-4704-5696-2/ebook). Contemporary Mathematics 757, 19-49 (2020). MSC: 35R30 35J10 35K10 PDF BibTeX XML Cite \textit{É. Soccorsi}, Contemp. Math. 757, 19--49 (2020; Zbl 07315995) Full Text: DOI
Marroquin, Daniel R. Recent progress on the study of the short wave-Long wave interactions system for aurora-type phenomena. (English) Zbl 07315505 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 554-561 (2020). MSC: 76W05 76N10 35Q35 35Q55 PDF BibTeX XML Cite \textit{D. R. Marroquin}, AIMS Ser. Appl. Math. 10, 554--561 (2020; Zbl 07315505)
Jagtap, Ameya D. Higher order scheme for sine-Gordon equation in nonlinear non-homogeneous media. (English) Zbl 07315494 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 465-474 (2020). MSC: 35Q55 78A48 35C08 39A12 33C45 PDF BibTeX XML Cite \textit{A. D. Jagtap}, AIMS Ser. Appl. Math. 10, 465--474 (2020; Zbl 07315494)
Cacciafesta, Federico Dispersive dynamics of the Dirac equation on curved spaces. (English) Zbl 07315479 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 346-352 (2020). MSC: 35Q41 37L50 PDF BibTeX XML Cite \textit{F. Cacciafesta}, AIMS Ser. Appl. Math. 10, 346--352 (2020; Zbl 07315479)
Li, Jibin; Han, Maoan Exact peakon solutions given by the generalized hyperbolic functions for some nonlinear wave equations. (English) Zbl 07315435 J. Appl. Anal. Comput. 10, No. 4, 1708-1719 (2020). MSC: 35C07 34A34 37L45 PDF BibTeX XML Cite \textit{J. Li} and \textit{M. Han}, J. Appl. Anal. Comput. 10, No. 4, 1708--1719 (2020; Zbl 07315435) Full Text: DOI
Raza, Nauman; Javid, Ahmad Modulation instability and optical solitons of Radhakrishnan-Kundu-Lakshmanan model. (English) Zbl 07315414 J. Appl. Anal. Comput. 10, No. 4, 1375-1395 (2020). MSC: 78A60 35Q51 35Q55 PDF BibTeX XML Cite \textit{N. Raza} and \textit{A. Javid}, J. Appl. Anal. Comput. 10, No. 4, 1375--1395 (2020; Zbl 07315414) Full Text: DOI
Hamil, B.; Merad, M. Feshbach-Villars equation in a \(\kappa \)-Minkowski spacetime. (English) Zbl 07315283 Mod. Phys. Lett. A 35, No. 37, Article ID 2050307, 10 p. (2020). MSC: 81R60 81Q35 81Q05 PDF BibTeX XML Cite \textit{B. Hamil} and \textit{M. Merad}, Mod. Phys. Lett. A 35, No. 37, Article ID 2050307, 10 p. (2020; Zbl 07315283) Full Text: DOI
Sogut, K.; Salti, M. Wave function of the photon in a curved spacetime. (English) Zbl 07315275 Mod. Phys. Lett. A 35, No. 36, Article ID 2050300, 12 p. (2020). MSC: 81Q35 81Q05 83D05 81R25 PDF BibTeX XML Cite \textit{K. Sogut} and \textit{M. Salti}, Mod. Phys. Lett. A 35, No. 36, Article ID 2050300, 12 p. (2020; Zbl 07315275) Full Text: DOI
Wu, Yuan; Yuan, Xiaoping On the existence of full dimensional KAM torus for fractional nonlinear Schrödinger equation. (English) Zbl 07315122 J. Appl. Anal. Comput. 10, No. 2, 771-794 (2020). MSC: 37K55 35Q55 35R11 PDF BibTeX XML Cite \textit{Y. Wu} and \textit{X. Yuan}, J. Appl. Anal. Comput. 10, No. 2, 771--794 (2020; Zbl 07315122) Full Text: DOI
Amirov, Rauf Kh.; Nabiev, Anar Adiloglu Inverse scattering problem for the impulsive Schrödinger equation with a polynomial spectral dependence in the potential. (English) Zbl 07314444 Casp. J. Math. Sci. 9, No. 2, 224-242 (2020). MSC: 34A55 34B24 34L05 PDF BibTeX XML Cite \textit{R. Kh. Amirov} and \textit{A. A. Nabiev}, Casp. J. Math. Sci. 9, No. 2, 224--242 (2020; Zbl 07314444) Full Text: DOI
Yang, Jin-Jie; Tian, Shou-Fu Riemann-Hilbert problem for the modified Landau-Lifshitz equation with nonzero boundary conditions. (English. Russian original) Zbl 07314346 Theor. Math. Phys. 205, No. 3, 1611-1637 (2020); translation from Teor. Mat. Fiz. 205, No. 3, 420-450 (2020). MSC: 35Q55 35Q15 35C08 81U20 35P25 PDF BibTeX XML Cite \textit{J.-J. Yang} and \textit{S.-F. Tian}, Theor. Math. Phys. 205, No. 3, 1611--1637 (2020; Zbl 07314346); translation from Teor. Mat. Fiz. 205, No. 3, 420--450 (2020) Full Text: DOI