×

Solution of the master equation for quantum Brownian motion given by the Schrödinger equation. (English) Zbl 1367.81093

Summary: We consider the master equation of quantum Brownian motion, and with the application of the group invariant transformation, we show that there exists a surface on which the solution of the master equation is given by an autonomous one-dimensional Schrödinger Equation.

MSC:

81S22 Open systems, reduced dynamics, master equations, decoherence
60J65 Brownian motion
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics

Software:

SYM
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Feynman, R.P.; Vernov, F.L.; The theory of a general quantum system interacting with a linear dissipative system; Ann. Phys.: 1963; Volume 24 ,118-173.
[2] Haake, F.; Reibold, R.; Strong damping and low-temperature anomalies for the harmonic oscillator; Phys. Rev. A: 1985; Volume 32 ,2462-2475.
[3] Hu, B.L.; Paz, J.P.; Zhang, Y.; Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise; Phys. Rev. D: 1992; Volume 45 ,2843-2861. · Zbl 1232.82011
[4] Hu, B.L.; Paz, J.P.; Zhang, Y.; Quantum Brownian motion in a general environment. II. Nonlinear coupling and perturbative approach; Phys. Rev. D: 1993; Volume 47 ,1576-1594.
[5] Halliwell, J.J.; Yu, T.; Alternative Derivation of the Hu-Paz-Zhang Master Equation for Quantum Brownian Motion; Phys. Rev. D: 1996; Volume 53 ,2012-2019.
[6] Ford, G.W.; O’Connell, R.F.; Exact solution of the Hu-Paz-Zhang master equation; Phys. Rev. D: 2001; Volume 64 ,105020.
[7] Fleming, C.H.; Roura, A.; Hu, B.L.; Exact analytical solutions to the master equation of quantum Brownian motion for a general environment; Ann. Phys.: 2011; Volume 326 ,1207-1258. · Zbl 1230.81037
[8] Zhang, W.-M.; Lo, P.-Y.; Xiong, H.-N.; Tu, M.W.-Y.; Nori, F.; General Non-Markovian Dynamics of Open Quantum Systems; Phys. Rev. Lett.: 2012; Volume 109 ,170402.
[9] Xiong, H.-N.; Lo, P.-Y.; Zhang, W.-M.; Feng, D.H.; Nori, F.; Non-Markovian Complexity in the Quantum-to-Classical Transition; Sci. Rep.: 2015; Volume 5 ,13353.
[10] Lie, S.; Scheffers, G.; ; Lectures on Differential Equations with Known Infinitesimal Transformations: Leipzig, Germany 1891; .
[11] Belmonte-Beitia, J.; Perez-Garcia, V.M.; Vekslerchik, V.; Torres, P.J.; Lie Symmetries and Solitons in Nonlinear Systems with Spatially Inhomogeneous Nonlinearities; Phys. Rev. Lett.: 2007; Volume 98 ,064102. · Zbl 1147.35093
[12] Gagnon, L.; Winternitz, P.; Lie symmetries of a generalised nonlinear Schrodinger equation: I. The symmetry group and its subgroups; J. Phys. A Math. Gen.: 1988; Volume 21 ,1493-1511. · Zbl 0694.35174
[13] Gagnon, L.; Winternitz, P.; Lie symmetries of a generalised non-linear Schrodinger equation. II. Exact solutions; J. Phys. A Math. Gen.: 1989; Volume 22 ,469-497. · Zbl 0707.35145
[14] Popovych, R.O.; Ivanova, N.M.; Eshraghi, H.; Group classification of (1 + 1)-Dimensional Schrödinger Equations with Potentials and Power Nonlinearities; J. Math. Phys.: 2004; Volume 45 ,3049. · Zbl 1071.35117
[15] Paliathanasis, A.; Tsamparlis, M.; The geometric origin of Lie point symmetries of the Schrodinger and the Klein-Gordon equations; Int. J. Geom. Meth. Mod. Phys.: 2014; Volume 11 ,1450037. · Zbl 1291.81143
[16] Sheftel, M.B.; Tempesta, P.; Winternitz, P.; Lie symmetries and superintegrability in quantum mechanics; Phys. At. Nucl.: 2002; Volume 65 ,1144-1148.
[17] Morozov, V.V.; Classification of nilpotent Lie algebras of sixth order; Izv. Vyss. Uchebn. Zaved. Mat.: 1958; Volume 5 ,161-171. · Zbl 0198.05501
[18] Mubarakzyanov, G.M.; On solvable Lie algebras; Izv. Vyss. Uchebn. Zaved. Mat.: 1963; Volume 32 ,114-123. · Zbl 0166.04104
[19] Mubarakzyanov, G.M.; Classification of real structures of Lie algebras of fifth order; Izv. Vyss. Uchebn. Zaved. Mat.: 1963; Volume 34 ,99-106. · Zbl 0166.04201
[20] Mubarakzyanov, G.M.; Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element; Izv. Vyss. Uchebn. Zaved. Mat.: 1963; Volume 35 ,104-116. · Zbl 0166.04202
[21] Olver, P.J.; ; Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics: New York, NY, USA 1993; Volume Volume 107 . · Zbl 0785.58003
[22] Bluman, G.W.; Kumei, S.; ; Symmetries of Differential Equations: New York, NY, USA 1989; . · Zbl 0698.35001
[23] Bluman, G.W.; Simplifying the form of Lie groups admitted by a given differential equation; J. Math. Anal. Appl.: 1990; Volume 145 ,52-62. · Zbl 0696.35005
[24] Dimas, S.; Tsoubelis, D.; ; SYM: A New Symmetry-Finding Package for Mathematica, Group Analysis of Differential Equations: Nicosia, Cyprus 1989; ,64.
[25] Ermakov, V.P.; Second-order differential equations: Conditions of complete integrability; Appl. Anal. Discret. Math.: 1880; Volume 2 ,123-145. · Zbl 1199.34004
[26] Pinney, E.; The nonlinear differential equation; Proc. Am. Math. Soc.: 1950; Volume 1 ,681. · Zbl 0038.24303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.