Hawkes, Graham \(P\)-Schur positive \(P\)-Grothendieck polynomials. (English) Zbl 07666235 Australas. J. Comb. 85, Part 2, 106-130 (2023). MSC: 05E10 05E05 14M15 PDF BibTeX XML Cite \textit{G. Hawkes}, Australas. J. Comb. 85, Part 2, 106--130 (2023; Zbl 07666235) Full Text: arXiv Link OpenURL
Gregory, Adam; Hamaker, Zachary Lenart’s bijection via bumpless pipe dreams. (English) Zbl 07655019 Electron. J. Comb. 30, No. 1, Research Paper P1.24, 18 p. (2023). MSC: 05E05 05A05 05E10 14N15 PDF BibTeX XML Cite \textit{A. Gregory} and \textit{Z. Hamaker}, Electron. J. Comb. 30, No. 1, Research Paper P1.24, 18 p. (2023; Zbl 07655019) Full Text: DOI arXiv OpenURL
McGovern, William M. Representation theory and geometry of the flag variety. (English) Zbl 07626615 De Gruyter Studies in Mathematics 90. Berlin: De Gruyter (ISBN 978-3-11-076690-5/hbk; 978-3-11-076694-3/ebook). viii, 125 p. (2023). Reviewer: Mee Seong Im (Annapolis) MSC: 14M15 05E10 14B05 PDF BibTeX XML Cite \textit{W. M. McGovern}, Representation theory and geometry of the flag variety. Berlin: De Gruyter (2023; Zbl 07626615) Full Text: DOI OpenURL
Blundell, Charles; Buesing, Lars; Davies, Alex; Veličković, Petar; Williamson, Geordie Towards combinatorial invariance for Kazhdan-Lusztig polynomials. (English) Zbl 07637762 Represent. Theory 26, 1145-1191 (2022). Reviewer: José Martínez-Bernal (Ciudad de México) MSC: 20F55 20C08 05E10 PDF BibTeX XML Cite \textit{C. Blundell} et al., Represent. Theory 26, 1145--1191 (2022; Zbl 07637762) Full Text: DOI arXiv OpenURL
Dizier, Avery St.; Yong, Alexander Generalized permutahedra and Schubert calculus. (English) Zbl 07627136 Arnold Math. J. 8, No. 3-4, 517-533 (2022). Reviewer: Nicholas Williams (Lancaster) MSC: 05E14 14N15 52B05 90C05 PDF BibTeX XML Cite \textit{A. St. Dizier} and \textit{A. Yong}, Arnold Math. J. 8, No. 3--4, 517--533 (2022; Zbl 07627136) Full Text: DOI arXiv OpenURL
Liu, Ricky Ini; Mészáros, Karola; Dizier, Avery St. Schubert polynomials as projections of Minkowski sums of Gelfand-Tsetlin polytopes. (English) Zbl 1498.05283 Combinatorial Theory 2, No. 3, Paper No. 4, 28 p. (2022). MSC: 05E05 PDF BibTeX XML Cite \textit{R. I. Liu} et al., Comb. Theory 2, No. 3, Paper No. 4, 28 p. (2022; Zbl 1498.05283) Full Text: DOI arXiv OpenURL
Assaf, Sami H. A bijective proof of Kohnert’s rule for Schubert polynomials. (English) Zbl 1498.05277 Combinatorial Theory 2, No. 1, Paper No. 5, 9 p. (2022). MSC: 05E05 05A05 05A19 PDF BibTeX XML Cite \textit{S. H. Assaf}, Comb. Theory 2, No. 1, Paper No. 5, 9 p. (2022; Zbl 1498.05277) Full Text: DOI arXiv OpenURL
Grinberg, Darij Petrie symmetric functions. (English) Zbl 07615647 Algebr. Comb. 5, No. 5, 947-1013 (2022). MSC: 05E05 16T30 14M15 05E10 PDF BibTeX XML Cite \textit{D. Grinberg}, Algebr. Comb. 5, No. 5, 947--1013 (2022; Zbl 07615647) Full Text: DOI arXiv OpenURL
Hamaker, Zachary; Marberg, Eric; Pawlowski, Brendan Involution pipe dreams. (English) Zbl 07613386 Can. J. Math. 74, No. 5, 1310-1346 (2022). MSC: 14M15 14M27 05E05 PDF BibTeX XML Cite \textit{Z. Hamaker} et al., Can. J. Math. 74, No. 5, 1310--1346 (2022; Zbl 07613386) Full Text: DOI OpenURL
Orr, Daniel; Shimozono, Mark Quiver Hall-Littlewood functions and Kostka-Shoji polynomials. (English) Zbl 07612801 Pac. J. Math. 319, No. 2, 397-437 (2022). MSC: 16G20 05E05 14M15 17B37 20G05 PDF BibTeX XML Cite \textit{D. Orr} and \textit{M. Shimozono}, Pac. J. Math. 319, No. 2, 397--437 (2022; Zbl 07612801) Full Text: DOI arXiv OpenURL
Liu, Ricky Ini Twisted Schubert polynomials. (English) Zbl 1500.05061 Sel. Math., New Ser. 28, No. 5, Paper No. 87, 23 p. (2022). MSC: 05E14 14N15 PDF BibTeX XML Cite \textit{R. I. Liu}, Sel. Math., New Ser. 28, No. 5, Paper No. 87, 23 p. (2022; Zbl 1500.05061) Full Text: DOI arXiv OpenURL
Mason, Sarah; Searles, Dominic The “Young” and “reverse” dichotomy of polynomials. (English) Zbl 07596730 Electron. J. Comb. 29, No. 3, Research Paper P3.61, 51 p. (2022). MSC: 05E05 14N15 14M15 PDF BibTeX XML Cite \textit{S. Mason} and \textit{D. Searles}, Electron. J. Comb. 29, No. 3, Research Paper P3.61, 51 p. (2022; Zbl 07596730) Full Text: DOI arXiv OpenURL
Assaf, Sami Weak dual equivalence for polynomials. (English) Zbl 1497.05258 Ann. Comb. 26, No. 3, 571-591 (2022). MSC: 05E05 05A15 05A19 05E10 05E18 14N15 PDF BibTeX XML Cite \textit{S. Assaf}, Ann. Comb. 26, No. 3, 571--591 (2022; Zbl 1497.05258) Full Text: DOI arXiv OpenURL
Marberg, Eric; Pawlowski, Brendan Gröbner geometry for skew-symmetric matrix Schubert varieties. (English) Zbl 1492.05162 Adv. Math. 405, Article ID 108488, 56 p. (2022). MSC: 05E14 05E45 14M15 13P10 05A05 PDF BibTeX XML Cite \textit{E. Marberg} and \textit{B. Pawlowski}, Adv. Math. 405, Article ID 108488, 56 p. (2022; Zbl 1492.05162) Full Text: DOI arXiv OpenURL
Pan, Jianping; Pappe, Joseph; Poh, Wencin; Schilling, Anne Uncrowding algorithm for hook-valued tableaux. (English) Zbl 1491.05195 Ann. Comb. 26, No. 1, 261-301 (2022). Reviewer: Nicholas Williams (Cologne) MSC: 05E10 05E05 14N10 14N15 20G42 PDF BibTeX XML Cite \textit{J. Pan} et al., Ann. Comb. 26, No. 1, 261--301 (2022; Zbl 1491.05195) Full Text: DOI arXiv OpenURL
Assaf, Sami; Searles, Dominic Kohnert polynomials. (English) Zbl 07507075 Exp. Math. 31, No. 1, 93-119 (2022). MSC: 14M15 14N15 05E05 PDF BibTeX XML Cite \textit{S. Assaf} and \textit{D. Searles}, Exp. Math. 31, No. 1, 93--119 (2022; Zbl 07507075) Full Text: DOI arXiv OpenURL
Kac, Victor G.; De Leur, Johan W. van Polynomial tau-functions for the multicomponent KP hierarchy. (English) Zbl 1483.14085 Publ. Res. Inst. Math. Sci. 58, No. 1, 1-19 (2022). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14M15 17B10 17B67 20G44 22E70 35Q53 PDF BibTeX XML Cite \textit{V. G. Kac} and \textit{J. W. van De Leur}, Publ. Res. Inst. Math. Sci. 58, No. 1, 1--19 (2022; Zbl 1483.14085) Full Text: DOI arXiv OpenURL
Hodges, Reuven; Yong, Alexander Coxeter combinatorics and spherical Schubert geometry. (English) Zbl 1486.14070 J. Lie Theory 32, No. 2, 447-474 (2022). Reviewer: Thibaut Delcroix (Montpellier) MSC: 14M27 14M15 05E05 05E10 14L30 PDF BibTeX XML Cite \textit{R. Hodges} and \textit{A. Yong}, J. Lie Theory 32, No. 2, 447--474 (2022; Zbl 1486.14070) Full Text: arXiv Link Backlinks: MO OpenURL
Iwao, Shinsuke Neutral-fermionic presentation of the \(K\)-theoretic \(Q\)-function. (English) Zbl 1484.05202 J. Algebr. Comb. 55, No. 2, 629-662 (2022). MSC: 05E05 13M10 14M15 14N15 81V72 PDF BibTeX XML Cite \textit{S. Iwao}, J. Algebr. Comb. 55, No. 2, 629--662 (2022; Zbl 1484.05202) Full Text: DOI arXiv OpenURL
Assaf, Sami H. Demazure crystals for Kohnert polynomials. (English) Zbl 1483.05199 Trans. Am. Math. Soc. 375, No. 3, 2147-2186 (2022). MSC: 05E10 05E05 14N15 PDF BibTeX XML Cite \textit{S. H. Assaf}, Trans. Am. Math. Soc. 375, No. 3, 2147--2186 (2022; Zbl 1483.05199) Full Text: DOI arXiv OpenURL
Cho, Soojin; van Willigenburg, Stephanie Slide multiplicity free key polynomials. (English) Zbl 1481.05155 Electron. J. Comb. 29, No. 1, Research Paper P1.16, 20 p. (2022). MSC: 05E05 05E10 14N15 14M15 PDF BibTeX XML Cite \textit{S. Cho} and \textit{S. van Willigenburg}, Electron. J. Comb. 29, No. 1, Research Paper P1.16, 20 p. (2022; Zbl 1481.05155) Full Text: DOI arXiv OpenURL
Mészáros, Karola; Setiabrata, Linus; Dizier, Avery St. An orthodontia formula for Grothendieck polynomials. (English) Zbl 1481.05156 Trans. Am. Math. Soc. 375, No. 2, 1281-1303 (2022). MSC: 05E05 05E10 14N15 14M15 PDF BibTeX XML Cite \textit{K. Mészáros} et al., Trans. Am. Math. Soc. 375, No. 2, 1281--1303 (2022; Zbl 1481.05156) Full Text: DOI arXiv OpenURL
Marberg, Eric; Pawlowski, Brendan Gröbner geometry for skew-symmetric matrix Schubert varieties. (English) Zbl 07638525 Sémin. Lothar. Comb. 85B, Article 90, 12 p. (2021). MSC: 14M15 05E45 05A15 PDF BibTeX XML Cite \textit{E. Marberg} and \textit{B. Pawlowski}, Sémin. Lothar. Comb. 85B, Article 90, 12 p. (2021; Zbl 07638525) Full Text: Link OpenURL
Marberg, Eric; Pawlowski, Brendan Principal specializations of Schubert polynomials in classical types. (English) Zbl 07638500 Sémin. Lothar. Comb. 85B, Article 67, 12 p. (2021). Reviewer: Ioan Tomescu (Bucureşti) MSC: 05E05 14N15 PDF BibTeX XML Cite \textit{E. Marberg} and \textit{B. Pawlowski}, Sémin. Lothar. Comb. 85B, Article 67, 12 p. (2021; Zbl 07638500) Full Text: Link OpenURL
Galashin, Pavel; Lam, Thomas Positroids, knots, and \(q,t\)-Catalan numbers. (English) Zbl 07638486 Sémin. Lothar. Comb. 85B, Article 54, 12 p. (2021). MSC: 14M15 13F20 PDF BibTeX XML Cite \textit{P. Galashin} and \textit{T. Lam}, Sémin. Lothar. Comb. 85B, Article 54, 12 p. (2021; Zbl 07638486) Full Text: arXiv Link OpenURL
Kim, Donghyun; Williams, Lauren Schubert polynomials and the inhomogeneous TASEP on a ring. (English) Zbl 07638458 Sémin. Lothar. Comb. 85B, Article 28, 12 p. (2021). MSC: 05E05 05E10 14N15 PDF BibTeX XML Cite \textit{D. Kim} and \textit{L. Williams}, Sémin. Lothar. Comb. 85B, Article 28, 12 p. (2021; Zbl 07638458) Full Text: arXiv Link OpenURL
Huang, Daoji Bijective proofs of Monk’s rule for Schubert and double Schubert polynomials with bumpless pipe dreams. (English) Zbl 07638446 Sémin. Lothar. Comb. 85B, Article 17, 12 p. (2021). MSC: 05E05 14N15 PDF BibTeX XML Cite \textit{D. Huang}, Sémin. Lothar. Comb. 85B, Article 17, 12 p. (2021; Zbl 07638446) Full Text: arXiv Link OpenURL
Lee, Eunjeong; Masuda, Mikiya; Park, Seonjeong; Song, Jongbaek Poincaré polynomials of generic torus orbit closures in Schubert varieties. (English) Zbl 1489.14066 Vershik, Anatoly M. (ed.) et al., Conference on topology, geometry, and dynamics. V. A. Rokhlin-100. The Euler International Mathematical Institute and Steklov Institute of Mathematics, St. Petersburg, Russia, August 19–23, 2019. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 772, 189-208 (2021). MSC: 14M25 14M15 05A05 PDF BibTeX XML Cite \textit{E. Lee} et al., Contemp. Math. 772, 189--208 (2021; Zbl 1489.14066) Full Text: DOI arXiv OpenURL
Smirnov, E. Yu.; Tutubalina, A. A. Slide polynomials and subword complexes. (English. Russian original) Zbl 1482.14055 Sb. Math. 212, No. 10, 1471-1490 (2021); translation from Mat. Sb. 212, No. 10, 131-151 (2021). MSC: 14N15 20F55 55U10 05E45 19E99 PDF BibTeX XML Cite \textit{E. Yu. Smirnov} and \textit{A. A. Tutubalina}, Sb. Math. 212, No. 10, 1471--1490 (2021; Zbl 1482.14055); translation from Mat. Sb. 212, No. 10, 131--151 (2021) Full Text: DOI OpenURL
Pawlowski, Brendan Universal graph Schubert varieties. (English) Zbl 1489.14063 Transform. Groups 26, No. 4, 1417-1461 (2021). Reviewer: Duc Khanh Nguyen (Magdeburg) MSC: 14M15 05E10 05E05 05E40 PDF BibTeX XML Cite \textit{B. Pawlowski}, Transform. Groups 26, No. 4, 1417--1461 (2021; Zbl 1489.14063) Full Text: DOI arXiv OpenURL
Hatam, Hassan; Johnson, Joseph; Liu, Ricky Ini; Macaulay, Maria Determinantal formulas for SEM expansions of Schubert polynomials. (English) Zbl 1479.05353 Ann. Comb. 25, No. 4, 1049-1074 (2021). MSC: 05E05 14M15 05A05 05A19 PDF BibTeX XML Cite \textit{H. Hatam} et al., Ann. Comb. 25, No. 4, 1049--1074 (2021; Zbl 1479.05353) Full Text: DOI arXiv OpenURL
Galashin, Pavel Symmetries of stochastic colored vertex models. (English) Zbl 1479.82046 Ann. Probab. 49, No. 5, 2175-2219 (2021). MSC: 82C22 82C20 82C43 82D60 82C31 16T25 20C08 35Q82 14M15 60K35 PDF BibTeX XML Cite \textit{P. Galashin}, Ann. Probab. 49, No. 5, 2175--2219 (2021; Zbl 1479.82046) Full Text: DOI arXiv OpenURL
Mészáros, Karola; Dizier, Avery St.; Tanjaya, Arthur Principal specialization of dual characters of flagged Weyl modules. (English) Zbl 1482.05334 Electron. J. Comb. 28, No. 4, Research Paper P4.17, 12 p. (2021). Reviewer: David Grabiner (Columbia) MSC: 05E05 05E10 14N15 PDF BibTeX XML Cite \textit{K. Mészáros} et al., Electron. J. Comb. 28, No. 4, Research Paper P4.17, 12 p. (2021; Zbl 1482.05334) Full Text: DOI arXiv OpenURL
Cass, Robert Central elements in affine mod \(p\) Hecke algebras via perverse \(\mathbb{F}_p\)-sheaves. (English) Zbl 1484.14054 Compos. Math. 157, No. 10, 2215-2241 (2021). MSC: 14G17 14F10 14M15 20C08 PDF BibTeX XML Cite \textit{R. Cass}, Compos. Math. 157, No. 10, 2215--2241 (2021; Zbl 1484.14054) Full Text: DOI arXiv OpenURL
Lewis, Joel Brewster; Marberg, Eric Enriched set-valued \(P\)-partitions and shifted stable Grothendieck polynomials. (English) Zbl 1485.05008 Math. Z. 299, No. 3-4, 1929-1972 (2021). Reviewer: Matthieu Josuat-Vergès (Paris) MSC: 05A18 05E05 05E10 14M15 PDF BibTeX XML Cite \textit{J. B. Lewis} and \textit{E. Marberg}, Math. Z. 299, No. 3--4, 1929--1972 (2021; Zbl 1485.05008) Full Text: DOI arXiv OpenURL
Buch, Anders Skovsted; Wang, Chengxi Positivity determines the quantum cohomology of Grassmannians. (English) Zbl 1473.14104 Algebra Number Theory 15, No. 6, 1505-1521 (2021). MSC: 14N35 05E05 14M15 14N15 PDF BibTeX XML Cite \textit{A. S. Buch} and \textit{C. Wang}, Algebra Number Theory 15, No. 6, 1505--1521 (2021; Zbl 1473.14104) Full Text: DOI arXiv OpenURL
van Diejen, J. F.; Emsiz, E.; Zurrián, I. N. Affine Pieri rule for periodic Macdonald spherical functions and fusion rings. (English) Zbl 1476.05206 Adv. Math. 392, Article ID 108027, 30 p. (2021). MSC: 05E10 05E05 14N15 17B67 33D52 33D80 81T40 20C08 PDF BibTeX XML Cite \textit{J. F. van Diejen} et al., Adv. Math. 392, Article ID 108027, 30 p. (2021; Zbl 1476.05206) Full Text: DOI OpenURL
Tamvakis, Harry Schubert polynomials, theta and eta polynomials, and Weyl group invariants. (English) Zbl 1476.14083 Mosc. Math. J. 21, No. 1, 191-226 (2021). Reviewer: Duc Khanh Nguyen (Magdeburg) MSC: 14M15 05E05 13A50 14N15 PDF BibTeX XML Cite \textit{H. Tamvakis}, Mosc. Math. J. 21, No. 1, 191--226 (2021; Zbl 1476.14083) Full Text: arXiv Link OpenURL
Shen, Linhui; Weng, Daping Cluster structures on double Bott-Samelson cells. (English) Zbl 1479.13028 Forum Math. Sigma 9, Paper No. e66, 89 p. (2021). Reviewer: Letterio Gatto (Torino) MSC: 13F60 14M15 14N35 57K14 PDF BibTeX XML Cite \textit{L. Shen} and \textit{D. Weng}, Forum Math. Sigma 9, Paper No. e66, 89 p. (2021; Zbl 1479.13028) Full Text: DOI arXiv OpenURL
Kamnitzer, Joel; McBreen, Michael; Proudfoot, Nicholas The quantum Hikita conjecture. (English) Zbl 1498.14140 Adv. Math. 390, Article ID 107947, 53 p. (2021). MSC: 14N35 14F10 16E05 16E40 16S38 17B10 53C26 14C05 14M15 14J42 PDF BibTeX XML Cite \textit{J. Kamnitzer} et al., Adv. Math. 390, Article ID 107947, 53 p. (2021; Zbl 1498.14140) Full Text: DOI arXiv OpenURL
Monical, Cara; Pechenik, Oliver; Scrimshaw, Travis Crystal structures for symmetric Grothendieck polynomials. (English) Zbl 1472.05152 Transform. Groups 26, No. 3, 1025-1075 (2021). MSC: 05E10 05E05 14M15 14N15 17B37 17B10 PDF BibTeX XML Cite \textit{C. Monical} et al., Transform. Groups 26, No. 3, 1025--1075 (2021; Zbl 1472.05152) Full Text: DOI arXiv OpenURL
Kouno, Takafumi; Naito, Satoshi; Orr, Daniel; Sagaki, Daisuke Inverse \(K\)-Chevalley formulas for semi-infinite flag manifolds. I: Minuscule weights in ADE type. (English) Zbl 07377625 Forum Math. Sigma 9, Paper No. e51, 25 p. (2021). MSC: 20C08 14M15 17B37 19L47 33D52 81R10 PDF BibTeX XML Cite \textit{T. Kouno} et al., Forum Math. Sigma 9, Paper No. e51, 25 p. (2021; Zbl 07377625) Full Text: DOI arXiv OpenURL
Raskin, Sam Chiral principal series categories. I: Finite dimensional calculations. (English) Zbl 1469.14026 Adv. Math. 388, Article ID 107856, 96 p. (2021). Reviewer: Mee Seong Im (West Point) MSC: 14D24 22E57 14F10 14M15 PDF BibTeX XML Cite \textit{S. Raskin}, Adv. Math. 388, Article ID 107856, 96 p. (2021; Zbl 1469.14026) Full Text: DOI OpenURL
Cheong, Daewoong; Choe, Insong; Hitching, George H. Counting maximal Lagrangian subbundles over an algebraic curve. (English) Zbl 1467.14083 J. Geom. Phys. 167, Article ID 104288, 20 p. (2021). MSC: 14H60 14M15 14N35 53D45 14J80 PDF BibTeX XML Cite \textit{D. Cheong} et al., J. Geom. Phys. 167, Article ID 104288, 20 p. (2021; Zbl 1467.14083) Full Text: DOI arXiv OpenURL
Naito, Satoshi; Orr, Daniel; Sagaki, Daisuke Chevalley formula for anti-dominant weights in the equivariant \(K\)-theory of semi-infinite flag manifolds. (English) Zbl 07369654 Adv. Math. 387, Article ID 107828, 59 p. (2021). MSC: 17B37 14N15 14M15 33D52 81R10 PDF BibTeX XML Cite \textit{S. Naito} et al., Adv. Math. 387, Article ID 107828, 59 p. (2021; Zbl 07369654) Full Text: DOI arXiv OpenURL
Weigandt, Anna Bumpless pipe dreams and alternating sign matrices. (English) Zbl 1475.05172 J. Comb. Theory, Ser. A 182, Article ID 105470, 52 p. (2021). MSC: 05E14 05E05 14N15 14M15 05C31 05E10 13P10 PDF BibTeX XML Cite \textit{A. Weigandt}, J. Comb. Theory, Ser. A 182, Article ID 105470, 52 p. (2021; Zbl 1475.05172) Full Text: DOI arXiv OpenURL
Assaf, Sami H. A generalization of Edelman-Greene insertion for Schubert polynomials. (English) Zbl 1465.05190 Algebr. Comb. 4, No. 2, 359-385 (2021). MSC: 05E10 14N15 05E14 05E05 05A05 05A15 05A19 PDF BibTeX XML Cite \textit{S. H. Assaf}, Algebr. Comb. 4, No. 2, 359--385 (2021; Zbl 1465.05190) Full Text: DOI arXiv OpenURL
Marberg, Eric; Pawlowski, Brendan Principal specializations of Schubert polynomials in classical types. (English) Zbl 1465.05187 Algebr. Comb. 4, No. 2, 273-287 (2021). MSC: 05E05 14M15 PDF BibTeX XML Cite \textit{E. Marberg} and \textit{B. Pawlowski}, Algebr. Comb. 4, No. 2, 273--287 (2021; Zbl 1465.05187) Full Text: DOI arXiv OpenURL
Chan, Melody; Pflueger, Nathan Combinatorial relations on skew Schur and skew stable Grothendieck polynomials. (English) Zbl 1460.05193 Algebr. Comb. 4, No. 1, 175-188 (2021). MSC: 05E10 05E05 05E14 14M15 PDF BibTeX XML Cite \textit{M. Chan} and \textit{N. Pflueger}, Algebr. Comb. 4, No. 1, 175--188 (2021; Zbl 1460.05193) Full Text: DOI arXiv OpenURL
Abreu, Alex; Nigro, Antonio Chromatic symmetric functions from the modular law. (English) Zbl 1459.05334 J. Comb. Theory, Ser. A 180, Article ID 105407, 31 p. (2021). MSC: 05E05 05C15 05E10 05A15 05A30 05A17 14M15 16T05 PDF BibTeX XML Cite \textit{A. Abreu} and \textit{A. Nigro}, J. Comb. Theory, Ser. A 180, Article ID 105407, 31 p. (2021; Zbl 1459.05334) Full Text: DOI arXiv OpenURL
Yeliussizov, Damir Enumeration of plane partitions by descents. (English) Zbl 1457.05114 J. Comb. Theory, Ser. A 178, Article ID 105367, 19 p. (2021). MSC: 05E10 05A15 05A17 05A18 14M15 PDF BibTeX XML Cite \textit{D. Yeliussizov}, J. Comb. Theory, Ser. A 178, Article ID 105367, 19 p. (2021; Zbl 1457.05114) Full Text: DOI arXiv OpenURL
Feigin, Evgeny; Makedonskyi, Ievgen Semi-infinite Plücker relations and Weyl modules. (English) Zbl 1476.14082 Int. Math. Res. Not. 2020, No. 14, 4357-4394 (2020). Reviewer: Mee Seong Im (Annapolis) MSC: 14M15 17B10 17B20 22E60 33D52 PDF BibTeX XML Cite \textit{E. Feigin} and \textit{I. Makedonskyi}, Int. Math. Res. Not. 2020, No. 14, 4357--4394 (2020; Zbl 1476.14082) Full Text: DOI arXiv Link OpenURL
Kato, Syu; Naito, Satoshi; Sagaki, Daisuke Equivariant \(K\)-theory of semi-infinite flag manifolds and the Pieri-Chevalley formula. (English) Zbl 1475.17024 Duke Math. J. 169, No. 13, 2421-2500 (2020). Reviewer: Huafeng Zhang (Villeneuve d’Ascq) MSC: 17B37 14N15 33D52 81R10 PDF BibTeX XML Cite \textit{S. Kato} et al., Duke Math. J. 169, No. 13, 2421--2500 (2020; Zbl 1475.17024) Full Text: DOI arXiv Euclid OpenURL
Darondeau, Lionel; Pragacz, Piotr Flag bundles, Segre polynomials, and push-forwards. (English) Zbl 1451.14157 Hu, Jianxun (ed.) et al., Schubert calculus and its applications in combinatorics and representation theory. Selected papers presented at the “International Festival in Schubert Calculus”, Guangzhou, China, November 6–10, 2017. Singapore: Springer. Springer Proc. Math. Stat. 332, 17-25 (2020). MSC: 14N15 14M15 05E14 PDF BibTeX XML Cite \textit{L. Darondeau} and \textit{P. Pragacz}, Springer Proc. Math. Stat. 332, 17--25 (2020; Zbl 1451.14157) Full Text: DOI arXiv OpenURL
Matsumura, Tomoo; Sugimoto, Shogo Factorial flagged Grothendieck polynomials. (English) Zbl 1448.14053 Hu, Jianxun (ed.) et al., Schubert calculus and its applications in combinatorics and representation theory. Selected papers presented at the “International Festival in Schubert Calculus”, Guangzhou, China, November 6–10, 2017. Singapore: Springer. Springer Proc. Math. Stat. 332, 1-15 (2020). MSC: 14N15 05E14 PDF BibTeX XML Cite \textit{T. Matsumura} and \textit{S. Sugimoto}, Springer Proc. Math. Stat. 332, 1--15 (2020; Zbl 1448.14053) Full Text: DOI arXiv OpenURL
Dołęga, Maciej; Gerber, Thomas; Torres, Jacinta A positive combinatorial formula for symplectic Kostka-Foulkes polynomials. I: Rows. (English) Zbl 1452.05188 J. Algebra 560, 1253-1296 (2020). MSC: 05E10 17B10 05E05 14M15 PDF BibTeX XML Cite \textit{M. Dołęga} et al., J. Algebra 560, 1253--1296 (2020; Zbl 1452.05188) Full Text: DOI arXiv OpenURL
Marberg, Eric; Pawlowski, Brendan \(K\)-theory formulas for orthogonal and symplectic orbit closures. (English) Zbl 1440.19006 Adv. Math. 372, Article ID 107299, 42 p. (2020). MSC: 19E99 05E16 14C35 14N15 14M15 PDF BibTeX XML Cite \textit{E. Marberg} and \textit{B. Pawlowski}, Adv. Math. 372, Article ID 107299, 42 p. (2020; Zbl 1440.19006) Full Text: DOI arXiv OpenURL
Yeliussizov, Damir Dual Grothendieck polynomials via last-passage percolation. (Polynômes de Grothendieck duales par percolation de dernier passage.) (English. French summary) Zbl 1444.05145 C. R., Math., Acad. Sci. Paris 358, No. 4, 497-503 (2020). MSC: 05E05 60K35 60C05 14M15 PDF BibTeX XML Cite \textit{D. Yeliussizov}, C. R., Math., Acad. Sci. Paris 358, No. 4, 497--503 (2020; Zbl 1444.05145) Full Text: DOI arXiv OpenURL
Feigin, Evgeny; Kato, Syu; Makedonskyi, Ievgen Representation theoretic realization of non-symmetric Macdonald polynomials at infinity. (English) Zbl 1484.17018 J. Reine Angew. Math. 764, 181-216 (2020). Reviewer: Daniel Orr (Blacksburg) MSC: 17B10 20G05 05E05 14M15 PDF BibTeX XML Cite \textit{E. Feigin} et al., J. Reine Angew. Math. 764, 181--216 (2020; Zbl 1484.17018) Full Text: DOI arXiv OpenURL
Blasiak, Jonah; Morse, Jennifer; Pun, Anna; Summers, Daniel \(k\)-Schur expansions of Catalan functions. (English) Zbl 1443.05181 Adv. Math. 371, Article ID 107209, 38 p. (2020). MSC: 05E10 14N15 14M15 05E05 PDF BibTeX XML Cite \textit{J. Blasiak} et al., Adv. Math. 371, Article ID 107209, 38 p. (2020; Zbl 1443.05181) Full Text: DOI arXiv OpenURL
Weigandt, Anna; Yong, Alexander The prism tableau model for Schubert polynomials. (English. French summary) Zbl 1440.05229 Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4–8, 2016. Nancy: The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS). Discrete Math. Theor. Comput. Sci., Proc., 1203-1214 (2020). MSC: 05E10 14N15 13P10 PDF BibTeX XML Cite \textit{A. Weigandt} and \textit{A. Yong}, in: Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4--8, 2016. Nancy: The Association. Discrete Mathematics \& Theoretical Computer Science (DMTCS). 1203--1214 (2020; Zbl 1440.05229) Full Text: Link OpenURL
Watanabe, Masaki Kraśkiewicz-Pragacz modules and Pieri and dual Pieri rules for Schubert polynomials. (English. French summary) Zbl 1440.14244 Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4–8, 2016. Nancy: The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS). Discrete Math. Theor. Comput. Sci., Proc., 1195-1202 (2020). MSC: 14N15 13D03 PDF BibTeX XML Cite \textit{M. Watanabe}, in: Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4--8, 2016. Nancy: The Association. Discrete Mathematics \& Theoretical Computer Science (DMTCS). 1195--1202 (2020; Zbl 1440.14244) Full Text: Link OpenURL
Ying, Pun Anna Decomposition of the product of a monomial and a Demazure atom. (English. French summary) Zbl 1440.05238 Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4–8, 2016. Nancy: The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS). Discrete Math. Theor. Comput. Sci., Proc., 1015-1026 (2020). MSC: 05E14 14N15 PDF BibTeX XML Cite \textit{P. A. Ying}, in: Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4--8, 2016. Nancy: The Association. Discrete Mathematics \& Theoretical Computer Science (DMTCS). 1015--1026 (2020; Zbl 1440.05238) Full Text: Link OpenURL
Morales, Alejandro H.; Pak, Igor; Panova, Greta Hook formulas for skew shapes. (English. French summary) Zbl 1440.05225 Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4–8, 2016. Nancy: The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS). Discrete Math. Theor. Comput. Sci., Proc., 899-910 (2020). MSC: 05E10 05A18 11B68 14N15 PDF BibTeX XML Cite \textit{A. H. Morales} et al., in: Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4--8, 2016. Nancy: The Association. Discrete Mathematics \& Theoretical Computer Science (DMTCS). 899--910 (2020; Zbl 1440.05225) Full Text: Link OpenURL
Lee, Seung Jin Combinatorial description of the cohomology of the affine flag variety. (English. French summary) Zbl 1440.05234 Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4–8, 2016. Nancy: The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS). Discrete Math. Theor. Comput. Sci., Proc., 743-754 (2020). MSC: 05E14 14N15 PDF BibTeX XML Cite \textit{S. J. Lee}, in: Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4--8, 2016. Nancy: The Association. Discrete Mathematics \& Theoretical Computer Science (DMTCS). 743--754 (2020; Zbl 1440.05234) Full Text: Link OpenURL
Billey, Sara C.; Holroyd, Alexander E.; Young, Benjamin J. A bijective proof of Macdonald’s reduced word formula. (English. French summary) Zbl 1440.05230 Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4–8, 2016. Nancy: The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS). Discrete Math. Theor. Comput. Sci., Proc., 251-262 (2020). MSC: 05E14 14N15 05A05 PDF BibTeX XML Cite \textit{S. C. Billey} et al., in: Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4--8, 2016. Nancy: The Association. Discrete Mathematics \& Theoretical Computer Science (DMTCS). 251--262 (2020; Zbl 1440.05230) Full Text: Link OpenURL
Hudson, Thomas; Peters, Dennis On the \(K\)-theoretic fundamental class of Deligne-Lusztig varieties. (English) Zbl 1442.14157 J. Pure Appl. Algebra 224, No. 8, Article ID 106335, 8 p. (2020). MSC: 14M15 20G40 19E08 PDF BibTeX XML Cite \textit{T. Hudson} and \textit{D. Peters}, J. Pure Appl. Algebra 224, No. 8, Article ID 106335, 8 p. (2020; Zbl 1442.14157) Full Text: DOI arXiv OpenURL
Matsumura, Tomoo A tableau formula of double Grothendieck polynomials for 321-avoiding permutations. (English) Zbl 1435.05225 Ann. Comb. 24, No. 1, 55-67 (2020). MSC: 05E10 05E05 14M15 05A05 PDF BibTeX XML Cite \textit{T. Matsumura}, Ann. Comb. 24, No. 1, 55--67 (2020; Zbl 1435.05225) Full Text: DOI arXiv OpenURL
Marberg, Eric A symplectic refinement of shifted Hecke insertion. (English) Zbl 1435.05236 J. Comb. Theory, Ser. A 173, Article ID 105216, 50 p. (2020). MSC: 05E14 14M15 PDF BibTeX XML Cite \textit{E. Marberg}, J. Comb. Theory, Ser. A 173, Article ID 105216, 50 p. (2020; Zbl 1435.05236) Full Text: DOI arXiv OpenURL
Azam, Haniya; Nazir, Shaheen; Qureshi, Muhammad Imran The equivariant cohomology of weighted flag orbifolds. (English) Zbl 1439.14154 Math. Z. 294, No. 3-4, 881-900 (2020). MSC: 14N15 14M15 14F43 PDF BibTeX XML Cite \textit{H. Azam} et al., Math. Z. 294, No. 3--4, 881--900 (2020; Zbl 1439.14154) Full Text: DOI arXiv OpenURL
Searles, Dominic Polynomial bases: positivity and Schur multiplication. (English) Zbl 1433.05325 Trans. Am. Math. Soc. 373, No. 2, 819-847 (2020). MSC: 05E10 05E05 14M15 14N15 PDF BibTeX XML Cite \textit{D. Searles}, Trans. Am. Math. Soc. 373, No. 2, 819--847 (2020; Zbl 1433.05325) Full Text: DOI arXiv OpenURL
Yeliussizov, Damir Positive specializations of symmetric Grothendieck polynomials. (English) Zbl 1432.05119 Adv. Math. 363, Article ID 107000, 35 p. (2020). MSC: 05E05 14N15 14M15 PDF BibTeX XML Cite \textit{D. Yeliussizov}, Adv. Math. 363, Article ID 107000, 35 p. (2020; Zbl 1432.05119) Full Text: DOI arXiv OpenURL
Kouno, Takafumi Decomposition of tensor products of Demazure crystals. (English) Zbl 1468.17024 J. Algebra 546, 641-678 (2020). MSC: 17B37 05E16 05E05 14M15 PDF BibTeX XML Cite \textit{T. Kouno}, J. Algebra 546, 641--678 (2020; Zbl 1468.17024) Full Text: DOI arXiv OpenURL
Hamaker, Zachary; Marberg, Eric; Pawlowski, Brendan Fixed-point-free involutions and Schur \(P\)-positivity. (English) Zbl 1427.05226 J. Comb. 11, No. 1, 65-110 (2020). MSC: 05E05 14M15 14N15 PDF BibTeX XML Cite \textit{Z. Hamaker} et al., J. Comb. 11, No. 1, 65--110 (2020; Zbl 1427.05226) Full Text: DOI arXiv OpenURL
Hamaker, Zachary; Marberg, Eric; Pawlowski, Brendan Involution pipe dreams. (English) Zbl 1435.05235 Sémin. Lothar. Comb. 82B, Article 63, 12 p. (2019). MSC: 05E14 14M15 PDF BibTeX XML Cite \textit{Z. Hamaker} et al., Sémin. Lothar. Comb. 82B, Article 63, 12 p. (2019; Zbl 1435.05235) Full Text: arXiv Link OpenURL
Adve, Anshul; Colleen, Robichaux; Alexander, Yong Computational complexity, Newton polytopes, and Schubert polynomials. (English) Zbl 1436.05115 Sémin. Lothar. Comb. 82B, Article 52, 12 p. (2019). MSC: 05E10 05E05 05A15 14M15 68Q17 PDF BibTeX XML Cite \textit{A. Adve} et al., Sémin. Lothar. Comb. 82B, Article 52, 12 p. (2019; Zbl 1436.05115) Full Text: arXiv Link OpenURL
Assaf, Sami; Searles, Dominic Skew polynomials and extended Schur functions. (English) Zbl 1436.05118 Sémin. Lothar. Comb. 82B, Article 31, 12 p. (2019). MSC: 05E10 05E05 14M15 PDF BibTeX XML Cite \textit{S. Assaf} and \textit{D. Searles}, Sémin. Lothar. Comb. 82B, Article 31, 12 p. (2019; Zbl 1436.05118) Full Text: Link OpenURL
Sahi, Siddharta; Salmasian, Hadi Quadratic Capelli operators and Okounkov polynomials. (English. French summary) Zbl 1429.05201 Ann. Sci. Éc. Norm. Supér. (4) 52, No. 4, 867-890 (2019). MSC: 05E05 14M15 22E46 PDF BibTeX XML Cite \textit{S. Sahi} and \textit{H. Salmasian}, Ann. Sci. Éc. Norm. Supér. (4) 52, No. 4, 867--890 (2019; Zbl 1429.05201) Full Text: DOI arXiv OpenURL
Morales, Alejandro H.; Pak, Igor; Panova, Greta Hook formulas for skew shapes. III: Multivariate and product formulas. (English) Zbl 1425.05158 Algebr. Comb. 2, No. 5, 815-861 (2019). MSC: 05E10 05A05 14N15 PDF BibTeX XML Cite \textit{A. H. Morales} et al., Algebr. Comb. 2, No. 5, 815--861 (2019; Zbl 1425.05158) Full Text: DOI arXiv OpenURL
Hwang, Byung-Hak; Kim, Jang Soo; Yoo, Meesue; Yun, Sun-mi Reverse plane partitions of skew staircase shapes and \(q\)-Euler numbers. (English) Zbl 1421.05095 J. Comb. Theory, Ser. A 168, 120-163 (2019). MSC: 05E10 14N15 05A30 11B68 33D15 11A55 PDF BibTeX XML Cite \textit{B.-H. Hwang} et al., J. Comb. Theory, Ser. A 168, 120--163 (2019; Zbl 1421.05095) Full Text: DOI OpenURL
Huyghe, Christine; Schmidt, Tobias \(\mathcal{D}\)-arithmetic modules on the flag variety. (\(\mathcal{D}\)-modules arithmétiques sur la variété de drapeaux.) (French. English summary) Zbl 1440.14100 J. Reine Angew. Math. 754, 1-15 (2019). MSC: 14F10 11F70 14G22 14M15 PDF BibTeX XML Cite \textit{C. Huyghe} and \textit{T. Schmidt}, J. Reine Angew. Math. 754, 1--15 (2019; Zbl 1440.14100) Full Text: DOI OpenURL
Matsumura, Tomoo Flagged Grothendieck polynomials. (English) Zbl 1416.05297 J. Algebr. Comb. 49, No. 3, 209-228 (2019). MSC: 05E10 05E05 14M15 13D15 14C35 PDF BibTeX XML Cite \textit{T. Matsumura}, J. Algebr. Comb. 49, No. 3, 209--228 (2019; Zbl 1416.05297) Full Text: DOI arXiv OpenURL
Pechenik, Oliver; Searles, Dominic Decompositions of Grothendieck polynomials. (English) Zbl 1441.05228 Int. Math. Res. Not. 2019, No. 10, 3214-3241 (2019). MSC: 05E05 14M15 14F25 PDF BibTeX XML Cite \textit{O. Pechenik} and \textit{D. Searles}, Int. Math. Res. Not. 2019, No. 10, 3214--3241 (2019; Zbl 1441.05228) Full Text: DOI arXiv OpenURL
Billey, Sara C.; Holroyd, Alexander E.; Young, Benjamin J. A bijective proof of Macdonald’s reduced word formula. (English) Zbl 1409.05024 Algebr. Comb. 2, No. 2, 217-248 (2019). MSC: 05A17 05A15 05E10 05E05 14M15 60J99 PDF BibTeX XML Cite \textit{S. C. Billey} et al., Algebr. Comb. 2, No. 2, 217--248 (2019; Zbl 1409.05024) Full Text: DOI arXiv OpenURL
Ehler, Martin; Gräf, Manuel Reproducing kernels for the irreducible components of polynomial spaces on unions of Grassmannians. (English) Zbl 1440.42128 Constr. Approx. 49, No. 1, 29-58 (2019). MSC: 42C10 65D32 46E22 33C45 14M15 PDF BibTeX XML Cite \textit{M. Ehler} and \textit{M. Gräf}, Constr. Approx. 49, No. 1, 29--58 (2019; Zbl 1440.42128) Full Text: DOI arXiv OpenURL
Horiguchi, Tatsuya The cohomology rings of regular nilpotent Hessenberg varieties and Schubert polynomials. (English) Zbl 1415.14019 Proc. Japan Acad., Ser. A 94, No. 9, 87-92 (2018). MSC: 14N15 14M15 PDF BibTeX XML Cite \textit{T. Horiguchi}, Proc. Japan Acad., Ser. A 94, No. 9, 87--92 (2018; Zbl 1415.14019) Full Text: DOI arXiv Euclid OpenURL
Weigandt, Anna Prism tableaux for alternating sign matrix varieties. (English) Zbl 1411.05299 Sémin. Lothar. Comb. 80B, Article 52, 12 p. (2018). MSC: 05E15 14N15 14M15 PDF BibTeX XML Cite \textit{A. Weigandt}, Sémin. Lothar. Comb. 80B, Article 52, 12 p. (2018). (2018; Zbl 1411.05299) Full Text: arXiv Link OpenURL
Can, Mahir Bilen; Joyce, Michael; Wyser, Benjamin Wonderful symmetric varieties and Schubert polynomials. (English) Zbl 1423.14292 Ars Math. Contemp. 15, No. 2, 523-542 (2018). MSC: 14M27 05E05 14M15 PDF BibTeX XML Cite \textit{M. B. Can} et al., Ars Math. Contemp. 15, No. 2, 523--542 (2018; Zbl 1423.14292) Full Text: DOI arXiv OpenURL
Gunnells, Paul E.; Letellier, Emmanuel; Rodriguez Villegas, Fernando Torus orbits on homogeneous varieties and Kac polynomials of quivers. (English) Zbl 1445.16012 Math. Z. 290, No. 1-2, 445-467 (2018). Reviewer: Vladimir P. Kostov (Nice) MSC: 16G20 14M15 05E05 05C31 PDF BibTeX XML Cite \textit{P. E. Gunnells} et al., Math. Z. 290, No. 1--2, 445--467 (2018; Zbl 1445.16012) Full Text: DOI arXiv OpenURL
Hu, Yue Higher cohomology vanishing of line bundles on generalized Springer resolution. (English. Russian original) Zbl 1408.14131 Funct. Anal. Appl. 52, No. 3, 214-223 (2018); translation from Funkts. Anal. Prilozh. 52, No. 3, 66-78 (2018). MSC: 14J60 05E05 16G20 14F17 14M15 PDF BibTeX XML Cite \textit{Y. Hu}, Funct. Anal. Appl. 52, No. 3, 214--223 (2018; Zbl 1408.14131); translation from Funkts. Anal. Prilozh. 52, No. 3, 66--78 (2018) Full Text: DOI arXiv OpenURL
Laarakker, Ties The Kleiman-Piene conjecture and node polynomials for plane curves in \(\mathbb{P}^3\). (English) Zbl 1408.14171 Sel. Math., New Ser. 24, No. 5, 4917-4959 (2018). Reviewer: Letterio Gatto (Torino) MSC: 14N10 14C20 14N35 14N15 PDF BibTeX XML Cite \textit{T. Laarakker}, Sel. Math., New Ser. 24, No. 5, 4917--4959 (2018; Zbl 1408.14171) Full Text: DOI arXiv OpenURL
Weigandt, Anna E. Schubert polynomials, 132-patterns, and Stanley’s conjecture. (English) Zbl 1397.05205 Algebr. Comb. 1, No. 4, 415-423 (2018). MSC: 05E15 05E05 14M15 PDF BibTeX XML Cite \textit{A. E. Weigandt}, Algebr. Comb. 1, No. 4, 415--423 (2018; Zbl 1397.05205) Full Text: DOI arXiv OpenURL
Assaf, Sami Nonsymmetric Macdonald polynomials and a refinement of Kostka-Foulkes polynomials. (English) Zbl 1404.33017 Trans. Am. Math. Soc. 370, No. 12, 8777-8796 (2018). Reviewer: Lalit Mohan Upadhyaya (Mussoorie) MSC: 33D52 05E05 14N15 PDF BibTeX XML Cite \textit{S. Assaf}, Trans. Am. Math. Soc. 370, No. 12, 8777--8796 (2018; Zbl 1404.33017) Full Text: DOI arXiv OpenURL
Harnad, J.; Lee, Eunghyun Symmetric polynomials, generalized Jacobi-Trudi identities and \(\tau\)-functions. (English) Zbl 1397.05198 J. Math. Phys. 59, No. 9, 091411, 23 p. (2018). MSC: 05E05 37K10 30C10 30H10 14M15 20G43 35Q53 PDF BibTeX XML Cite \textit{J. Harnad} and \textit{E. Lee}, J. Math. Phys. 59, No. 9, 091411, 23 p. (2018; Zbl 1397.05198) Full Text: DOI arXiv OpenURL
Coşkun, Olcay; Taşkın, Müge Tower diagrams and Pieri’s rule. (English) Zbl 1395.05188 Discrete Math. 341, No. 11, 3089-3105 (2018). MSC: 05E10 05E05 14N15 PDF BibTeX XML Cite \textit{O. Coşkun} and \textit{M. Taşkın}, Discrete Math. 341, No. 11, 3089--3105 (2018; Zbl 1395.05188) Full Text: DOI arXiv OpenURL
Kac, Victor G.; van de Leur, Johan W. Equivalence of formulations of the MKP hierarchy and its polynomial tau-functions. (English) Zbl 1401.14209 Jpn. J. Math. (3) 13, No. 2, 235-271 (2018). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14M15 17B10 17B65 17B67 20G43 22E70 35Q53 35R03 47G30 PDF BibTeX XML Cite \textit{V. G. Kac} and \textit{J. W. van de Leur}, Jpn. J. Math. (3) 13, No. 2, 235--271 (2018; Zbl 1401.14209) Full Text: DOI arXiv Link OpenURL
Hamaker, Zachary; Marberg, Eric; Pawlowski, Brendan Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures. (English) Zbl 1394.05139 J. Comb. Theory, Ser. A 160, 217-260 (2018). MSC: 05E05 05E15 14M15 20G15 20G05 14L30 20F55 PDF BibTeX XML Cite \textit{Z. Hamaker} et al., J. Comb. Theory, Ser. A 160, 217--260 (2018; Zbl 1394.05139) Full Text: DOI arXiv OpenURL
Kato, Syu Demazure character formula for semi-infinite flag varieties. (English) Zbl 1398.14053 Math. Ann. 371, No. 3-4, 1769-1801 (2018). Reviewer: Arvid Siqveland (Kongsberg) MSC: 14M15 17B10 33D52 14C35 19A22 16G99 43A40 PDF BibTeX XML Cite \textit{S. Kato}, Math. Ann. 371, No. 3--4, 1769--1801 (2018; Zbl 1398.14053) Full Text: DOI arXiv Link OpenURL
Morrison, Andrew; Sottile, Frank Two Murnaghan-Nakayama rules in Schubert calculus. (English) Zbl 1395.05186 Ann. Comb. 22, No. 2, 363-375 (2018). Reviewer: Cenap Özel (Bolu) MSC: 05E05 14N15 PDF BibTeX XML Cite \textit{A. Morrison} and \textit{F. Sottile}, Ann. Comb. 22, No. 2, 363--375 (2018; Zbl 1395.05186) Full Text: DOI arXiv OpenURL
Assaf, Sami; Schilling, Anne A Demazure crystal construction for Schubert polynomials. (English) Zbl 1390.14162 Algebr. Comb. 1, No. 2, 225-247 (2018). Reviewer: Cenap Özel (Bolu) MSC: 14N15 05E10 05A05 05E05 05E18 20G42 PDF BibTeX XML Cite \textit{S. Assaf} and \textit{A. Schilling}, Algebr. Comb. 1, No. 2, 225--247 (2018; Zbl 1390.14162) Full Text: DOI arXiv OpenURL