Jȩdrzejak, Tomasz Ranks in the family of hyperelliptic Jacobians of \(y^2= x^5+ax\). II. (English) Zbl 07536472 Int. J. Number Theory 18, No. 4, 813-837 (2022). MSC: 11G10 11G30 11G20 11G25 PDF BibTeX XML Cite \textit{T. Jȩdrzejak}, Int. J. Number Theory 18, No. 4, 813--837 (2022; Zbl 07536472) Full Text: DOI OpenURL
Hida, Haruzo The universal ordinary deformation ring associated to a real quadratic field. (English) Zbl 07501854 Proc. Indian Acad. Sci., Math. Sci. 132, No. 1, Paper No. 17, 51 p. (2022). MSC: 11R23 11F25 11F33 11F80 11F11 11G18 11F27 PDF BibTeX XML Cite \textit{H. Hida}, Proc. Indian Acad. Sci., Math. Sci. 132, No. 1, Paper No. 17, 51 p. (2022; Zbl 07501854) Full Text: DOI OpenURL
Sprung, Florian Ito Chromatic Selmer groups and arithmetic invariants of elliptic curves. (English. French summary) Zbl 07469027 J. Théor. Nombres Bordx. 33, No. 3, Part 2, 1103-1114 (2022). MSC: 11G40 11G40 11R23 14H52 PDF BibTeX XML Cite \textit{F. I. Sprung}, J. Théor. Nombres Bordx. 33, No. 3, Part 2, 1103--1114 (2022; Zbl 07469027) Full Text: DOI OpenURL
Sakamoto, Ryotaro On the theory of Kolyvagin systems of rank 0. (English. French summary) Zbl 07469026 J. Théor. Nombres Bordx. 33, No. 3, Part 2, 1077-1102 (2022). MSC: 11F80 11R34 11R23 PDF BibTeX XML Cite \textit{R. Sakamoto}, J. Théor. Nombres Bordx. 33, No. 3, Part 2, 1077--1102 (2022; Zbl 07469026) Full Text: DOI OpenURL
Hamidi, Parham; Ray, Jishnu Conjecture a and \(\mu\)-invariant for Selmer groups of supersingular elliptic curves. (English. French summary) Zbl 07469018 J. Théor. Nombres Bordx. 33, No. 3, Part 1, 853-886 (2022). MSC: 11G40 11R23 14H52 PDF BibTeX XML Cite \textit{P. Hamidi} and \textit{J. Ray}, J. Théor. Nombres Bordx. 33, No. 3, Part 1, 853--886 (2022; Zbl 07469018) Full Text: DOI arXiv OpenURL
Burungale, Ashay; Tian, Ye The even parity Goldfeld conjecture: congruent number elliptic curves. (English) Zbl 1484.11131 J. Number Theory 230, 161-195 (2022). Reviewer: Riccardo Pengo (Lyon) MSC: 11G05 11G40 PDF BibTeX XML Cite \textit{A. Burungale} and \textit{Y. Tian}, J. Number Theory 230, 161--195 (2022; Zbl 1484.11131) Full Text: DOI arXiv OpenURL
Kleine, Sören Bounding the Iwasawa invariants of Selmer groups. (English) Zbl 07432950 Can. J. Math. 73, No. 5, 1390-1422 (2021). Reviewer: Andrzej Dąbrowski (Szczecin) MSC: 11R23 11G05 11G10 13C12 PDF BibTeX XML Cite \textit{S. Kleine}, Can. J. Math. 73, No. 5, 1390--1422 (2021; Zbl 07432950) Full Text: DOI OpenURL
Tamiozzo, Matteo On the Bloch-Kato conjecture for Hilbert modular forms. (English) Zbl 07402891 Math. Z. 299, No. 1-2, 427-458 (2021). Reviewer: Andrzej Dąbrowski (Szczecin) MSC: 11G40 11F41 11F80 11R23 PDF BibTeX XML Cite \textit{M. Tamiozzo}, Math. Z. 299, No. 1--2, 427--458 (2021; Zbl 07402891) Full Text: DOI arXiv OpenURL
Delbourgo, Daniel Variation of the algebraic \(\lambda\)-invariant over a solvable extension. (English) Zbl 1482.11072 Math. Proc. Camb. Philos. Soc. 170, No. 3, 499-521 (2021). Reviewer: Andrzej Dąbrowski (Szczecin) MSC: 11F33 11F80 11G40 11R23 PDF BibTeX XML Cite \textit{D. Delbourgo}, Math. Proc. Camb. Philos. Soc. 170, No. 3, 499--521 (2021; Zbl 1482.11072) Full Text: DOI OpenURL
Hatton, Richard Kolyvagin derivatives of modular points on elliptic curves. (English) Zbl 1480.11072 J. Number Theory 229, 405-431 (2021). MSC: 11G05 11G18 PDF BibTeX XML Cite \textit{R. Hatton}, J. Number Theory 229, 405--431 (2021; Zbl 1480.11072) Full Text: DOI arXiv OpenURL
Prasad, Dipendra; Shekhar, Sudhanshu Relating the Tate-Shafarevich group of an elliptic curve with the class group. (English) Zbl 07383189 Pac. J. Math. 312, No. 1, 203-218 (2021). Reviewer: Jackson Morrow (Berkeley) MSC: 11G05 PDF BibTeX XML Cite \textit{D. Prasad} and \textit{S. Shekhar}, Pac. J. Math. 312, No. 1, 203--218 (2021; Zbl 07383189) Full Text: DOI arXiv OpenURL
Shnidman, Ari Quadratic twists of abelian varieties with real multiplication. (English) Zbl 1484.14089 Int. Math. Res. Not. 2021, No. 5, 3267-3298 (2021). Reviewer: Riccardo Pengo (Lyon) MSC: 14K15 11G15 PDF BibTeX XML Cite \textit{A. Shnidman}, Int. Math. Res. Not. 2021, No. 5, 3267--3298 (2021; Zbl 1484.14089) Full Text: DOI arXiv OpenURL
Evink, Tim; van der Heiden, Gert-Jan; Top, Jaap Two-descent on some genus two curves. (English) Zbl 1480.11082 Indag. Math., New Ser. 32, No. 4, 883-900 (2021). Reviewer: Francesc Bars Cortina (Bellaterra) MSC: 11G30 14G05 PDF BibTeX XML Cite \textit{T. Evink} et al., Indag. Math., New Ser. 32, No. 4, 883--900 (2021; Zbl 1480.11082) Full Text: DOI arXiv OpenURL
Matar, Ahmed Plus/minus Selmer groups and anticyclotomic \(\mathbb{Z}_p\)-extensions. (English) Zbl 1479.11193 Res. Number Theory 7, No. 3, Paper No. 43, 22 p. (2021). Reviewer: Matteo Longo (Padova) MSC: 11R23 PDF BibTeX XML Cite \textit{A. Matar}, Res. Number Theory 7, No. 3, Paper No. 43, 22 p. (2021; Zbl 1479.11193) Full Text: DOI OpenURL
Ohshita, Tatsuya On higher fitting ideals of certain Iwasawa modules associated with Galois representations and Euler systems. (English) Zbl 07369020 Kyoto J. Math. 61, No. 1, 1-95 (2021). Reviewer: Wei Feng (Beijing) MSC: 11R23 11R29 PDF BibTeX XML Cite \textit{T. Ohshita}, Kyoto J. Math. 61, No. 1, 1--95 (2021; Zbl 07369020) Full Text: DOI OpenURL
Lai, King-Fai; Longhi, Ignazio; Suzuki, Takashi; Tan, Ki-Seng; Trihan, Fabien On the \(\mu\)-invariants of abelian varieties over function fields of positive characteristic. (English) Zbl 1479.11191 Algebra Number Theory 15, No. 4, 863-907 (2021). MSC: 11R23 11G10 11S40 14J27 PDF BibTeX XML Cite \textit{K.-F. Lai} et al., Algebra Number Theory 15, No. 4, 863--907 (2021; Zbl 1479.11191) Full Text: DOI arXiv OpenURL
Jha, Somnath; Majumdar, Dipramit; Shekhar, Sudhanshu \(p^r\)-Selmer companion modular forms. (\(p^r\)-Selmer compagnon formes modulaires.) (English. French summary) Zbl 1472.11132 Ann. Inst. Fourier 71, No. 1, 53-87 (2021). MSC: 11F33 11R23 11R34 11S25 11G40 PDF BibTeX XML Cite \textit{S. Jha} et al., Ann. Inst. Fourier 71, No. 1, 53--87 (2021; Zbl 1472.11132) Full Text: DOI arXiv OpenURL
Khaqan, Maryam Elliptic curves and Thompson’s sporadic simple group. (English) Zbl 1472.11123 J. Number Theory 224, 274-306 (2021). Reviewer: Matthew Krauel (Sacramento) MSC: 11F22 11F37 PDF BibTeX XML Cite \textit{M. Khaqan}, J. Number Theory 224, 274--306 (2021; Zbl 1472.11123) Full Text: DOI arXiv OpenURL
Jędrzejak, Tomasz Ranks in the family of hyperelliptic Jacobians of \(y^2=x^5+ax\). (English) Zbl 1468.11135 J. Number Theory 223, 35-52 (2021). Reviewer: Maciej Ulas (Kraków) MSC: 11G10 11G30 11G20 11G25 PDF BibTeX XML Cite \textit{T. Jędrzejak}, J. Number Theory 223, 35--52 (2021; Zbl 1468.11135) Full Text: DOI OpenURL
Murakami, Kazuaki On a new invariant determining the isomorphism classes of \(\Lambda\)-modules with \(\lambda = 3\). (English) Zbl 1469.11426 Manuscr. Math. 164, No. 3-4, 409-430 (2021). MSC: 11R23 11G05 PDF BibTeX XML Cite \textit{K. Murakami}, Manuscr. Math. 164, No. 3--4, 409--430 (2021; Zbl 1469.11426) Full Text: DOI OpenURL
Hida, Haruzo Cyclicity of adjoint Selmer groups and fundamental units. (English) Zbl 1472.11124 Kurihara, Masato (ed.) et al., Development of Iwasawa theory – the centennial of K. Iwasawa’s birth. Proceedings of the international conference “Iwasawa 2017”, University of Tokyo, Tokyo, Japan, July 19–28, 2017. Tokyo: Mathematical Society of Japan. Adv. Stud. Pure Math. 86, 351-411 (2020). MSC: 11F25 11F33 11F80 11R23 11F11 11F27 11G18 PDF BibTeX XML Cite \textit{H. Hida}, Adv. Stud. Pure Math. 86, 351--411 (2020; Zbl 1472.11124) Full Text: DOI OpenURL
Benois, Denis \(p\)-adic heights and \(p\)-adic Hodge theory. (English. French summary) Zbl 1465.11207 Mém. Soc. Math. Fr., Nouv. Sér. 167, 1-135 (2020). MSC: 11R23 11F80 11S25 11G40 PDF BibTeX XML Cite \textit{D. Benois}, Mém. Soc. Math. Fr., Nouv. Sér. 167, 1--135 (2020; Zbl 1465.11207) Full Text: DOI arXiv OpenURL
Bhargava, M.; Shankar, A.; Taniguchi, T.; Thorne, F.; Tsimerman, J.; Zhao, Y. Bounds on 2-torsion in class groups of number fields and integral points on elliptic curves. (English) Zbl 1456.11101 J. Am. Math. Soc. 33, No. 4, 1087-1099 (2020). Reviewer: Sajad Salami (Rio de Janeiro) MSC: 11G05 11R29 PDF BibTeX XML Cite \textit{M. Bhargava} et al., J. Am. Math. Soc. 33, No. 4, 1087--1099 (2020; Zbl 1456.11101) Full Text: DOI arXiv Link OpenURL
Matar, Ahmed On the \(\Lambda \)-cotorsion subgroup of the Selmer group. (English) Zbl 1444.11120 Asian J. Math. 24, No. 3, 437-456 (2020). MSC: 11G05 11R23 12G05 PDF BibTeX XML Cite \textit{A. Matar}, Asian J. Math. 24, No. 3, 437--456 (2020; Zbl 1444.11120) Full Text: DOI arXiv OpenURL
Chiu, Ching-Heng Strong Selmer companion elliptic curves. (English) Zbl 1469.11167 J. Number Theory 217, 376-421 (2020). MSC: 11G05 PDF BibTeX XML Cite \textit{C.-H. Chiu}, J. Number Theory 217, 376--421 (2020; Zbl 1469.11167) Full Text: DOI Link OpenURL
Saikia, Anupam On the Iwasawa \(\mu \)-invariants of supersingular elliptic curves. (English) Zbl 1477.11186 Acta Arith. 194, No. 2, 179-186 (2020). Reviewer: Cornelius Greither (Neubiberg) MSC: 11R23 11G05 PDF BibTeX XML Cite \textit{A. Saikia}, Acta Arith. 194, No. 2, 179--186 (2020; Zbl 1477.11186) Full Text: DOI OpenURL
Vrećica, Ilija S. Joint distribution for the Selmer ranks of the congruent number curves. (English) Zbl 07217123 Czech. Math. J. 70, No. 1, 105-119 (2020). MSC: 11G05 14H52 11N45 PDF BibTeX XML Cite \textit{I. S. Vrećica}, Czech. Math. J. 70, No. 1, 105--119 (2020; Zbl 07217123) Full Text: DOI OpenURL
Saïdi, Mohamed; Tamagawa, Akio On the arithmetic of abelian varieties. (English) Zbl 1465.11152 J. Reine Angew. Math. 762, 1-33 (2020). Reviewer: Noriko Yui (Kingston) MSC: 11G10 14K15 PDF BibTeX XML Cite \textit{M. Saïdi} and \textit{A. Tamagawa}, J. Reine Angew. Math. 762, 1--33 (2020; Zbl 1465.11152) Full Text: DOI arXiv Link OpenURL
Ohshita, Tatsuya Asymptotic lower bound of class numbers along a Galois representation. (English) Zbl 1454.11200 J. Number Theory 211, 95-112 (2020). Reviewer: Piotr Krasoń (Szczecin) MSC: 11R29 11G05 11G10 11R23 PDF BibTeX XML Cite \textit{T. Ohshita}, J. Number Theory 211, 95--112 (2020; Zbl 1454.11200) Full Text: DOI arXiv OpenURL
Freitas, Nuno; Naskręcki, Bartosz; Stoll, Michael The generalized Fermat equation with exponents \(2,3,n\). (English) Zbl 1450.11024 Compos. Math. 156, No. 1, 77-113 (2020). Reviewer: Maciej Ulas (Kraków) MSC: 11D41 11F80 11G05 11G07 11G30 14G05 14G25 PDF BibTeX XML Cite \textit{N. Freitas} et al., Compos. Math. 156, No. 1, 77--113 (2020; Zbl 1450.11024) Full Text: DOI arXiv OpenURL
Banerjee, Kalyan; Chakraborty, Kalyan; Hoque, Azizul Divisibility of Selmer groups and class groups. (English) Zbl 1480.11077 Hardy-Ramanujan J. 42, 85-99 (2019). Reviewer: Nikolaj M. Glazunov (Kyïv) MSC: 11G10 11R29 11R65 14C25 14C05 14C20 PDF BibTeX XML Cite \textit{K. Banerjee} et al., Hardy-Ramanujan J. 42, 85--99 (2019; Zbl 1480.11077) Full Text: arXiv Link OpenURL
Bhave, Amala; Bora, Lachit On the Selmer group of a certain \(p\)-adic Lie extension. (English) Zbl 1456.11209 Bull. Aust. Math. Soc. 100, No. 2, 245-255 (2019). MSC: 11R23 11R20 11R34 PDF BibTeX XML Cite \textit{A. Bhave} and \textit{L. Bora}, Bull. Aust. Math. Soc. 100, No. 2, 245--255 (2019; Zbl 1456.11209) Full Text: DOI OpenURL
Lei, Antonio; Palvannan, Bharathwaj Codimension two cycles in Iwasawa theory and elliptic curves with supersingular reduction. (English) Zbl 1456.11212 Forum Math. Sigma 7, Paper No. e25, 81 p. (2019). Reviewer: Wei Feng (Beijing) MSC: 11R23 11G05 11G07 11R34 11S25 PDF BibTeX XML Cite \textit{A. Lei} and \textit{B. Palvannan}, Forum Math. Sigma 7, Paper No. e25, 81 p. (2019; Zbl 1456.11212) Full Text: DOI arXiv OpenURL
Morgan, Adam Quadratic twists of abelian varieties and disparity in Selmer ranks. (English) Zbl 1455.11087 Algebra Number Theory 13, No. 4, 839-899 (2019). Reviewer: Sajad Salami (Rio de Janeiro) MSC: 11G10 PDF BibTeX XML Cite \textit{A. Morgan}, Algebra Number Theory 13, No. 4, 839--899 (2019; Zbl 1455.11087) Full Text: DOI arXiv OpenURL
Liu, Yifeng Bounding cubic-triple product Selmer groups of elliptic curves. (English) Zbl 1472.11182 J. Eur. Math. Soc. (JEMS) 21, No. 5, 1411-1508 (2019). Reviewer: Andrea Bandini (Pisa) MSC: 11G05 11R34 14G35 PDF BibTeX XML Cite \textit{Y. Liu}, J. Eur. Math. Soc. (JEMS) 21, No. 5, 1411--1508 (2019; Zbl 1472.11182) Full Text: DOI arXiv OpenURL
Im, Bo-Hae; Kim, Byoung Du Ranks of rational points of the Jacobian varieties of hyperelliptic curves. (English) Zbl 1458.11098 J. Number Theory 195, 23-50 (2019). MSC: 11G10 11R23 14G05 14G25 PDF BibTeX XML Cite \textit{B.-H. Im} and \textit{B. D. Kim}, J. Number Theory 195, 23--50 (2019; Zbl 1458.11098) Full Text: DOI arXiv OpenURL
Poonen, Bjorn Heuristics for the arithmetic of elliptic curves. (English) Zbl 1443.11100 Sirakov, Boyan (ed.) et al., Proceedings of the international congress of mathematicians, ICM 2018, Rio de Janeiro, Brazil, August 1–9, 2018. Volume II. Invited lectures. Hackensack, NJ: World Scientific; Rio de Janeiro: Sociedade Brasileira de Matemática (SBM). 399-414 (2018). MSC: 11G05 11G40 14G25 14H52 14K15 PDF BibTeX XML Cite \textit{B. Poonen}, in: Proceedings of the international congress of mathematicians, ICM 2018, Rio de Janeiro, Brazil, August 1--9, 2018. Volume II. Invited lectures. Hackensack, NJ: World Scientific; Rio de Janeiro: Sociedade Brasileira de Matemática (SBM). 399--414 (2018; Zbl 1443.11100) Full Text: DOI arXiv OpenURL
Česnavičius, Kęstutis The \(\ell\)-parity conjecture over the constant quadratic extension. (English) Zbl 1448.11111 Math. Proc. Camb. Philos. Soc. 165, No. 3, 385-409 (2018). MSC: 11G10 11G40 PDF BibTeX XML Cite \textit{K. Česnavičius}, Math. Proc. Camb. Philos. Soc. 165, No. 3, 385--409 (2018; Zbl 1448.11111) Full Text: DOI arXiv OpenURL
Dummit, David S.; Voight, John The 2-Selmer group of a number field and heuristics for narrow class groups and signature ranks of units. (English) Zbl 1457.11152 Proc. Lond. Math. Soc. (3) 117, No. 4, 682-726 (2018). MSC: 11R29 11R27 11R45 11Y40 PDF BibTeX XML Cite \textit{D. S. Dummit} and \textit{J. Voight}, Proc. Lond. Math. Soc. (3) 117, No. 4, 682--726 (2018; Zbl 1457.11152) Full Text: DOI arXiv OpenURL
Mazur, Barry; Rubin, Karl; Larsen, Michael Diophantine stability. (English) Zbl 06924832 Am. J. Math. 140, No. 3, 571-616 (2018). MSC: 14G05 11G05 14H25 14K05 PDF BibTeX XML Cite \textit{B. Mazur} et al., Am. J. Math. 140, No. 3, 571--616 (2018; Zbl 06924832) Full Text: DOI arXiv OpenURL
Lim, Meng Fai; Sujatha, Ramdorai Fine Selmer groups of congruent Galois representations. (English) Zbl 1430.11148 J. Number Theory 187, 66-91 (2018). MSC: 11R23 11R34 11F80 16S34 PDF BibTeX XML Cite \textit{M. F. Lim} and \textit{R. Sujatha}, J. Number Theory 187, 66--91 (2018; Zbl 1430.11148) Full Text: DOI arXiv OpenURL
Elias, Yara On the Selmer group attached to a modular form and an algebraic Hecke character. (English) Zbl 1431.11082 Ramanujan J. 45, No. 1, 141-169 (2018). Reviewer: Kazuma Morita (Sapporo) MSC: 11G40 14G10 11G05 11G35 PDF BibTeX XML Cite \textit{Y. Elias}, Ramanujan J. 45, No. 1, 141--169 (2018; Zbl 1431.11082) Full Text: DOI arXiv OpenURL
Lai, King Fai; Longhi, Ignazio; Tan, Ki-Seng; Trihan, Fabien Pontryagin duality for Iwasawa modules and abelian varieties. (English) Zbl 1444.11236 Trans. Am. Math. Soc. 370, No. 3, 1925-1958 (2018). Reviewer: Andrea Bandini (Pisa) MSC: 11S40 11R23 11R34 11R42 11R58 11G05 11G10 PDF BibTeX XML Cite \textit{K. F. Lai} et al., Trans. Am. Math. Soc. 370, No. 3, 1925--1958 (2018; Zbl 1444.11236) Full Text: DOI arXiv OpenURL
Stoll, Michael Chabauty without the Mordell-Weil group. (English) Zbl 1425.11131 Böckle, Gebhard (ed.) et al., Algorithmic and experimental methods in algebra, geometry, and number theory. Cham: Springer. 623-663 (2017). MSC: 11G30 14G05 14G25 14H25 11Y50 11D41 PDF BibTeX XML Cite \textit{M. Stoll}, in: Algorithmic and experimental methods in algebra, geometry, and number theory. Cham: Springer. 623--663 (2017; Zbl 1425.11131) Full Text: DOI arXiv OpenURL
Macias Castillo, Daniel On the Krull-Schmidt decomposition of Mordell-Weil groups. (English) Zbl 1434.11122 Tokyo J. Math. 40, No. 2, 353-378 (2017). MSC: 11G35 11R33 11R34 PDF BibTeX XML Cite \textit{D. Macias Castillo}, Tokyo J. Math. 40, No. 2, 353--378 (2017; Zbl 1434.11122) Full Text: Euclid OpenURL
Tian, Ye; Yuan, Xinyi; Zhang, Shou-Wu Genus periods, genus points and congruent number problem. (English) Zbl 1441.11172 Asian J. Math. 21, No. 4, 721-774 (2017). MSC: 11G40 11G05 11D25 PDF BibTeX XML Cite \textit{Y. Tian} et al., Asian J. Math. 21, No. 4, 721--774 (2017; Zbl 1441.11172) Full Text: DOI arXiv OpenURL
Jha, Somnath; Majumdar, Dipramit Functional equation for the Selmer group of nearly ordinary Hida deformation of Hilbert modular forms. (English) Zbl 1441.11275 Asian J. Math. 21, No. 3, 397-428 (2017). MSC: 11R23 11F41 11F33 11F80 PDF BibTeX XML Cite \textit{S. Jha} and \textit{D. Majumdar}, Asian J. Math. 21, No. 3, 397--428 (2017; Zbl 1441.11275) Full Text: DOI arXiv OpenURL
Česnavičius, Kęstutis \(p\)-Selmer growth in extensions of degree \(p\). (English) Zbl 1396.11088 J. Lond. Math. Soc., II. Ser. 95, No. 3, 833-852 (2017). Reviewer: Mohammad Sadek (New Cairo) MSC: 11G10 11R34 11R58 PDF BibTeX XML Cite \textit{K. Česnavičius}, J. Lond. Math. Soc., II. Ser. 95, No. 3, 833--852 (2017; Zbl 1396.11088) Full Text: DOI arXiv OpenURL
Lei, Antonio; Loeffler, David; Zerbes, Sarah Livia On the asymptotic growth of Bloch-Kato-Shafarevich-Tate groups of modular forms over cyclotomic extensions. (English) Zbl 1430.11146 Can. J. Math. 69, No. 4, 826-850 (2017). Reviewer: Gabriel D. Villa Salvador (México D. F.) MSC: 11R18 11F11 11R23 11F85 PDF BibTeX XML Cite \textit{A. Lei} et al., Can. J. Math. 69, No. 4, 826--850 (2017; Zbl 1430.11146) Full Text: DOI arXiv OpenURL
Klagsbrun, Zev Selmer ranks of quadratic twists of elliptic curves with partial rational two-torsion. (English) Zbl 1377.11071 Trans. Am. Math. Soc. 369, No. 5, 3355-3385 (2017). Reviewer: Masato Kuwata (Tokyo) MSC: 11G05 14G25 14H52 PDF BibTeX XML Cite \textit{Z. Klagsbrun}, Trans. Am. Math. Soc. 369, No. 5, 3355--3385 (2017; Zbl 1377.11071) Full Text: DOI arXiv OpenURL
Liu, Yifeng Hirzebruch-Zagier cycles and twisted triple product Selmer groups. (English) Zbl 1395.11091 Invent. Math. 205, No. 3, 693-780 (2016). Reviewer: Sungkon Chang (Savannah) MSC: 11G05 11R34 14G35 PDF BibTeX XML Cite \textit{Y. Liu}, Invent. Math. 205, No. 3, 693--780 (2016; Zbl 1395.11091) Full Text: DOI arXiv OpenURL
Darmon, Henri; Rotger, Victor Elliptic curves of rank two and generalised Kato classes. (English) Zbl 1416.11096 Res. Math. Sci. 3, Paper No. 27, 32 p. (2016). MSC: 11G18 14G35 PDF BibTeX XML Cite \textit{H. Darmon} and \textit{V. Rotger}, Res. Math. Sci. 3, Paper No. 27, 32 p. (2016; Zbl 1416.11096) Full Text: DOI Link OpenURL
Jha, Somnath; Ochiai, Tadashi; Zábrádi, Gergely On twists of modules over noncommutative Iwasawa algebras. (English) Zbl 1341.11061 Algebra Number Theory 10, No. 3, 685-694 (2016). Reviewer: Andrea Bandini (Parma) MSC: 11R23 16S50 PDF BibTeX XML Cite \textit{S. Jha} et al., Algebra Number Theory 10, No. 3, 685--694 (2016; Zbl 1341.11061) Full Text: DOI arXiv OpenURL
Bhargava, Manjul; Ho, Wei Coregular spaces and genus one curves. (English) Zbl 1342.14074 Camb. J. Math. 4, No. 1, 1-119 (2016). Reviewer: Michel Waldschmidt (Paris) MSC: 14H60 11E12 11E20 11E76 11G05 11R45 14H52 PDF BibTeX XML Cite \textit{M. Bhargava} and \textit{W. Ho}, Camb. J. Math. 4, No. 1, 1--119 (2016; Zbl 1342.14074) Full Text: DOI arXiv OpenURL
Lai, King Fai; Longhi, Ignazio; Tan, Ki-Seng; Trihan, Fabien The Iwasawa main conjecture for semistable abelian varieties over function fields. (English) Zbl 1387.11079 Math. Z. 282, No. 1-2, 485-510 (2016). Reviewer: Thong Nguyen Quang Do (Besançon) MSC: 11R23 11G05 11G10 11R34 11R42 11R58 11S40 PDF BibTeX XML Cite \textit{K. F. Lai} et al., Math. Z. 282, No. 1--2, 485--510 (2016; Zbl 1387.11079) Full Text: DOI arXiv Link OpenURL
Zamani, Naser; Shams, Arman On the group of the elliptic curve \(y^2 = x^3 + 4px\). (English) Zbl 1389.11102 Eur. J. Pure Appl. Math. 8, No. 1, 126-134 (2015). MSC: 11G05 PDF BibTeX XML Cite \textit{N. Zamani} and \textit{A. Shams}, Eur. J. Pure Appl. Math. 8, No. 1, 126--134 (2015; Zbl 1389.11102) Full Text: Link OpenURL
Stoll, Michael Descent and covering collections. (English) Zbl 1343.14021 Beshaj, Lubjana (ed.) et al., Advances on superelliptic curves and their applications. Based on the NATO Advanced Study Institute (ASI), Ohrid, Macedonia, 2014. Amsterdam: IOS Press (ISBN 978-1-61499-519-7/hbk; 978-1-61499-520-3/ebook). NATO Science for Peace and Security Series D: Information and Communication Security 41, 176-193 (2015). MSC: 14H30 14H45 14G05 PDF BibTeX XML Cite \textit{M. Stoll}, NATO Sci. Peace Secur. Ser. D, Inf. Commun. Secur. 41, 176--193 (2015; Zbl 1343.14021) Full Text: DOI OpenURL
Daghigh, Hassan; Didari, Somayeh On the elliptic curves of the form \(y^2 = x^3 - pqx\). (English) Zbl 1395.11087 Iran. J. Math. Sci. Inform. 10, No. 2, 77-86 (2015). MSC: 11G05 14H52 PDF BibTeX XML Cite \textit{H. Daghigh} and \textit{S. Didari}, Iran. J. Math. Sci. Inform. 10, No. 2, 77--86 (2015; Zbl 1395.11087) Full Text: Link OpenURL
Pries, Rachel; Weir, Colin The Ekedahl-Oort type of Jacobians of Hermitian curves. (English) Zbl 1392.11038 Asian J. Math. 19, No. 5, 845-869 (2015). MSC: 11G20 14H40 PDF BibTeX XML Cite \textit{R. Pries} and \textit{C. Weir}, Asian J. Math. 19, No. 5, 845--869 (2015; Zbl 1392.11038) Full Text: DOI arXiv OpenURL
Dokchitser, Tim; Dokchitser, Vladimir Growth of \({\text Ш}\) in towers for isogenous curves. (English) Zbl 1351.11035 Compos. Math. 151, No. 11, 1981-2005 (2015). Reviewer: Andrea Bandini (Parma) MSC: 11G10 11G40 11G05 11G07 11R23 11D68 PDF BibTeX XML Cite \textit{T. Dokchitser} and \textit{V. Dokchitser}, Compos. Math. 151, No. 11, 1981--2005 (2015; Zbl 1351.11035) Full Text: DOI arXiv OpenURL
Burns, David; Castillo, Daniel Macias; Wuthrich, Christian On the Galois structure of Selmer groups. (English) Zbl 1334.11043 Int. Math. Res. Not. 2015, No. 22, 11909-11933 (2015). Reviewer: Fumio Hazama (Hatoyama) MSC: 11G10 11R34 14K15 PDF BibTeX XML Cite \textit{D. Burns} et al., Int. Math. Res. Not. 2015, No. 22, 11909--11933 (2015; Zbl 1334.11043) Full Text: DOI arXiv Link OpenURL
Elias, Yara Kolyvagin’s method for Chow groups of Kuga-Sato varieties over ring class fields. (English. French summary) Zbl 1398.11101 Ann. Math. Qué. 39, No. 2, 147-167 (2015). MSC: 11G40 11G18 14C15 PDF BibTeX XML Cite \textit{Y. Elias}, Ann. Math. Qué. 39, No. 2, 147--167 (2015; Zbl 1398.11101) Full Text: DOI arXiv OpenURL
Wan, Xin The Iwasawa main conjecture for Hilbert modular forms. (English) Zbl 1379.11089 Forum Math. Sigma 3, Paper No. e18, 95 p. (2015). MSC: 11R23 11F41 PDF BibTeX XML Cite \textit{X. Wan}, Forum Math. Sigma 3, Paper No. e18, 95 p. (2015; Zbl 1379.11089) Full Text: DOI OpenURL
Backhausz, Tibor; Zábrádi, Gergely Algebraic functional equations and completely faithful Selmer groups. (English) Zbl 1325.11113 Int. J. Number Theory 11, No. 4, 1233-1257 (2015). Reviewer: L. N. Vaserstein (University Park) MSC: 11R23 11G05 PDF BibTeX XML Cite \textit{T. Backhausz} and \textit{G. Zábrádi}, Int. J. Number Theory 11, No. 4, 1233--1257 (2015; Zbl 1325.11113) Full Text: DOI arXiv OpenURL
Lim, Meng Fai; Murty, V. Kumar Growth of Selmer groups of CM abelian varieties. (English) Zbl 1394.11052 Can. J. Math. 67, No. 3, 654-666 (2015). MSC: 11G15 11G10 11R23 11R34 PDF BibTeX XML Cite \textit{M. F. Lim} and \textit{V. K. Murty}, Can. J. Math. 67, No. 3, 654--666 (2015; Zbl 1394.11052) Full Text: DOI OpenURL
Lim, Meng Fai On completely faithful Selmer groups of elliptic curves and Hida deformations. (English) Zbl 1325.11054 J. Algebra 432, 72-90 (2015). Reviewer: Piotr Krasoń (Szczecin) MSC: 11F80 11G05 11R23 11R34 16S34 PDF BibTeX XML Cite \textit{M. F. Lim}, J. Algebra 432, 72--90 (2015; Zbl 1325.11054) Full Text: DOI arXiv OpenURL
Česnavičius, Kęstutis Selmer groups and class groups. (English) Zbl 1319.11037 Compos. Math. 151, No. 3, 416-434 (2015). Reviewer: Davide Lombardo (Orsay) MSC: 11G10 11R23 11R29 11R58 PDF BibTeX XML Cite \textit{K. Česnavičius}, Compos. Math. 151, No. 3, 416--434 (2015; Zbl 1319.11037) Full Text: DOI arXiv OpenURL
Lai, King Fai; Longhi, Ignazio; Tan, Ki-Seng; Trihan, Fabien An example of non-cotorsion Selmer group. (English) Zbl 1310.11065 Proc. Am. Math. Soc. 143, No. 6, 2355-2364 (2015). Reviewer: Andreas Nickel (Bielefeld) MSC: 11G05 11R23 11R58 PDF BibTeX XML Cite \textit{K. F. Lai} et al., Proc. Am. Math. Soc. 143, No. 6, 2355--2364 (2015; Zbl 1310.11065) Full Text: DOI OpenURL
Xiong, Maosheng On positive proportion of rank-zero twists of elliptic curves over \(\mathbb{Q}\). (English) Zbl 1323.11038 J. Aust. Math. Soc. 98, No. 2, 281-288 (2015). Reviewer: Davide Lombardo (Orsay) MSC: 11G05 14H52 PDF BibTeX XML Cite \textit{M. Xiong}, J. Aust. Math. Soc. 98, No. 2, 281--288 (2015; Zbl 1323.11038) Full Text: DOI arXiv OpenURL
Bhargava, Manjul; Shankar, Arul Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0. (English) Zbl 1317.11038 Ann. Math. (2) 181, No. 2, 587-621 (2015). Reviewer: Michael Th. Rassias (Princeton) MSC: 11E76 11G05 PDF BibTeX XML Cite \textit{M. Bhargava} and \textit{A. Shankar}, Ann. Math. (2) 181, No. 2, 587--621 (2015; Zbl 1317.11038) Full Text: DOI arXiv OpenURL
Cremona, J. E.; Fisher, T. A.; O’Neil, C.; Simon, D.; Stoll, M. Explicit \(n\)-descent on elliptic curves. III: Algorithms. (English) Zbl 1308.11058 Math. Comput. 84, No. 292, 895-922 (2015). Reviewer: Noburo Ishii (Kyoto) MSC: 11G05 14H25 14H52 PDF BibTeX XML Cite \textit{J. E. Cremona} et al., Math. Comput. 84, No. 292, 895--922 (2015; Zbl 1308.11058) Full Text: DOI arXiv OpenURL
Thorne, Jack A. \(E_{6}\) and the arithmetic of a family of non-hyperelliptic curves of genus 3. (English) Zbl 1346.14058 Forum Math. Pi 3, Paper No. e1, 41 p. (2015). Reviewer: Christophe Ritzenthaler (Marseille) MSC: 14G05 14L30 11G30 PDF BibTeX XML Cite \textit{J. A. Thorne}, Forum Math. Pi 3, Paper No. e1, 41 p. (2015; Zbl 1346.14058) Full Text: DOI OpenURL
Bhargava, Manjul; Shankar, Arul Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves. (English) Zbl 1307.11071 Ann. Math. (2) 181, No. 1, 191-242 (2015). Reviewer: D. R. Heath-Brown (Oxford) MSC: 11G05 11E76 11P21 PDF BibTeX XML Cite \textit{M. Bhargava} and \textit{A. Shankar}, Ann. Math. (2) 181, No. 1, 191--242 (2015; Zbl 1307.11071) Full Text: DOI arXiv OpenURL
Schaefer, Edward F. Corrigendum to: “Class groups and Selmer groups”. (English) Zbl 1384.11074 J. Number Theory 135, 390 (2014). MSC: 11G10 14K02 11R29 11R34 11G35 PDF BibTeX XML Cite \textit{E. F. Schaefer}, J. Number Theory 135, 390 (2014; Zbl 1384.11074) Full Text: DOI OpenURL
Daghigh, H.; Didari, S. On the elliptic curves of the form \(y^2=x^3-3px\). (English) Zbl 1364.11104 Bull. Iran. Math. Soc. 40, No. 5, 1119-1133 (2014). MSC: 11G05 14H52 PDF BibTeX XML Cite \textit{H. Daghigh} and \textit{S. Didari}, Bull. Iran. Math. Soc. 40, No. 5, 1119--1133 (2014; Zbl 1364.11104) Full Text: Link OpenURL
Hố, Q. P.; Lê Hùng, V. B.; Ngô, B. C. Average size of 2-Selmer groups of elliptic curves over function fields. (English) Zbl 1316.14055 Math. Res. Lett. 21, No. 6, 1305-1339 (2014). Reviewer: Andrea Bandini (Parma) MSC: 14H52 11G05 11E76 PDF BibTeX XML Cite \textit{Q. P. Hố} et al., Math. Res. Lett. 21, No. 6, 1305--1339 (2014; Zbl 1316.14055) Full Text: DOI arXiv OpenURL
Zhang, Wei Selmer groups and the indivisibility of Heegner points. (English) Zbl 1390.11091 Camb. J. Math. 2, No. 2, 191-253 (2014). MSC: 11G05 11G40 PDF BibTeX XML Cite \textit{W. Zhang}, Camb. J. Math. 2, No. 2, 191--253 (2014; Zbl 1390.11091) Full Text: DOI OpenURL
Li, Xiumei; Zeng, Jinxiang On the elliptic curve \(y^2= x^3-2rDx\) and factoring integers. (English) Zbl 1384.11103 Sci. China, Math. 57, No. 4, 719-728 (2014). MSC: 11Y05 11Y11 11Y40 11G05 14G50 PDF BibTeX XML Cite \textit{X. Li} and \textit{J. Zeng}, Sci. China, Math. 57, No. 4, 719--728 (2014; Zbl 1384.11103) Full Text: DOI OpenURL
Poonen, Bjorn; Stoll, Michael Most odd degree hyperelliptic curves have only one rational point. (English) Zbl 1303.11073 Ann. Math. (2) 180, No. 3, 1137-1166 (2014). Reviewer: Ruben A. Hidalgo (Temuco) MSC: 11G30 14G25 PDF BibTeX XML Cite \textit{B. Poonen} and \textit{M. Stoll}, Ann. Math. (2) 180, No. 3, 1137--1166 (2014; Zbl 1303.11073) Full Text: DOI arXiv OpenURL
Burns, David; Macias Castillo, Daniel Organizing matrices for arithmetic complexes. (English) Zbl 1311.11103 Int. Math. Res. Not. 2014, No. 10, 2814-2883 (2014). Reviewer: Andreas Nickel (Bielefeld) MSC: 11R23 11G05 19F05 11R70 PDF BibTeX XML Cite \textit{D. Burns} and \textit{D. Macias Castillo}, Int. Math. Res. Not. 2014, No. 10, 2814--2883 (2014; Zbl 1311.11103) Full Text: DOI Link OpenURL
Jha, Somnath; Pal, Aprameyo Algebraic functional equation for Hida family. (English) Zbl 1317.11109 Int. J. Number Theory 10, No. 7, 1649-1674 (2014). Reviewer: Thong Nguyen Quang Do (Besançon) MSC: 11R23 11F33 11F80 11G05 11G40 PDF BibTeX XML Cite \textit{S. Jha} and \textit{A. Pal}, Int. J. Number Theory 10, No. 7, 1649--1674 (2014; Zbl 1317.11109) Full Text: DOI OpenURL
Lei, Antonio; Loeffler, David; Zerbes, Sarah Livia Euler systems for Rankin-Selberg convolutions of modular forms. (English) Zbl 1315.11044 Ann. Math. (2) 180, No. 2, 653-771 (2014). Reviewer: Andrzej Dąbrowski (Szczecin) MSC: 11F80 11F85 11F67 14C15 PDF BibTeX XML Cite \textit{A. Lei} et al., Ann. Math. (2) 180, No. 2, 653--771 (2014; Zbl 1315.11044) Full Text: DOI arXiv OpenURL
Moehlmann, G. Computation of Mordell-Weil bases for ordinary elliptic curves in characteristic two. (English) Zbl 1296.11065 LMS J. Comput. Math. 17A, Spec. Iss., 1-13 (2014). MSC: 11G05 11G07 14G25 14G17 PDF BibTeX XML Cite \textit{G. Moehlmann}, LMS J. Comput. Math. 17A, 1--13 (2014; Zbl 1296.11065) Full Text: DOI OpenURL
Li, Zane Kun Quadratic twists of elliptic curves with 3-Selmer rank 1. (English) Zbl 1297.14037 Int. J. Number Theory 10, No. 5, 1191-1217 (2014). Reviewer: Andrea Bandini (Parma) MSC: 14H52 11G05 PDF BibTeX XML Cite \textit{Z. K. Li}, Int. J. Number Theory 10, No. 5, 1191--1217 (2014; Zbl 1297.14037) Full Text: DOI arXiv OpenURL
Delaunay, Christophe; Jouhet, Frédéric The Cohen-Lenstra heuristics, moments and \(p^j\)-ranks of some groups. (English) Zbl 1306.11088 Acta Arith. 164, No. 3, 245-263 (2014). Reviewer: Fumio Hazama (Hatoyama) MSC: 11R29 11G05 PDF BibTeX XML Cite \textit{C. Delaunay} and \textit{F. Jouhet}, Acta Arith. 164, No. 3, 245--263 (2014; Zbl 1306.11088) Full Text: DOI arXiv OpenURL
González-Jiménez, Enrique; Xarles, Xavier On a conjecture of Rudin on squares in arithmetic progressions. (English) Zbl 1314.11059 LMS J. Comput. Math. 17, 58-76 (2014). Reviewer: Sungkon Chang (Savannah) MSC: 11N13 11G30 11B25 11D45 14H25 PDF BibTeX XML Cite \textit{E. González-Jiménez} and \textit{X. Xarles}, LMS J. Comput. Math. 17, 58--76 (2014; Zbl 1314.11059) Full Text: DOI arXiv OpenURL
Pal, Aprameyo Functional equation of characteristic elements of Abelian varieties over function fields \((\ell \neq p)\). (English) Zbl 1295.11122 Int. J. Number Theory 10, No. 3, 705-735 (2014). Reviewer: Andrea Bandini (Parma) MSC: 11R23 11G05 11G40 11M38 PDF BibTeX XML Cite \textit{A. Pal}, Int. J. Number Theory 10, No. 3, 705--735 (2014; Zbl 1295.11122) Full Text: DOI OpenURL
Lim, Meng Fai; Murty, V. Kumar The growth of the Selmer group of an elliptic curve with split multiplicative reduction. (English) Zbl 1295.11062 Int. J. Number Theory 10, No. 3, 675-687 (2014). Reviewer: Andrzej Dąbrowski (Szczecin) MSC: 11G05 11R23 11R34 PDF BibTeX XML Cite \textit{M. F. Lim} and \textit{V. K. Murty}, Int. J. Number Theory 10, No. 3, 675--687 (2014; Zbl 1295.11062) Full Text: DOI OpenURL
Skinner, Christopher; Urban, Eric The Iwasawa Main Conjectures for \(\mathrm{GL}_{2}\). (English) Zbl 1301.11074 Invent. Math. 195, No. 1, 1-277 (2014). Reviewer: Wei Feng (Beijing) MSC: 11R23 11F85 11G05 11F80 11F33 PDF BibTeX XML Cite \textit{C. Skinner} and \textit{E. Urban}, Invent. Math. 195, No. 1, 1--277 (2014; Zbl 1301.11074) Full Text: DOI OpenURL
Bruin, Nils Success and challenges in determining the rational points on curves. (English) Zbl 1344.11048 Howe, Everett W. (ed.) et al., ANTS X. Proceedings of the tenth algorithmic number theory symposium, San Diego, CA, USA, July 9–13, 2012. Berkeley, CA: Mathematical Sciences Publishers (MSP) (ISBN 978-1-935107-00-2/hbk; 978-1-935107-01-9/ebook). The Open Book Series 1, 187-212 (2013). MSC: 11G30 11D45 14H45 11G10 PDF BibTeX XML Cite \textit{N. Bruin}, Open Book Ser. 1, 187--212 (2013; Zbl 1344.11048) OpenURL
Urban, Eric On the rank of Selmer groups for elliptic curves over \(\mathbb Q\). (English) Zbl 1371.11094 Prasad, D. (ed.) et al., Automorphic representations and \(L\)-functions. Proceedings of the international colloquium, Mumbai, India, January 3–11, 2012. New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research (ISBN 978-93-80250-49-6/hbk). Studies in Mathematics. Tata Institute of Fundamental Research 22, 651-680 (2013). MSC: 11F67 11F70 11G05 PDF BibTeX XML Cite \textit{E. Urban}, in: Automorphic representations and \(L\)-functions. Proceedings of the international colloquium, Mumbai, India, January 3--11, 2012. New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research. 651--680 (2013; Zbl 1371.11094) OpenURL
Bhargava, Manjul; Gross, Benedict H. The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point. (English) Zbl 1303.11072 Prasad, D. (ed.) et al., Automorphic representations and \(L\)-functions. Proceedings of the international colloquium, Mumbai, India, January 3–11, 2012. New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research (ISBN 978-93-80250-49-6/hbk). Studies in Mathematics. Tata Institute of Fundamental Research 22, 23-91 (2013). MSC: 11G30 11G05 14H55 14H40 PDF BibTeX XML Cite \textit{M. Bhargava} and \textit{B. H. Gross}, in: Automorphic representations and \(L\)-functions. Proceedings of the international colloquium, Mumbai, India, January 3--11, 2012. New Delhi: Hindustan Book Agency; Mumbai: Tata Institute of Fundamental Research. 23--91 (2013; Zbl 1303.11072) Full Text: arXiv OpenURL
Li, Xiumei On the Selmer groups and Mordell-Weil groups of elliptic curves \(y^2 = x(x \pm p)(x \pm q)\) over imaginary quadratic number fields of class number one. (English) Zbl 1299.11046 Adv. Math., Beijing 42, No. 3, 302-314 (2013). MSC: 11G05 14H52 PDF BibTeX XML Cite \textit{X. Li}, Adv. Math., Beijing 42, No. 3, 302--314 (2013; Zbl 1299.11046) Full Text: arXiv OpenURL
Poonen, Bjorn Average rank of elliptic curves [after Manjul Bhargava and Arul Shankar]. (English) Zbl 1295.11065 Séminaire Bourbaki. Volume 2011/2012. Exposés 1043–1058. Paris: Société Mathématique de France (SMF) (ISBN 978-2-85629-371-3/pbk). Astérisque 352, 187-204, Exp. No. 1049 (2013). Reviewer: Amos Turchet (Gothenburg) MSC: 11G05 14H52 11G40 PDF BibTeX XML Cite \textit{B. Poonen}, Astérisque 352, 187--204, Exp. No. 1049 (2013; Zbl 1295.11065) Full Text: arXiv OpenURL
Kim, Byoung Du The plus/minus Selmer groups for supersingular primes. (English) Zbl 1291.11094 J. Aust. Math. Soc. 95, No. 2, 189-200 (2013). Reviewer: Lawrence C. Washington (College Park) MSC: 11G05 11G07 11R23 11R34 PDF BibTeX XML Cite \textit{B. D. Kim}, J. Aust. Math. Soc. 95, No. 2, 189--200 (2013; Zbl 1291.11094) Full Text: DOI OpenURL
Bartel, Alex Elliptic curves with \(p\)-Selmer growth for all \(p\). (English) Zbl 1290.11090 Q. J. Math. 64, No. 4, 947-954 (2013). Reviewer: Filip Najman (Zagreb) MSC: 11G05 11R23 11R34 PDF BibTeX XML Cite \textit{A. Bartel}, Q. J. Math. 64, No. 4, 947--954 (2013; Zbl 1290.11090) Full Text: DOI arXiv OpenURL
Longo, Matteo; Rotger, Victor; Vigni, Stefano Special values of \(L\)-functions and the arithmetic of Darmon points. (English) Zbl 1312.11051 J. Reine Angew. Math. 684, 199-244 (2013). Reviewer: Xiao Xiao (Utica) MSC: 11G18 11G40 11F67 PDF BibTeX XML Cite \textit{M. Longo} et al., J. Reine Angew. Math. 684, 199--244 (2013; Zbl 1312.11051) Full Text: DOI arXiv OpenURL
Kane, Daniel M. On the ranks of the 2-Selmer groups of twists of a given elliptic curve. (English) Zbl 1300.11061 Algebra Number Theory 7, No. 5, 1253-1279 (2013). MSC: 11G05 PDF BibTeX XML Cite \textit{D. M. Kane}, Algebra Number Theory 7, No. 5, 1253--1279 (2013; Zbl 1300.11061) Full Text: DOI arXiv OpenURL
Sprung, Florian The Šafarevič-Tate group in cyclotomic \(\mathbb Z_p\)-extensions at supersingular primes. (English) Zbl 1288.11060 J. Reine Angew. Math. 681, 199-218 (2013). Reviewer: Gabriel D. Villa-Salvador (México D. F.) MSC: 11G05 11R23 PDF BibTeX XML Cite \textit{F. Sprung}, J. Reine Angew. Math. 681, 199--218 (2013; Zbl 1288.11060) Full Text: DOI arXiv OpenURL
Fisher, Tom Invariant theory for the elliptic normal quintic. I: Twists of \(X(5)\). (English) Zbl 1304.11045 Math. Ann. 356, No. 2, 589-616 (2013). Reviewer: Andrea Bandini (Parma) MSC: 11G05 11Y40 13A50 14H25 PDF BibTeX XML Cite \textit{T. Fisher}, Math. Ann. 356, No. 2, 589--616 (2013; Zbl 1304.11045) Full Text: DOI arXiv OpenURL