Aljoudi, Shorog Exact solutions of the fractional Sharma-Tasso-Olver equation and the fractional Bogoyavlenskii’s breaking soliton equations. (English) Zbl 07424148 Appl. Math. Comput. 405, Article ID 126237, 10 p. (2021). MSC: 26Axx 92Dxx 92Cxx PDF BibTeX XML Cite \textit{S. Aljoudi}, Appl. Math. Comput. 405, Article ID 126237, 10 p. (2021; Zbl 07424148) Full Text: DOI OpenURL
Abdou, Mohammed Aly; Ouahid, Loubna; Owyed, Saud; Abdel-Baset, A. M.; Inc, Mustafa; Akinlar, Mehmet Ali; Chu, Yu-Ming Explicit solutions to the Sharma-Tasso-Olver equation. (English) Zbl 1484.35010 AIMS Math. 5, No. 6, 7272-7284 (2020). MSC: 35A09 35E05 PDF BibTeX XML Cite \textit{M. A. Abdou} et al., AIMS Math. 5, No. 6, 7272--7284 (2020; Zbl 1484.35010) Full Text: DOI OpenURL
Al-Shawba, Altaf A.; Abdullah, Farah A.; Azmi, Amirah; Akbar, M. Ali An extension of the double \((G'/G,1/G)\)-expansion method for conformable fractional differential equations. (English) Zbl 1458.35443 Complexity 2020, Article ID 7967328, 13 p. (2020). MSC: 35R11 35K58 35C05 PDF BibTeX XML Cite \textit{A. A. Al-Shawba} et al., Complexity 2020, Article ID 7967328, 13 p. (2020; Zbl 1458.35443) Full Text: DOI OpenURL
Kang, Zhou-Zheng; Xia, Tie-Cheng; Ma, Wen-Xiu Abundant multiwave solutions to the \((3+1)\)-dimensional Sharma-Tasso-Olver-like equation. (English) Zbl 1463.35150 Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 20, No. 2, 115-122 (2019). MSC: 35C05 37M05 PDF BibTeX XML Cite \textit{Z.-Z. Kang} et al., Proc. Rom. Acad., Ser. A, Math. Phys. Tech. Sci. Inf. Sci. 20, No. 2, 115--122 (2019; Zbl 1463.35150) OpenURL
Ren, Xiaojing; Ge, Nannan New exact solutions of time-fractional Sharma-Tasso-Olver equation and Zakharov equations. (Chinese. English summary) Zbl 1449.35448 J. Jilin Univ., Sci. 57, No. 3, 562-566 (2019). MSC: 35R11 PDF BibTeX XML Cite \textit{X. Ren} and \textit{N. Ge}, J. Jilin Univ., Sci. 57, No. 3, 562--566 (2019; Zbl 1449.35448) Full Text: DOI OpenURL
Xiong, Shuxue; Sun, Yuhuai A novel exact solution to the nonlinear fractional Sharma-Tasso-Olver equation. (Chinese. English summary) Zbl 1424.35292 J. Yunnan Minzu Univ., Nat. Sci. 27, No. 3, 202-205 (2018). MSC: 35Q51 35R11 PDF BibTeX XML Cite \textit{S. Xiong} and \textit{Y. Sun}, J. Yunnan Minzu Univ., Nat. Sci. 27, No. 3, 202--205 (2018; Zbl 1424.35292) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid; El-Tantawy, S. A. New \((3+1)\)-dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple-soliton solutions. (English) Zbl 1373.37161 Nonlinear Dyn. 87, No. 4, 2457-2461 (2017). MSC: 37K10 35C05 PDF BibTeX XML Cite \textit{A.-M. Wazwaz} and \textit{S. A. El-Tantawy}, Nonlinear Dyn. 87, No. 4, 2457--2461 (2017; Zbl 1373.37161) Full Text: DOI OpenURL
Rezazadeh, Hadi; Khodadad, Farid Samsami; Manafian, Jalil New structure for exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation via conformable fractional derivative. (English) Zbl 1368.34015 Appl. Appl. Math. 12, No. 1, 405-414 (2017). MSC: 34A08 34G20 PDF BibTeX XML Cite \textit{H. Rezazadeh} et al., Appl. Appl. Math. 12, No. 1, 405--414 (2017; Zbl 1368.34015) Full Text: Link OpenURL
Guner, Ozkan; Korkmaz, Alper; Bekir, Ahmet Dark soliton solutions of space-time fractional Sharma-Tasso-Olver and potential Kadomtsev-Petviashvili equations. (English) Zbl 1358.35156 Commun. Theor. Phys. 67, No. 2, 182-188 (2017). MSC: 35Q53 35C08 35R11 PDF BibTeX XML Cite \textit{O. Guner} et al., Commun. Theor. Phys. 67, No. 2, 182--188 (2017; Zbl 1358.35156) Full Text: DOI OpenURL
Ege, Serife Muge Extended traveling wave solutions for some nonlinear equations. (English) Zbl 1378.35238 Adv. Math., Sci. J. 5, No. 2, 179-189 (2016). MSC: 35Q35 35C07 35Q53 PDF BibTeX XML Cite \textit{S. M. Ege}, Adv. Math., Sci. J. 5, No. 2, 179--189 (2016; Zbl 1378.35238) OpenURL
Chen, Xumei; Liu, Mengxue; Wang, Linjun Generalized \((G'/G)\)-expansion method for solving variable-coefficient Sharma-Tasso-Olver equation. (Chinese. English summary) Zbl 1374.35331 J. Jilin Univ., Sci. 54, No. 6, 1341-1344 (2016). MSC: 35Q51 PDF BibTeX XML Cite \textit{X. Chen} et al., J. Jilin Univ., Sci. 54, No. 6, 1341--1344 (2016; Zbl 1374.35331) Full Text: DOI OpenURL
Gómez S., Cesar A. A nonlinear fractional Sharma-Tasso-Olver equation: new exact solutions. (English) Zbl 1410.35274 Appl. Math. Comput. 266, 385-389 (2015). MSC: 35R11 35C05 PDF BibTeX XML Cite \textit{C. A. Gómez S.}, Appl. Math. Comput. 266, 385--389 (2015; Zbl 1410.35274) Full Text: DOI OpenURL
Pu, Huan; Jia, Man CTE solvability, exact solutions and nonlocal symmetries of the Sharma-Tasso-Olver equation. (English) Zbl 1330.35369 Commun. Theor. Phys. 64, No. 6, 623-629 (2015). MSC: 35Q51 35C05 35C08 PDF BibTeX XML Cite \textit{H. Pu} and \textit{M. Jia}, Commun. Theor. Phys. 64, No. 6, 623--629 (2015; Zbl 1330.35369) Full Text: DOI OpenURL
Fang, Yong; Dong, Huanhe; Hou, Yijun; Kong, Yuan Frobenius integrable decompositions of nonlinear evolution equations with modified term. (English) Zbl 1364.35073 Appl. Math. Comput. 226, 435-440 (2014). MSC: 35G20 35G25 58J72 35Q53 PDF BibTeX XML Cite \textit{Y. Fang} et al., Appl. Math. Comput. 226, 435--440 (2014; Zbl 1364.35073) Full Text: DOI OpenURL
Wang, Gang-Wei; Xu, Tian-Zhou Invariant analysis and exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation by Lie group analysis. (English) Zbl 1319.35291 Nonlinear Dyn. 76, No. 1, 571-580 (2014). MSC: 35R11 PDF BibTeX XML Cite \textit{G.-W. Wang} and \textit{T.-Z. Xu}, Nonlinear Dyn. 76, No. 1, 571--580 (2014; Zbl 1319.35291) Full Text: DOI OpenURL
Kudryashov, Nikolai A.; Sinelshchikov, Dmitry I. The Cauchy problem for the equation of the Burgers hierarchy. (English) Zbl 1319.35220 Nonlinear Dyn. 76, No. 1, 561-569 (2014). MSC: 35Q53 35A08 PDF BibTeX XML Cite \textit{N. A. Kudryashov} and \textit{D. I. Sinelshchikov}, Nonlinear Dyn. 76, No. 1, 561--569 (2014; Zbl 1319.35220) Full Text: DOI OpenURL
Ma, Zhimin; Sun, Yuhuai A modified \((G'/G)\)-expansion method and travelling solutions for the Sharma-Tasso-Olver equation. (Chinese. English summary) Zbl 1313.35050 J. Sichuan Norm. Univ., Nat. Sci. 37, No. 4, 473-476 (2014). MSC: 35C07 35Q51 PDF BibTeX XML Cite \textit{Z. Ma} and \textit{Y. Sun}, J. Sichuan Norm. Univ., Nat. Sci. 37, No. 4, 473--476 (2014; Zbl 1313.35050) Full Text: DOI OpenURL
Aslan, İsmail Application of the division theorem to nonlinear phisical models for constructing traveling waves. (English) Zbl 1299.35068 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 75, No. 1, 13-24 (2013). MSC: 35C08 35C20 35Q53 37K10 PDF BibTeX XML Cite \textit{İ. Aslan}, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 75, No. 1, 13--24 (2013; Zbl 1299.35068) OpenURL
Xue, Bo; Wu, Chen-Ming Conservation laws and Darboux transformation for Sharma-Tasso-Olver equation. (English) Zbl 1264.37033 Commun. Theor. Phys. 58, No. 3, 317-322 (2012). MSC: 37K10 35Q53 37K35 PDF BibTeX XML Cite \textit{B. Xue} and \textit{C.-M. Wu}, Commun. Theor. Phys. 58, No. 3, 317--322 (2012; Zbl 1264.37033) Full Text: DOI OpenURL
El-Sabbagh, M. F.; El-Ganaini, S. I. The first integral method and its applications to nonlinear equations. (English) Zbl 1308.35045 Appl. Math. Sci., Ruse 6, No. 77-80, 3893-3906 (2012). MSC: 35C05 35Q53 PDF BibTeX XML Cite \textit{M. F. El-Sabbagh} and \textit{S. I. El-Ganaini}, Appl. Math. Sci., Ruse 6, No. 77--80, 3893--3906 (2012; Zbl 1308.35045) Full Text: Link OpenURL
Aslan, Ismail Rational and multi-wave solutions to nonlinear evolution equations by means of the Exp-function method. (English) Zbl 1249.35284 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 74, No. 1, 25-34 (2012). MSC: 35Q53 PDF BibTeX XML Cite \textit{I. Aslan}, Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 74, No. 1, 25--34 (2012; Zbl 1249.35284) OpenURL
Kudryashov, Nikolay A. Special polynomials associated with the Burgers hierarchy. (English) Zbl 1430.35198 Appl. Math. Comput. 218, No. 15, 7972-7976 (2012). MSC: 35Q35 33E99 35C05 PDF BibTeX XML Cite \textit{N. A. Kudryashov}, Appl. Math. Comput. 218, No. 15, 7972--7976 (2012; Zbl 1430.35198) Full Text: DOI OpenURL
Salas, Alvaro H. Exact solutions to a generalized Sharma-Tasso-Olver equation. (English) Zbl 1244.35025 Appl. Math. Sci., Ruse 5, No. 45-48, 2289-2295 (2011). MSC: 35C05 PDF BibTeX XML Cite \textit{A. H. Salas}, Appl. Math. Sci., Ruse 5, No. 45--48, 2289--2295 (2011; Zbl 1244.35025) Full Text: Link OpenURL
Zayed, Elsayed M. E. A note on the modified simple equation method applied to Sharma-Tasso-Olver equation. (English) Zbl 1239.35170 Appl. Math. Comput. 218, No. 7, 3962-3964 (2011). MSC: 35Q92 35Q51 35A24 35C08 PDF BibTeX XML Cite \textit{E. M. E. Zayed}, Appl. Math. Comput. 218, No. 7, 3962--3964 (2011; Zbl 1239.35170) Full Text: DOI OpenURL
Knyazev, M. A. Kink-type states in the Sharma-Tasso-Olver model. (English. Russian original) Zbl 1232.35143 Russ. Phys. J. 54, No. 3, 391-392 (2011); translation from Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 111-112 (2011). MSC: 35Q51 35C08 PDF BibTeX XML Cite \textit{M. A. Knyazev}, Russ. Phys. J. 54, No. 3, 391--392 (2011; Zbl 1232.35143); translation from Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 111--112 (2011) Full Text: DOI OpenURL
Shang, Yadong; Huang, Yong; Yuan, Wenjun Bäcklund transformations and abundant exact explicit solutions of the Sharma-Tasso-Olver equation. (English) Zbl 1219.37052 Appl. Math. Comput. 217, No. 17, 7172-7183 (2011). Reviewer: Ivan C. Sterling (St. Mary’s City) MSC: 37K35 PDF BibTeX XML Cite \textit{Y. Shang} et al., Appl. Math. Comput. 217, No. 17, 7172--7183 (2011; Zbl 1219.37052) Full Text: DOI OpenURL
Chen, Aihua Multi-kink solutions and soliton fission and fusion of Sharma-Tasso-Olver equation. (English) Zbl 1237.37047 Phys. Lett., A 374, No. 23, 2340-2345 (2010). MSC: 37K10 37K35 37K40 35C08 35Q51 PDF BibTeX XML Cite \textit{A. Chen}, Phys. Lett., A 374, No. 23, 2340--2345 (2010; Zbl 1237.37047) Full Text: DOI OpenURL
Mohamad Jawad, Anwar Ja’afar; Petković, Marko D.; Biswas, Anjan Modified simple equation method for nonlinear evolution equations. (English) Zbl 1201.65119 Appl. Math. Comput. 217, No. 2, 869-877 (2010). MSC: 65L05 34A25 34A34 65M70 35Q92 35Q40 PDF BibTeX XML Cite \textit{A. J. Mohamad Jawad} et al., Appl. Math. Comput. 217, No. 2, 869--877 (2010; Zbl 1201.65119) Full Text: DOI OpenURL
Pan, Jun-Ting; Chen, Wei-Zhong A new auxiliary equation method and its application to the Sharma-Tasso-Olver model. (English) Zbl 1233.34004 Phys. Lett., A 373, No. 35, 3118-3121 (2009). MSC: 34A34 37L05 37K40 PDF BibTeX XML Cite \textit{J.-T. Pan} and \textit{W.-Z. Chen}, Phys. Lett., A 373, No. 35, 3118--3121 (2009; Zbl 1233.34004) Full Text: DOI OpenURL
Kaya, Dogan; Inan, Ibrahim E. Exact solutions to the various nonlinear evolution equations. (English) Zbl 1177.35200 Phys. Scr. 79, No. 4, Article ID 045005, 7 p. (2009). MSC: 35Q53 35C05 PDF BibTeX XML Cite \textit{D. Kaya} and \textit{I. E. Inan}, Phys. Scr. 79, No. 4, Article ID 045005, 7 p. (2009; Zbl 1177.35200) Full Text: DOI OpenURL
Bekir, Ahmet; Boz, Ahmet Exact solutions for nonlinear evolution equations using Exp-function method. (English) Zbl 1217.35151 Phys. Lett., A 372, No. 10, 1619-1625 (2008). MSC: 35Q51 37L05 35Q55 81Q05 PDF BibTeX XML Cite \textit{A. Bekir} and \textit{A. Boz}, Phys. Lett., A 372, No. 10, 1619--1625 (2008; Zbl 1217.35151) Full Text: DOI OpenURL
Kudryashov, Nikolai A.; Loguinova, Nadejda B. Extended simplest equation method for nonlinear differential equations. (English) Zbl 1168.34003 Appl. Math. Comput. 205, No. 1, 396-402 (2008). Reviewer: Vladimir L. Makarov (Kyïv) MSC: 34A05 PDF BibTeX XML Cite \textit{N. A. Kudryashov} and \textit{N. B. Loguinova}, Appl. Math. Comput. 205, No. 1, 396--402 (2008; Zbl 1168.34003) Full Text: DOI OpenURL
Shang, Yadong; Qin, Jinghong; Huang, Yong; Yuan, Wenjun Abundant exact and explicit solitary wave and periodic wave solutions to the Sharma-Tasso-Olver equation. (English) Zbl 1151.65076 Appl. Math. Comput. 202, No. 2, 532-538 (2008). MSC: 65M70 35Q51 PDF BibTeX XML Cite \textit{Y. Shang} et al., Appl. Math. Comput. 202, No. 2, 532--538 (2008; Zbl 1151.65076) Full Text: DOI OpenURL
Verheest, Frank; Hereman, Willy Nonlinear mode decoupling for classes of evolution equations. (English) Zbl 0486.35076 J. Phys. A 15, 95-102 (1982). MSC: 35Q99 35G20 70K99 PDF BibTeX XML Cite \textit{F. Verheest} and \textit{W. Hereman}, J. Phys. A, Math. Gen. 15, 95--102 (1982; Zbl 0486.35076) Full Text: DOI Link OpenURL