Zhao, Jingjun; Lv, Zhiqiang; Xu, Yang A weak Galerkin method with rectangle partitions for the Signorini problem. (English) Zbl 07562950 Comput. Appl. Math. 41, No. 5, Paper No. 207, 19 p. (2022). MSC: 65N15 65N30 PDF BibTeX XML Cite \textit{J. Zhao} et al., Comput. Appl. Math. 41, No. 5, Paper No. 207, 19 p. (2022; Zbl 07562950) Full Text: DOI OpenURL
Khandelwal, Rohit; Porwal, Kamana Pointwise a posteriori error analysis of a finite element method for the Signorini problem. (English) Zbl 1492.65316 J. Sci. Comput. 91, No. 2, Paper No. 42, 34 p. (2022). MSC: 65N30 65N15 65N75 74B10 74M15 35A23 35B45 35B65 35J86 PDF BibTeX XML Cite \textit{R. Khandelwal} and \textit{K. Porwal}, J. Sci. Comput. 91, No. 2, Paper No. 42, 34 p. (2022; Zbl 1492.65316) Full Text: DOI OpenURL
Adly, Samir; Bourdin, Loïc; Caubet, Fabien Sensitivity analysis of a Tresca-type problem leads to Signorini’s conditions. (English) Zbl 1490.49032 ESAIM, Control Optim. Calc. Var. 28, Paper No. 29, 29 p. (2022). MSC: 49Q12 49J40 46N10 74M15 PDF BibTeX XML Cite \textit{S. Adly} et al., ESAIM, Control Optim. Calc. Var. 28, Paper No. 29, 29 p. (2022; Zbl 1490.49032) Full Text: DOI OpenURL
Baiz, Othmane; Benaissa, Hicham Finite element approximation and numerical analysis of thermoelectroelastic frictional contact problem with frictional heating. (English) Zbl 1499.74035 Comput. Appl. Math. 41, No. 4, Paper No. 145, 25 p. (2022). MSC: 74F05 74F15 74G30 74M10 74M15 74S05 PDF BibTeX XML Cite \textit{O. Baiz} and \textit{H. Benaissa}, Comput. Appl. Math. 41, No. 4, Paper No. 145, 25 p. (2022; Zbl 1499.74035) Full Text: DOI OpenURL
Mezabia, M. E.; Chacha, D. A.; Bensayah, A. Modelling of frictionless Signorini problem for a linear elastic membrane shell. (English) Zbl 1491.74077 Appl. Anal. 101, No. 6, 2295-2315 (2022). MSC: 74M15 74K25 74G10 35Q74 PDF BibTeX XML Cite \textit{M. E. Mezabia} et al., Appl. Anal. 101, No. 6, 2295--2315 (2022; Zbl 1491.74077) Full Text: DOI OpenURL
Di Fazio, Luca; Spadaro, Emanuele Regularity of solutions to nonlinear thin and boundary obstacle problems. (English) Zbl 1494.35198 Adv. Math. 401, Article ID 108263, 39 p. (2022). Reviewer: Wenhui Shi (Clayton) MSC: 35R35 35B65 35J87 49Q05 PDF BibTeX XML Cite \textit{L. Di Fazio} and \textit{E. Spadaro}, Adv. Math. 401, Article ID 108263, 39 p. (2022; Zbl 1494.35198) Full Text: DOI arXiv OpenURL
Jarušek, Jiří On the existence of solutions to quasistatic frictional rational contact problems with limited interpenetration. (English) Zbl 1492.74119 Nonlinear Anal., Real World Appl. 65, Article ID 103468, 14 p. (2022). MSC: 74M15 74M10 35Q74 74G30 74H20 PDF BibTeX XML Cite \textit{J. Jarušek}, Nonlinear Anal., Real World Appl. 65, Article ID 103468, 14 p. (2022; Zbl 1492.74119) Full Text: DOI OpenURL
Fernández-Real, Xavier The thin obstacle problem: a survey. (English) Zbl 1487.35002 Publ. Mat., Barc. 66, No. 1, 3-55 (2022). Reviewer: Wenhui Shi (Clayton) MSC: 35-02 35J57 35J86 35R35 47G20 74M20 PDF BibTeX XML Cite \textit{X. Fernández-Real}, Publ. Mat., Barc. 66, No. 1, 3--55 (2022; Zbl 1487.35002) Full Text: DOI arXiv OpenURL
Rüland, Angkana; Shi, Wenhui Higher regularity for the Signorini problem for the homogeneous, isotropic Lamé system. (English) Zbl 1483.35064 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112762, 17 p. (2022). MSC: 35B65 35J57 35J86 74B05 74M15 PDF BibTeX XML Cite \textit{A. Rüland} and \textit{W. Shi}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 217, Article ID 112762, 17 p. (2022; Zbl 1483.35064) Full Text: DOI arXiv OpenURL
Zolotukhin, A. Y. Approximate solution of the Signorini problem by the finite element method in three-dimensional space. (Russian. English summary) Zbl 1492.65337 Dal’nevost. Mat. Zh. 21, No. 2, 203-214 (2021). MSC: 65N30 49J40 PDF BibTeX XML Cite \textit{A. Y. Zolotukhin}, Dal'nevost. Mat. Zh. 21, No. 2, 203--214 (2021; Zbl 1492.65337) Full Text: DOI MNR OpenURL
Abide, S.; Mansouri, W.; Cherkaoui, S.; Cheng, X. High-order compact scheme finite difference discretization for Signorini’s problem. (English) Zbl 1484.35228 Int. J. Comput. Math. 98, No. 3, 580-591 (2021). MSC: 35J65 65D15 PDF BibTeX XML Cite \textit{S. Abide} et al., Int. J. Comput. Math. 98, No. 3, 580--591 (2021; Zbl 1484.35228) Full Text: DOI OpenURL
Li, Mingxia; Hua, Dongying; Lian, Hairong On \(P_1\) nonconforming finite element aproximation for the Signorini problem. (English) Zbl 1458.65149 Electron Res. Arch. 29, No. 2, 2029-2045 (2021). Reviewer: Bülent Karasözen (Ankara) MSC: 65N30 65N15 65N12 74M10 74M15 35J86 35Q74 PDF BibTeX XML Cite \textit{M. Li} et al., Electron Res. Arch. 29, No. 2, 2029--2045 (2021; Zbl 1458.65149) Full Text: DOI OpenURL
Walloth, Mirjam Residual-type a posteriori error estimator for a quasi-static Signorini contact problem. (English) Zbl 1466.65205 IMA J. Numer. Anal. 40, No. 3, 1937-1971 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65N30 65N15 74M10 74M15 74B05 74D05 74S05 35Q74 PDF BibTeX XML Cite \textit{M. Walloth}, IMA J. Numer. Anal. 40, No. 3, 1937--1971 (2020; Zbl 1466.65205) Full Text: DOI OpenURL
Danielli, Donatella An overview of the obstacle problem. (English) Zbl 1461.35247 Notices Am. Math. Soc. 67, No. 10, 1487-1497 (2020). MSC: 35R35 35B65 35J86 35-02 PDF BibTeX XML Cite \textit{D. Danielli}, Notices Am. Math. Soc. 67, No. 10, 1487--1497 (2020; Zbl 1461.35247) Full Text: DOI OpenURL
Burman, Erik; Frei, Stefan; Scroggs, Matthew W. Weak imposition of Signorini boundary conditions on the boundary element method. (English) Zbl 1451.65213 SIAM J. Numer. Anal. 58, No. 4, 2334-2350 (2020). Reviewer: Andreas Kleefeld (Jülich) MSC: 65N38 65R20 65N15 74M15 PDF BibTeX XML Cite \textit{E. Burman} et al., SIAM J. Numer. Anal. 58, No. 4, 2334--2350 (2020; Zbl 1451.65213) Full Text: DOI arXiv OpenURL
Li, Xiaolin; Li, Shuling A complex variable boundary point interpolation method for the nonlinear Signorini problem. (English) Zbl 1446.65187 Comput. Math. Appl. 79, No. 12, 3297-3309 (2020). MSC: 65N35 65N38 65D05 74M10 74M15 74B20 35Q74 74S15 PDF BibTeX XML Cite \textit{X. Li} and \textit{S. Li}, Comput. Math. Appl. 79, No. 12, 3297--3309 (2020; Zbl 1446.65187) Full Text: DOI OpenURL
Christof, Constantin; Haubner, Christof Finite element error estimates in non-energy norms for the two-dimensional scalar Signorini problem. (English) Zbl 1453.65404 Numer. Math. 145, No. 3, 513-551 (2020). MSC: 65N30 35J86 65K15 65N15 65N12 74B05 74M10 35Q74 PDF BibTeX XML Cite \textit{C. Christof} and \textit{C. Haubner}, Numer. Math. 145, No. 3, 513--551 (2020; Zbl 1453.65404) Full Text: DOI OpenURL
Apel, Thomas; Nicaise, Serge Regularity of the solution of the scalar Signorini problem in polygonal domains. (English) Zbl 1443.35017 Result. Math. 75, No. 2, Paper No. 75, 15 p. (2020). Reviewer: Wenhui Shi (Heidelberg) MSC: 35B65 49N60 35J25 35J86 35B40 PDF BibTeX XML Cite \textit{T. Apel} and \textit{S. Nicaise}, Result. Math. 75, No. 2, Paper No. 75, 15 p. (2020; Zbl 1443.35017) Full Text: DOI arXiv OpenURL
Migórski, Stanisław; Liu, Zhenhai; Zeng, Shengda A class of history-dependent differential variational inequalities with application to contact problems. (English) Zbl 1437.35511 Optimization 69, No. 4, 743-775 (2020). Reviewer: Dumitru Motreanu (Perpignan) MSC: 35L86 35L87 35Q74 74M10 PDF BibTeX XML Cite \textit{S. Migórski} et al., Optimization 69, No. 4, 743--775 (2020; Zbl 1437.35511) Full Text: DOI OpenURL
Mezabia, M. E.; Ghezal, A.; Chacha, D. A. Asymptotic analysis of frictional contact problem for piezoelectric shallow shell. (English) Zbl 1473.74105 Q. J. Mech. Appl. Math. 72, No. 4, 473-499 (2019). MSC: 74M15 74M10 74F15 74K25 74G10 PDF BibTeX XML Cite \textit{M. E. Mezabia} et al., Q. J. Mech. Appl. Math. 72, No. 4, 473--499 (2019; Zbl 1473.74105) Full Text: DOI OpenURL
Almasi, Ashkan; Kim, Tae-Yeon; Laursen, Tod A.; Song, Jeong-Hoon A strong form meshfree collocation method for frictional contact on a rigid obstacle. (English) Zbl 1442.74136 Comput. Methods Appl. Mech. Eng. 357, Article ID 112597, 20 p. (2019). MSC: 74M10 65N35 PDF BibTeX XML Cite \textit{A. Almasi} et al., Comput. Methods Appl. Mech. Eng. 357, Article ID 112597, 20 p. (2019; Zbl 1442.74136) Full Text: DOI OpenURL
Li, Xiaolin; Dong, Haiyun Analysis of the element-free Galerkin method for Signorini problems. (English) Zbl 1428.74210 Appl. Math. Comput. 346, 41-56 (2019). MSC: 74S05 65N30 65N12 74M15 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Dong}, Appl. Math. Comput. 346, 41--56 (2019; Zbl 1428.74210) Full Text: DOI OpenURL
Delgado, Miguel de Benito; Díaz, Jesus Ildefonso Some remarks on the coincidence set for the Signorini problem. (English) Zbl 1433.35016 Opusc. Math. 39, No. 2, 145-157 (2019). MSC: 35J05 35R35 PDF BibTeX XML Cite \textit{M. de B. Delgado} and \textit{J. I. Díaz}, Opusc. Math. 39, No. 2, 145--157 (2019; Zbl 1433.35016) Full Text: DOI arXiv OpenURL
Koch, Herbert; Rüland, Angkana; Shi, Wenhui Higher regularity for the fractional thin obstacle problem. (English) Zbl 1423.35465 New York J. Math. 25, 745-838 (2019). MSC: 35R35 PDF BibTeX XML Cite \textit{H. Koch} et al., New York J. Math. 25, 745--838 (2019; Zbl 1423.35465) Full Text: arXiv Link OpenURL
Burman, Erik; Hansbo, Peter; Larson, Mats G. Augmented Lagrangian finite element methods for contact problems. (English) Zbl 1422.65374 ESAIM, Math. Model. Numer. Anal. 53, No. 1, 173-195 (2019). MSC: 65N30 65N12 74M15 74S05 65N15 35Q74 PDF BibTeX XML Cite \textit{E. Burman} et al., ESAIM, Math. Model. Numer. Anal. 53, No. 1, 173--195 (2019; Zbl 1422.65374) Full Text: DOI arXiv OpenURL
Petrosyan, Arshak; Zeller, Andrew Boundedness and continuity of the time derivative in the parabolic Signorini problem. (English) Zbl 1412.35185 Math. Res. Lett. 26, No. 1, 281-292 (2019). Reviewer: Mariana Vega Smit (Bellingham) MSC: 35K58 35R35 PDF BibTeX XML Cite \textit{A. Petrosyan} and \textit{A. Zeller}, Math. Res. Lett. 26, No. 1, 281--292 (2019; Zbl 1412.35185) Full Text: DOI arXiv OpenURL
Rademacher, Andreas Mesh and model adaptivity for frictional contact problems. (English) Zbl 1422.65353 Numer. Math. 142, No. 3, 465-523 (2019). MSC: 65N15 65N30 74G15 74S05 35J86 74M15 74M10 PDF BibTeX XML Cite \textit{A. Rademacher}, Numer. Math. 142, No. 3, 465--523 (2019; Zbl 1422.65353) Full Text: DOI OpenURL
Christof, Constantin Sensitivity analysis and optimal control of obstacle-type evolution variational inequalities. (English) Zbl 1408.35094 SIAM J. Control Optim. 57, No. 1, 192-218 (2019). Reviewer: Vyacheslav I. Maksimov (Ekaterinburg) MSC: 35K85 49K40 35B30 90C31 90C48 PDF BibTeX XML Cite \textit{C. Christof}, SIAM J. Control Optim. 57, No. 1, 192--218 (2019; Zbl 1408.35094) Full Text: DOI OpenURL
Li, Xiaolin; Li, Shuling A meshless projection iterative method for nonlinear Signorini problems using the moving Kriging interpolation. (English) Zbl 1404.65306 Eng. Anal. Bound. Elem. 98, 243-252 (2019). MSC: 65N99 PDF BibTeX XML Cite \textit{X. Li} and \textit{S. Li}, Eng. Anal. Bound. Elem. 98, 243--252 (2019; Zbl 1404.65306) Full Text: DOI OpenURL
Walloth, Mirjam A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem. (English) Zbl 1406.65120 Appl. Numer. Math. 135, 276-296 (2019). MSC: 65N30 65N15 74M15 74B10 35Q74 PDF BibTeX XML Cite \textit{M. Walloth}, Appl. Numer. Math. 135, 276--296 (2019; Zbl 1406.65120) Full Text: DOI OpenURL
Zhang, Shougui Two projection methods for the solution of Signorini problems. (English) Zbl 1426.65195 Appl. Math. Comput. 326, 75-86 (2018). MSC: 65N38 58E35 65K15 PDF BibTeX XML Cite \textit{S. Zhang}, Appl. Math. Comput. 326, 75--86 (2018; Zbl 1426.65195) Full Text: DOI OpenURL
Garofalo, Nicola; Petrosyan, Arshak; Garcia, Mariana Smit Vega The singular free boundary in the Signorini problem for variable coefficients. (English) Zbl 1409.35239 Indiana Univ. Math. J. 67, No. 5, 1893-1934 (2018). Reviewer: Wenhui Shi (Heidelberg) MSC: 35R35 PDF BibTeX XML Cite \textit{N. Garofalo} et al., Indiana Univ. Math. J. 67, No. 5, 1893--1934 (2018; Zbl 1409.35239) Full Text: DOI Link OpenURL
Führer, Thomas; Heuer, Norbert; Stephan, Ernst P. On the DPG method for Signorini problems. (English) Zbl 1477.65211 IMA J. Numer. Anal. 38, No. 4, 1893-1926 (2018). MSC: 65N30 65K15 74M15 PDF BibTeX XML Cite \textit{T. Führer} et al., IMA J. Numer. Anal. 38, No. 4, 1893--1926 (2018; Zbl 1477.65211) Full Text: DOI arXiv OpenURL
Claus, Susanne; Bigot, Samuel; Kerfriden, Pierre CutFEM method for Stefan-Signorini problems with application in pulsed laser ablation. (English) Zbl 1398.76098 SIAM J. Sci. Comput. 40, No. 5, B1444-B1469 (2018). MSC: 76M10 65N30 76T99 74S05 74F10 80A22 35K05 35K85 PDF BibTeX XML Cite \textit{S. Claus} et al., SIAM J. Sci. Comput. 40, No. 5, B1444--B1469 (2018; Zbl 1398.76098) Full Text: DOI arXiv OpenURL
Rademacher, Andreas; Rosin, Korinna Adaptive optimal control of Signorini’s problem. (English) Zbl 1397.49015 Comput. Optim. Appl. 70, No. 2, 531-569 (2018). MSC: 49J40 49M15 49M25 PDF BibTeX XML Cite \textit{A. Rademacher} and \textit{K. Rosin}, Comput. Optim. Appl. 70, No. 2, 531--569 (2018; Zbl 1397.49015) Full Text: DOI Link OpenURL
Léger, Alain; Miara, Bernadette A linearly elastic shell over an obstacle: the flexural case. (English) Zbl 1387.74021 J. Elasticity 131, No. 1, 19-38 (2018). MSC: 74B99 74K25 74M15 PDF BibTeX XML Cite \textit{A. Léger} and \textit{B. Miara}, J. Elasticity 131, No. 1, 19--38 (2018; Zbl 1387.74021) Full Text: DOI OpenURL
Munoz Rivera, J. E.; da Costa Baldez, C. A. The hybrid-penalized method for the Timoshenko’s beam. (English) Zbl 1379.35186 J. Math. Anal. Appl. 458, No. 2, 1274-1291 (2018). MSC: 35L53 74K10 35A35 35L87 PDF BibTeX XML Cite \textit{J. E. Munoz Rivera} and \textit{C. A. da Costa Baldez}, J. Math. Anal. Appl. 458, No. 2, 1274--1291 (2018; Zbl 1379.35186) Full Text: DOI OpenURL
Zhang, Shougui Projection and self-adaptive projection methods for the Signorini problem with the BEM. (English) Zbl 1398.65327 Comput. Math. Appl. 74, No. 6, 1262-1273 (2017). MSC: 65N38 65N50 35J86 PDF BibTeX XML Cite \textit{S. Zhang}, Comput. Math. Appl. 74, No. 6, 1262--1273 (2017; Zbl 1398.65327) Full Text: DOI OpenURL
Vikhtenko, E. M.; Woo, G.; Namm, R. V. Modified dual scheme for finite-dimensional and infinite-dimensional convex optimization problems. (Russian. English summary) Zbl 1390.90431 Dal’nevost. Mat. Zh. 17, No. 2, 158-169 (2017). MSC: 90C25 65K15 74P10 90C46 PDF BibTeX XML Cite \textit{E. M. Vikhtenko} et al., Dal'nevost. Mat. Zh. 17, No. 2, 158--169 (2017; Zbl 1390.90431) Full Text: MNR OpenURL
Guan, Yan Mathematical justification of an obstacle problem in the case of a plate. (English) Zbl 1387.35012 Chin. Ann. Math., Ser. B 38, No. 5, 1047-1058 (2017). MSC: 35A15 35J20 35J47 35J87 74K20 PDF BibTeX XML Cite \textit{Y. Guan}, Chin. Ann. Math., Ser. B 38, No. 5, 1047--1058 (2017; Zbl 1387.35012) Full Text: DOI OpenURL
Abdelbari, Mervan; Nachi, Khadra; Sokolowski, Jan Topological sensitivity analysis for a coupled nonlinear problem with an obstacle. (English) Zbl 1378.49045 Control Cybern. 46, No. 1, 5-25 (2017). MSC: 49Q10 PDF BibTeX XML Cite \textit{M. Abdelbari} et al., Control Cybern. 46, No. 1, 5--25 (2017; Zbl 1378.49045) OpenURL
Yan, Guan; Miara, Bernadette Mathematical justification of the obstacle problem for a piezoelectric shallow shell. (English) Zbl 1382.35298 Asymptotic Anal. 102, No. 1-2, 71-97 (2017). MSC: 35Q74 74F15 74K25 74B05 35B40 35A15 PDF BibTeX XML Cite \textit{G. Yan} and \textit{B. Miara}, Asymptotic Anal. 102, No. 1--2, 71--97 (2017; Zbl 1382.35298) Full Text: DOI OpenURL
Dreves, Axel; Gwinner, Joachim; Ovcharova, Nina On the use of elliptic regularity theory for the numerical solution of variational problems. (English) Zbl 1378.65130 Daras, Nicholas J. (ed.) et al., Operations research, engineering, and cyber security. Trends in applied mathematics and technology. Based on the presentations at the conference, Nea Peramos, Greece, May 2015. Cham: Springer (ISBN 978-3-319-51498-7/hbk; 978-3-319-51500-7/ebook). Springer Optimization and Its Applications 113, 231-257 (2017). MSC: 65K10 49J21 49J40 49N60 65K05 90C29 90C33 PDF BibTeX XML Cite \textit{A. Dreves} et al., Springer Optim. Appl. 113, 231--257 (2017; Zbl 1378.65130) Full Text: DOI arXiv OpenURL
Burman, Erik; Hansbo, Peter; Larson, Mats G. The penalty-free Nitsche method and nonconforming finite elements for the Signorini problem. (English) Zbl 1457.65183 SIAM J. Numer. Anal. 55, No. 6, 2523-2539 (2017). MSC: 65N30 65N12 74M15 74B05 74S05 35Q74 PDF BibTeX XML Cite \textit{E. Burman} et al., SIAM J. Numer. Anal. 55, No. 6, 2523--2539 (2017; Zbl 1457.65183) Full Text: DOI arXiv OpenURL
Danielli, Donatella; Garofalo, Nicola; Petrosyan, Arshak; To, Tung Optimal regularity and the free boundaryin the parabolic Signorini problem. (English) Zbl 1381.35249 Mem. Am. Math. Soc. 1181, vi, 108 p. (2017). Reviewer: Mariana Vega Smit (Essen) MSC: 35R35 35K85 PDF BibTeX XML Cite \textit{D. Danielli} et al., Optimal regularity and the free boundaryin the parabolic Signorini problem. Providence, RI: American Mathematical Society (AMS) (2017; Zbl 1381.35249) Full Text: DOI arXiv OpenURL
Zeng, Yuping; Chen, Jinru; Wang, Feng Convergence analysis of a modified weak Galerkin finite element method for Signorini and obstacle problems. (English) Zbl 1376.65103 Numer. Methods Partial Differ. Equations 33, No. 5, 1459-1474 (2017). Reviewer: Hans Benker (Merseburg) MSC: 65K15 49J40 74M15 49M25 PDF BibTeX XML Cite \textit{Y. Zeng} et al., Numer. Methods Partial Differ. Equations 33, No. 5, 1459--1474 (2017; Zbl 1376.65103) Full Text: DOI OpenURL
Ros-Oton, Xavier; Serra, Joaquim The structure of the free boundary in the fully nonlinear thin obstacle problem. (English) Zbl 1371.35365 Adv. Math. 316, 710-747 (2017). MSC: 35R35 35J60 35B65 PDF BibTeX XML Cite \textit{X. Ros-Oton} and \textit{J. Serra}, Adv. Math. 316, 710--747 (2017; Zbl 1371.35365) Full Text: DOI arXiv OpenURL
Koch, Herbert; Rüland, Angkana; Shi, Wenhui The variable coefficient thin obstacle problem: optimal regularity and regularity of the regular free boundary. (English) Zbl 1435.35421 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 4, 845-897 (2017). MSC: 35R35 35B40 35B65 35J60 PDF BibTeX XML Cite \textit{H. Koch} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 34, No. 4, 845--897 (2017; Zbl 1435.35421) Full Text: DOI arXiv OpenURL
Banerjee, Agnid; Smit Vega Garcia, Mariana; Zeller, Andrew K. Higher regularity of the free boundary in the parabolic Signorini problem. (English) Zbl 1371.35359 Calc. Var. Partial Differ. Equ. 56, No. 1, Paper No. 7, 26 p. (2017). MSC: 35R35 35B65 PDF BibTeX XML Cite \textit{A. Banerjee} et al., Calc. Var. Partial Differ. Equ. 56, No. 1, Paper No. 7, 26 p. (2017; Zbl 1371.35359) Full Text: DOI arXiv OpenURL
Krause, Rolf; Müller, Benjamin; Starke, Gerhard An adaptive least-squares mixed finite element method for the Signorini problem. (English) Zbl 1387.74110 Numer. Methods Partial Differ. Equations 33, No. 1, 276-289 (2017). MSC: 74S05 65N30 65N12 65N15 65N50 74M15 PDF BibTeX XML Cite \textit{R. Krause} et al., Numer. Methods Partial Differ. Equations 33, No. 1, 276--289 (2017; Zbl 1387.74110) Full Text: DOI OpenURL
Alnashri, Yahya; Droniou, Jérôme Gradient schemes for the Signorini and the obstacle problems, and application to hybrid mimetic mixed methods. (English) Zbl 1368.65101 Comput. Math. Appl. 72, No. 11, 2788-2807 (2016). MSC: 65K15 65N15 PDF BibTeX XML Cite \textit{Y. Alnashri} and \textit{J. Droniou}, Comput. Math. Appl. 72, No. 11, 2788--2807 (2016; Zbl 1368.65101) Full Text: DOI OpenURL
Zheng, Hongyan; Chen, Mei; Li, Xiaolin Application of the boundary node method to the Signorini problem. (Chinese. English summary) Zbl 1389.74038 J. Chongqing Norm. Univ., Nat. Sci. 33, No. 4, 100-104 (2016). MSC: 74S25 65N99 PDF BibTeX XML Cite \textit{H. Zheng} et al., J. Chongqing Norm. Univ., Nat. Sci. 33, No. 4, 100--104 (2016; Zbl 1389.74038) Full Text: DOI OpenURL
Fernández-Real, Xavier \(C^{1,\alpha}\) estimates for the fully nonlinear Signorini problem. (English) Zbl 1357.35129 Calc. Var. Partial Differ. Equ. 55, No. 4, Paper No. 94, 20 p. (2016). Reviewer: Vincenzo Vespri (Firenze) MSC: 35J60 35B65 PDF BibTeX XML Cite \textit{X. Fernández-Real}, Calc. Var. Partial Differ. Equ. 55, No. 4, Paper No. 94, 20 p. (2016; Zbl 1357.35129) Full Text: DOI arXiv OpenURL
De Silva, Daniela; Savin, Ovidiu Boundary Harnack estimates in slit domains and applications to thin free boundary problems. (English) Zbl 1356.35020 Rev. Mat. Iberoam. 32, No. 3, 891-912 (2016). Reviewer: Fatma Gamze Duzgun (Ankara) MSC: 35A23 35B65 35B51 35R35 PDF BibTeX XML Cite \textit{D. De Silva} and \textit{O. Savin}, Rev. Mat. Iberoam. 32, No. 3, 891--912 (2016; Zbl 1356.35020) Full Text: DOI arXiv OpenURL
Del Piero, Gianpietro Minimization of semicoercive functions: a generalization of Fichera’s existence theorem for the Signorini problem. (English) Zbl 1348.49003 Contin. Mech. Thermodyn. 28, No. 1-2, 5-17 (2016); erratum ibid. 28, No. 1-2, 19-20 (2016). MSC: 49J10 90C25 90C48 74G25 74P10 PDF BibTeX XML Cite \textit{G. Del Piero}, Contin. Mech. Thermodyn. 28, No. 1--2, 5--17 (2016; Zbl 1348.49003) Full Text: DOI OpenURL
Koch, Herbert; Rüland, Angkana; Shi, Wenhui The variable coefficient thin obstacle problem: Carleman inequalities. (English) Zbl 1346.35240 Adv. Math. 301, 820-866 (2016). Reviewer: Mariana Vega Smit (Essen) MSC: 35R35 PDF BibTeX XML Cite \textit{H. Koch} et al., Adv. Math. 301, 820--866 (2016; Zbl 1346.35240) Full Text: DOI arXiv OpenURL
Allen, Mark; Shi, Wenhui The two-phase parabolic Signorini problem. (English) Zbl 1346.35096 Indiana Univ. Math. J. 65, No. 2, 727-741 (2016). Reviewer: Dian K. Palagachev (Bari) MSC: 35K55 49J40 35K10 PDF BibTeX XML Cite \textit{M. Allen} and \textit{W. Shi}, Indiana Univ. Math. J. 65, No. 2, 727--741 (2016; Zbl 1346.35096) Full Text: DOI arXiv Link OpenURL
Rademacher, A. NCP function-based dual weighted residual error estimators for Signorini’s problem. (English) Zbl 1381.74208 SIAM J. Sci. Comput. 38, No. 3, A1743-A1769 (2016). MSC: 74S05 65N30 35Q74 35J86 65N15 74G15 PDF BibTeX XML Cite \textit{A. Rademacher}, SIAM J. Sci. Comput. 38, No. 3, A1743--A1769 (2016; Zbl 1381.74208) Full Text: DOI OpenURL
Andersson, John Optimal regularity for the Signorini problem and its free boundary. (English) Zbl 1339.35345 Invent. Math. 204, No. 1, 1-82 (2016). Reviewer: Mariana Vega Smit (Essen) MSC: 35R35 35B40 35J60 PDF BibTeX XML Cite \textit{J. Andersson}, Invent. Math. 204, No. 1, 1--82 (2016; Zbl 1339.35345) Full Text: DOI arXiv OpenURL
Yan, Guan; Miara, Bernadette Mathematical justification of the obstacle problem in the case of piezoelectric plate. (English) Zbl 1381.35180 Asymptotic Anal. 96, No. 3-4, 283-308 (2016). MSC: 35Q74 74F15 74K20 35J88 35B25 35B27 35C20 35D30 PDF BibTeX XML Cite \textit{G. Yan} and \textit{B. Miara}, Asymptotic Anal. 96, No. 3--4, 283--308 (2016; Zbl 1381.35180) Full Text: DOI OpenURL
Garofalo, Nicola; Petrosyan, Arshak; Smit Vega Garcia, Mariana An epiperimetric inequality approach to the regularity of the free boundary in the Signorini problem with variable coefficients. (English. French summary) Zbl 1341.35036 J. Math. Pures Appl. (9) 105, No. 6, 745-787 (2016). Reviewer: Lubomira Softova (Aversa) MSC: 35J35 35J20 35J60 35B65 PDF BibTeX XML Cite \textit{N. Garofalo} et al., J. Math. Pures Appl. (9) 105, No. 6, 745--787 (2016; Zbl 1341.35036) Full Text: DOI arXiv OpenURL
Bensayah, Abdallah; Chacha, Djamel Ahmed; Ghezal, Abderrezak Asymptotic modeling of Signorini problem with Coulomb friction for a linearly elastostatic shallow shell. (English) Zbl 1338.74011 Math. Methods Appl. Sci. 39, No. 6, 1410-1424 (2016). MSC: 74B20 35L85 74K25 35Q74 74M10 74F15 PDF BibTeX XML Cite \textit{A. Bensayah} et al., Math. Methods Appl. Sci. 39, No. 6, 1410--1424 (2016; Zbl 1338.74011) Full Text: DOI OpenURL
Matevosyan, N.; Petrosyan, A. Contact of a thin free boundary with a fixed one in the Signorini problem. (English) Zbl 1335.35310 St. Petersbg. Math. J. 27, No. 3, 481-494 (2016) and Algebra Anal. 27, No. 3, 183-201 (2015). MSC: 35R35 35B65 PDF BibTeX XML Cite \textit{N. Matevosyan} and \textit{A. Petrosyan}, St. Petersbg. Math. J. 27, No. 3, 481--494 (2016; Zbl 1335.35310) Full Text: DOI OpenURL
Zhang, Shougui; Li, Xiaolin Boundary augmented Lagrangian method for the Signorini problem. (English) Zbl 1389.35164 Appl. Math., Praha 61, No. 2, 215-231 (2016). Reviewer: Andreas Kleefeld (Jülich) MSC: 35J58 35J05 65N38 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{X. Li}, Appl. Math., Praha 61, No. 2, 215--231 (2016; Zbl 1389.35164) Full Text: DOI Link OpenURL
Gudi, Thirupathi; Porwal, Kamana A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem. (English) Zbl 1327.65239 J. Comput. Appl. Math. 292, 257-278 (2016). MSC: 65N30 65N15 65N12 PDF BibTeX XML Cite \textit{T. Gudi} and \textit{K. Porwal}, J. Comput. Appl. Math. 292, 257--278 (2016; Zbl 1327.65239) Full Text: DOI OpenURL
Li, Xiaolin; Yu, Chunjun Meshless projection iterative analysis of Signorini problems using a boundary element-free method. (English) Zbl 1443.65409 Comput. Math. Appl. 70, No. 5, 869-882 (2015). MSC: 65N38 74S15 PDF BibTeX XML Cite \textit{X. Li} and \textit{C. Yu}, Comput. Math. Appl. 70, No. 5, 869--882 (2015; Zbl 1443.65409) Full Text: DOI OpenURL
Zeng, Yuping; Chen, Jinru; Wang, Feng Error estimates of the weakly over-penalized symmetric interior penalty method for two variational inequalities. (English) Zbl 1443.65088 Comput. Math. Appl. 69, No. 8, 760-770 (2015). MSC: 65K15 49J40 PDF BibTeX XML Cite \textit{Y. Zeng} et al., Comput. Math. Appl. 69, No. 8, 760--770 (2015; Zbl 1443.65088) Full Text: DOI OpenURL
Zhang, Tie; Li, Zheng An analysis of finite volume element method for solving the Signorini problem. (English) Zbl 1410.74078 Appl. Math. Comput. 270, 830-841 (2015). MSC: 74S10 65N08 65N12 65N15 74B05 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{Z. Li}, Appl. Math. Comput. 270, 830--841 (2015; Zbl 1410.74078) Full Text: DOI OpenURL
Zheng, Hongyan; Li, Xiaolin Application of the method of fundamental solutions to 2D and 3D Signorini problems. (English) Zbl 1403.74335 Eng. Anal. Bound. Elem. 58, 48-57 (2015). MSC: 74S30 65N80 65N22 74F10 PDF BibTeX XML Cite \textit{H. Zheng} and \textit{X. Li}, Eng. Anal. Bound. Elem. 58, 48--57 (2015; Zbl 1403.74335) Full Text: DOI OpenURL
Zhang, Shougui A projection iterative algorithm for the Signorini problem using the boundary element method. (English) Zbl 1403.74265 Eng. Anal. Bound. Elem. 50, 313-319 (2015). MSC: 74S15 65N38 35J65 35J87 74M15 PDF BibTeX XML Cite \textit{S. Zhang}, Eng. Anal. Bound. Elem. 50, 313--319 (2015; Zbl 1403.74265) Full Text: DOI OpenURL
Carabineanu, Adrian A simplified mathematical theory of MHD power generators. (English) Zbl 1349.76886 An. Științ. Univ. “Ovidius” Constanța, Ser. Mat. 23, No. 3, 29-39 (2015). MSC: 76W05 31A25 PDF BibTeX XML Cite \textit{A. Carabineanu}, An. Științ. Univ. ``Ovidius'' Constanța, Ser. Mat. 23, No. 3, 29--39 (2015; Zbl 1349.76886) OpenURL
Essoufi, E.-H.; Fakhar, R.; Koko, J. A decomposition method for a unilateral contact problem with Tresca friction arising in electro-elastostatics. (English) Zbl 1333.74081 Numer. Funct. Anal. Optim. 36, No. 12, 1533-1558 (2015). MSC: 74S05 74B05 65N22 65N55 PDF BibTeX XML Cite \textit{E. H. Essoufi} et al., Numer. Funct. Anal. Optim. 36, No. 12, 1533--1558 (2015; Zbl 1333.74081) Full Text: DOI HAL OpenURL
Koch, Herbert; Petrosyan, Arshak; Shi, Wenhui Higher regularity of the free boundary in the elliptic Signorini problem. (English) Zbl 1329.35362 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 126, 3-44 (2015). Reviewer: Mariana Vega Smit (Essen) MSC: 35R35 35H20 PDF BibTeX XML Cite \textit{H. Koch} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 126, 3--44 (2015; Zbl 1329.35362) Full Text: DOI arXiv OpenURL
Drouet, Guillaume; Hild, Patrick Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set. (English) Zbl 1320.65172 SIAM J. Numer. Anal. 53, No. 3, 1488-1507 (2015). MSC: 65N30 74M15 74S05 35Q74 35J86 35B45 65K15 PDF BibTeX XML Cite \textit{G. Drouet} and \textit{P. Hild}, SIAM J. Numer. Anal. 53, No. 3, 1488--1507 (2015; Zbl 1320.65172) Full Text: DOI HAL OpenURL
Eisner, Jan; Kučera, Milan; Recke, Lutz Direction and stability of bifurcating solutions for a Signorini problem. (English) Zbl 1304.35376 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 113, Part A, 357-371 (2015). MSC: 35K86 35J87 35B32 35B35 PDF BibTeX XML Cite \textit{J. Eisner} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 113, 357--371 (2015; Zbl 1304.35376) Full Text: DOI OpenURL
Rademacher, Andreas; Schröder, Andreas; Blum, Heribert; Kleemann, Heiko Mixed FEM of higher-order for time-dependent contact problems. (English) Zbl 1334.74085 Appl. Math. Comput. 233, 165-186 (2014). MSC: 74S05 65M60 74F05 74M15 PDF BibTeX XML Cite \textit{A. Rademacher} et al., Appl. Math. Comput. 233, 165--186 (2014; Zbl 1334.74085) Full Text: DOI OpenURL
Vikhtenko, E. M.; Woo, G. S.; Namm, R. V. The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals. (English) Zbl 1382.74100 Dal’nevost. Mat. Zh. 14, No. 1, 6-17 (2014). MSC: 74P10 49J40 PDF BibTeX XML Cite \textit{E. M. Vikhtenko} et al., Dal'nevost. Mat. Zh. 14, No. 1, 6--17 (2014; Zbl 1382.74100) Full Text: MNR OpenURL
Gwinner, J.; Thalhammer, M. Full discretisations for nonlinear evolutionary inequalities based on stiffly accurate Runge-Kutta and \(hp\)-finite element methods. (English) Zbl 1308.65108 Found. Comput. Math. 14, No. 5, 913-949 (2014). Reviewer: Jan Lovíšek (Bratislava) MSC: 65K15 49J40 35K61 35K86 47J05 47J20 47J22 47H05 65M12 PDF BibTeX XML Cite \textit{J. Gwinner} and \textit{M. Thalhammer}, Found. Comput. Math. 14, No. 5, 913--949 (2014; Zbl 1308.65108) Full Text: DOI OpenURL
Väth, Martin Instability of Turing type for a reaction-diffusion system with unilateral obstacles modeled by variational inequalities. (English) Zbl 1340.35145 Math. Bohem. 139, No. 2, 195-211 (2014). Reviewer: Jörg Härterich (Bochum) MSC: 35K57 35K86 35K87 35B35 47H11 47J20 34D20 PDF BibTeX XML Cite \textit{M. Väth}, Math. Bohem. 139, No. 2, 195--211 (2014; Zbl 1340.35145) Full Text: Link OpenURL
Petrosyan, Arshak; Shi, Wenhui Parabolic boundary Harnack principles in domains with thin Lipschitz complement. (English) Zbl 1304.35374 Anal. PDE 7, No. 6, 1421-1463 (2014). Reviewer: Vincenzo Vespri (Firenze) MSC: 35K85 35K20 35R35 35B45 PDF BibTeX XML Cite \textit{A. Petrosyan} and \textit{W. Shi}, Anal. PDE 7, No. 6, 1421--1463 (2014; Zbl 1304.35374) Full Text: DOI arXiv OpenURL
Vikhtenko, Eh. M.; Maksimova, N. N.; Namm, R. V. Sensitivity functionals in variational inequalities of mechanics and their applications to duality schemes. (Russian, English) Zbl 1299.65132 Sib. Zh. Vychisl. Mat. 17, No. 1, 43-52 (2014); translation in Numer. Analysis Appl. 7, No. 1, 36-44 (2014). MSC: 65K15 74M15 49J40 49M15 74S30 PDF BibTeX XML Cite \textit{Eh. M. Vikhtenko} et al., Sib. Zh. Vychisl. Mat. 17, No. 1, 43--52 (2014; Zbl 1299.65132); translation in Numer. Analysis Appl. 7, No. 1, 36--44 (2014) Full Text: DOI OpenURL
Berninger, Heiko; Ohlberger, Mario; Sander, Oliver; Smetana, Kathrin Unsaturated subsurface flow with surface water and nonlinear in- and outflow conditions. (English) Zbl 1288.35023 Math. Models Methods Appl. Sci. 24, No. 5, 901-936 (2014). MSC: 35A35 35K61 65N30 65N55 76S05 35Q35 35K86 PDF BibTeX XML Cite \textit{H. Berninger} et al., Math. Models Methods Appl. Sci. 24, No. 5, 901--936 (2014; Zbl 1288.35023) Full Text: DOI arXiv OpenURL
Zhang, Shougui; Zhu, Jialin A projection iterative algorithm boundary element method for the Signorini problem. (English) Zbl 1352.65601 Eng. Anal. Bound. Elem. 37, No. 1, 176-181 (2013). MSC: 65N38 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{J. Zhu}, Eng. Anal. Bound. Elem. 37, No. 1, 176--181 (2013; Zbl 1352.65601) Full Text: DOI HAL OpenURL
Haslinger, Jaroslav; Janovský, Vladimír; Kučera, Radek Path-following the static contact problem with Coulomb friction. (English) Zbl 1340.74071 Brandts, J. (ed.) et al., Proceedings of the international conference ‘Applications of mathematics’, Prague, Czech Republic, May 15–17, 2013. In honor of the 70th birthday of Karel Segeth. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics (ISBN 978-80-85823-61-5). 104-116 (2013). Reviewer: Jan Chleboun (Praha) MSC: 74M15 74M10 65N30 74S05 PDF BibTeX XML Cite \textit{J. Haslinger} et al., in: Proceedings of the international conference `Applications of mathematics', Prague, Czech Republic, May 15--17, 2013. In honor of the 70th birthday of Karel Segeth. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics. 104--116 (2013; Zbl 1340.74071) Full Text: Link OpenURL
Andersson, J. Optimal regularity and free boundary regularity for the Signorini problem. (English. Russian original) Zbl 1272.49079 St. Petersbg. Math. J. 24, No. 3, 371-386 (2013); translation from Algebra Anal. 24, No. 3, 1-21 (2012). MSC: 49N60 49J40 PDF BibTeX XML Cite \textit{J. Andersson}, St. Petersbg. Math. J. 24, No. 3, 371--386 (2013; Zbl 1272.49079); translation from Algebra Anal. 24, No. 3, 1--21 (2012) Full Text: DOI OpenURL
Shi, DongYang; Xu, Chao \(EQ^{\text{rot}}_1\) nonconforming finite element approximation to Signorini problem. (English) Zbl 1273.74548 Sci. China, Math. 56, No. 6, 1301-1311 (2013). MSC: 74S05 65N15 65N30 35Q74 PDF BibTeX XML Cite \textit{D. Shi} and \textit{C. Xu}, Sci. China, Math. 56, No. 6, 1301--1311 (2013; Zbl 1273.74548) Full Text: DOI OpenURL
Amdouni, Saber; Hild, Patrick; Lleras, Vanessa; Moakher, Maher; Renard, Yves A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies. (English) Zbl 1271.74354 ESAIM, Math. Model. Numer. Anal. 46, No. 4, 813-839 (2012). MSC: 74M15 74S05 35M85 PDF BibTeX XML Cite \textit{S. Amdouni} et al., ESAIM, Math. Model. Numer. Anal. 46, No. 4, 813--839 (2012; Zbl 1271.74354) Full Text: DOI OpenURL
Hild, Patrick; Renard, Yves An improved a priori error analysis for finite element approximations of Signorini’s problem. (English) Zbl 1260.74027 SIAM J. Numer. Anal. 50, No. 5, 2400-2419 (2012). MSC: 74S05 74M15 35J86 65N30 PDF BibTeX XML Cite \textit{P. Hild} and \textit{Y. Renard}, SIAM J. Numer. Anal. 50, No. 5, 2400--2419 (2012; Zbl 1260.74027) Full Text: DOI HAL OpenURL
Eisner, Jan; Kučera, Milan; Recke, Lutz Smooth bifurcation for a Signorini problem on a rectangle. (English) Zbl 1265.35023 Math. Bohem. 137, No. 2, 131-138 (2012). MSC: 35B32 35J87 47J07 PDF BibTeX XML Cite \textit{J. Eisner} et al., Math. Bohem. 137, No. 2, 131--138 (2012; Zbl 1265.35023) Full Text: EuDML Link OpenURL
Zhang, Shougui; Zhu, Jialin The boundary element-linear complementarity method for the Signorini problem. (English) Zbl 1245.74047 Eng. Anal. Bound. Elem. 36, No. 2, 112-117 (2012). MSC: 74M15 90C33 65N38 65K05 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{J. Zhu}, Eng. Anal. Bound. Elem. 36, No. 2, 112--117 (2012; Zbl 1245.74047) Full Text: DOI OpenURL
Namm, Robert V.; Woo, Gyungsoo; Xie, Shu-Sen; Yi, Sucheol Solution of semicoercive Signorini problem based on a duality scheme with modified Lagrangian functional. (English) Zbl 1256.65067 J. Korean Math. Soc. 49, No. 4, 843-854 (2012). Reviewer: Akrur Behera (Rourkela) MSC: 65K15 65F10 49M15 74G15 74G65 49J40 PDF BibTeX XML Cite \textit{R. V. Namm} et al., J. Korean Math. Soc. 49, No. 4, 843--854 (2012; Zbl 1256.65067) Full Text: DOI OpenURL
Haslinger, Jaroslav; Outrata, Jiří V.; Pathó, Róbert Shape optimization in 2D contact problems with given friction and a solution-dependent coefficient of friction. (English) Zbl 1242.49088 Set-Valued Var. Anal. 20, No. 1, 31-59 (2012). MSC: 49Q10 74M10 90C33 90C90 PDF BibTeX XML Cite \textit{J. Haslinger} et al., Set-Valued Var. Anal. 20, No. 1, 31--59 (2012; Zbl 1242.49088) Full Text: DOI OpenURL
Shi, Dongyang; Ren, Jincheng; Gong, Wei Convergence and superconvergence analysis of a nonconforming finite element method for solving the Signorini problem. (English) Zbl 1330.65182 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 8, 3493-3502 (2012). MSC: 65N30 65N12 PDF BibTeX XML Cite \textit{D. Shi} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 8, 3493--3502 (2012; Zbl 1330.65182) Full Text: DOI OpenURL
Oliveira, M. L.; Clark, M. R.; Marinho, A. O. On a nonlinear generalized thermoelastic system with obstacle. (English) Zbl 1254.35153 Adv. Differ. Equ. 17, No. 1-2, 75-103 (2012). Reviewer: Song Jiang (Beijing) MSC: 35L86 35B40 35L53 35L71 74F05 74M15 PDF BibTeX XML Cite \textit{M. L. Oliveira} et al., Adv. Differ. Equ. 17, No. 1--2, 75--103 (2012; Zbl 1254.35153) OpenURL
Léger, Alain; Miara, Bernadette The obstacle problem for shallow shells: curvilinear approach. (English) Zbl 1337.74005 Int. J. Numer. Anal. Model., Ser. B 2, No. 1, 1-26 (2011). MSC: 74B99 74K25 74M15 PDF BibTeX XML Cite \textit{A. Léger} and \textit{B. Miara}, Int. J. Numer. Anal. Model., Ser. B 2, No. 1, 1--26 (2011; Zbl 1337.74005) OpenURL
Li, Mingxia; Chen, Hongtao; Mao, Shipeng Accuracy enhancement for the Signorini problem with the finite element method. (English) Zbl 1240.74020 Acta Math. Sci., Ser. B, Engl. Ed. 31, No. 3, 897-908 (2011). MSC: 74S05 65N30 65N15 PDF BibTeX XML Cite \textit{M. Li} et al., Acta Math. Sci., Ser. B, Engl. Ed. 31, No. 3, 897--908 (2011; Zbl 1240.74020) Full Text: DOI OpenURL
Hild, Patrick A sign preserving mixed finite element approximation for contact problems. (English) Zbl 1377.74023 Int. J. Appl. Math. Comput. Sci. 21, No. 3, 487-498 (2011). MSC: 74S05 74M15 PDF BibTeX XML Cite \textit{P. Hild}, Int. J. Appl. Math. Comput. Sci. 21, No. 3, 487--498 (2011; Zbl 1377.74023) Full Text: DOI EuDML OpenURL
Arkhipova, A. A. A problem with an obstacle that goes out to the boundary of the domain for a class of quadratic functionals on \(\mathbb {R}^{N}\). (English. Russian original) Zbl 1232.35043 St. Petersbg. Math. J. 22, No. 6, 847-875 (2011); translation from Algebra Anal. 22, No. 6, 3-42 (2010). MSC: 35J20 PDF BibTeX XML Cite \textit{A. A. Arkhipova}, St. Petersbg. Math. J. 22, No. 6, 847--875 (2011; Zbl 1232.35043); translation from Algebra Anal. 22, No. 6, 3--42 (2010) Full Text: DOI OpenURL
Schroder, Andreas; Blum, Heribert; Rademacher, Andreas; Kleemann, Heiko Mixed FEM of higher order for contact problems with fiction. (English) Zbl 1330.74180 Int. J. Numer. Anal. Model. 8, No. 2, 302-323 (2011). MSC: 74S30 74M15 74M10 74G65 65N30 PDF BibTeX XML Cite \textit{A. Schroder} et al., Int. J. Numer. Anal. Model. 8, No. 2, 302--323 (2011; Zbl 1330.74180) Full Text: Link OpenURL
Eisner, Jan; Kučera, Milan; Recke, Lutz Smooth bifurcation branches of solutions for a Signorini problem. (English) Zbl 1213.35233 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 5, 1853-1877 (2011). Reviewer: Leszek Gasiński (Kraków) MSC: 35J87 35B32 47J07 PDF BibTeX XML Cite \textit{J. Eisner} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 5, 1853--1877 (2011; Zbl 1213.35233) Full Text: DOI OpenURL