×

Semismooth Newton method for frictional contact between pseudo-rigid bodies. (English) Zbl 1194.74527

Summary: Recently developed semismooth Newton approach is adopted in the context of the frictional contact between three-dimensional pseudo-rigid bodies. The Signorini-Coulomb problem is formulated according to the formalism of the Contact Dynamics method. Hybrid linearisation, penalty scaling and line search techniques are combined as the global convergence enhancements of the Newton algorithm. Quasi-static simulations of dry masonry assemblies exemplify performance of the presented framework.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74M15 Contact in solid mechanics
74M10 Friction in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hüeber, S.; Stadler, G.; Wohlmuth, B. I., A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction, SIAM J. Sci. Comput., 30, 2, 572-596 (2008) · Zbl 1158.74045
[2] Moreau, J., Numerical aspects of the sweeping process, Comput. Methods Appl. Mech. Engrg., 177, 3-4, 329-349 (1999) · Zbl 0968.70006
[3] Jean, M., The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Engrg., 177, 3-4, 235-257 (1999) · Zbl 0959.74046
[4] Pang, J.-S., Newton’s method for \(\beta \)-differentiable equations, Math. Oper. Res., 15, 311-341 (1990) · Zbl 0716.90090
[5] Qi, L.; Sun, J., A nonsmooth version of Newton’s method, Math. Program., V58, 353-367 (1993) · Zbl 0780.90090
[6] Alart, P.; Curnier, A., Mixed formulation for frictional contact problems prone to Newton like solution methods, Comput. Methods Appl. Mech. Engrg., 92, 353-375 (1991) · Zbl 0825.76353
[7] Hintermüller, M.; Kovtunenko, V.; Kunisch, K., The primal-dual active set method for a crack problem with non-penetration, IMA J. Appl. Math., 69, 1, 1-26 (2004) · Zbl 1084.49029
[8] Hintermüller, M.; Ito, K.; Kunisch, K., The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim., 13, 865-888 (2003) · Zbl 1080.90074
[9] Christensen, P. W.; Klarbring, A.; Pang, J. S.; Strömberg, N., Formulation and comparison of algorithms for frictional contact problems, Int. J. Numer. Methods Engrg., 42, 145-173 (1998) · Zbl 0917.73063
[10] Jones, R. E.; Papadopoulos, P., Simulating anisotropic frictional response using smoothly interpolated traction fields, Comput. Methods Appl. Mech. Engrg., 195, 588-613 (2006) · Zbl 1090.74057
[11] Hüeber, S.; Wohlmuth, B. I., A primal-dual active set strategy for non-linear multibody contact problems, Comput. Methods Appl. Mech. Engrg., 194, 3147-3166 (2005) · Zbl 1093.74056
[12] Ainsworth, M.; Mihai, L. A., A comparison of solvers for linear complementarity problems arising from large-scale masonry structures, Appl. Math., 51, 2, 93-128 (2006) · Zbl 1164.74355
[13] Renouf, M.; Alart, P., Conjugate gradient type algorithms for frictional multi-contact problems: applications to granular materials, Comput. Methods Appl. Mech. Engrg., 194, 2019-2041 (2005) · Zbl 1091.74053
[14] Renouf, M.; Dubois, F.; Alart, P., A parallel version of the non-smooth contact dynamics algorithm applied to the simulation of granular media, J. Comput. Appl. Math., 168, 375-382 (2004) · Zbl 1089.74054
[15] Chetouane, B.; Dubois, F.; Vinches, M.; Bohatier, C., NSCD discrete element method for modelling masonry structures, Int. J. Numer. Methods Engrg., 64, 65-94 (2005) · Zbl 1073.74051
[16] Jourdan, F.; Alart, P.; Jean, M., A Gauss-Seidel like algorithm to solve frictional contact problems, Comput. Methods Appl. Mech. Engrg., 155, 31-47 (1998) · Zbl 0961.74080
[17] Wosle, M.; Pfeiffer, F., Dynamics of multibody systems containing dependent unilateral constraints with friction, J. Vib. Control, 2, 161-192 (1996) · Zbl 0949.70501
[18] Pfeiffer, F.; Foerg, M.; Ulbrich, H., Numerical aspects of non-smooth multibody dynamics, Comput. Methods Appl. Mech. Engrg., 195, 6891-6908 (2006) · Zbl 1120.70305
[19] Cohen, H.; Muncaster, R. G., The Theory of Pseudo-rigid Bodies (1988), Springer: Springer New York · Zbl 0687.70001
[20] Solberg, J. M.; Papadopoulos, P., Impact of an elastic pseudo-rigid body on a rigid foundation, Int. J. Engrg. Sci., 38, 589-603 (2000) · Zbl 1210.74136
[21] Nordenholz, T. R.; O’Reilly, O. M., On steady motions of isotropic, elastic cosserat points, IMA J. Appl. Math., 60, 55-72 (1998) · Zbl 0905.73005
[22] Kanso, E.; Papadopoulos, P., Dynamics of pseudo-rigid ball impact on rigid foundation, Int. J. Non-Linear Mech., 39, 299-309 (2004) · Zbl 1348.74263
[23] Acary, V.; Jean, M., Numerical modeling of three dimensional divided structures by the non-smooth contact dynamics method, (Topping, B. H.V., The Fifth International Conference on Computational Structures Technology (2000), Civil-Comp Press: Civil-Comp Press Edimburgh), 211-222
[24] Strang, G., Linear Algebra and its Applications (1988), Brooks Cole
[25] Clarke, F. H., Optimization and Nonsmooth Analysis (1983), John Wiley and Sons: John Wiley and Sons New York · Zbl 0727.90045
[26] Grippo, L.; Lampariello, F.; Lucidi, S., A nonmonotone line search technique for Newton’s method, SIAM J. Numer. Anal., 23, 4, 707-716 (1986) · Zbl 0616.65067
[27] Armijo, L., Minimization of functions having Lipschitz continuous first partial derivatives, Pacific J. Math., 16, 1, 1-3 (1966) · Zbl 0202.46105
[28] Ferris, M.; Lucidi, S., Nonmonotone stabilization methods for nonlinear equations, J. Optim. Theory Appl., 81, 53-71 (1994) · Zbl 0803.65070
[29] De Saxcé, G.; Feng, Z. Q., The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms, Math. Comput. Modell., 28, 225-245 (1998) · Zbl 1126.74341
[30] Lourenco, P. B.; Oliveira, D. V.; Roca, P.; Orduna, A., Dry joint stone masonry walls subjected to in-plane combined loading, J. Struct. Engrg., 131, 1665-1673 (2005)
[31] Hughes, T. J.R., Analysis of transient algorithms with particular reference to stability behavior, (Belytschko, T.; Hughes, T., Computational Methods for Transient Analysis (1983), Elsevier Science), 67-155
[32] Demmel, J. W.; Eisenstat, S. C.; Gilbert, J. R.; Li, X. S.; Liu, J. W.H., A supernodal approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20, 3, 720-755 (1999) · Zbl 0931.65022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.