×

Matrix coefficient realization theory of noncommutative rational functions. (English) Zbl 1441.16030

Summary: Noncommutative rational functions, i.e., elements of the universal skew field of fractions of a free algebra, can be defined through evaluations of noncommutative rational expressions on tuples of matrices. This interpretation extends their traditionally important role in the theory of division rings and gives rise to their applications in other areas, from free real algebraic geometry to systems and control theory. If a noncommutative rational function is regular at the origin, it can be described by a linear object, called a realization. In this article we present an extension of the realization theory that is applicable to arbitrary noncommutative rational functions and is well-adapted for studying matrix evaluations.
Of special interest are the minimal realizations, which compensate the absence of a canonical form for noncommutative rational functions. The non-minimality of a realization is assessed by obstruction modules associated with it; they enable us to devise an efficient method for obtaining minimal realizations. With them we describe the stable extended domain of a noncommutative rational function and define a numerical invariant that measures its complexity. Using these results we determine concrete size bounds for rational identity testing, construct minimal symmetric realizations and prove an effective local-global principle for linear dependence of noncommutative rational functions.

MSC:

16S85 Associative rings of fractions and localizations
47A56 Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones)
16R50 Other kinds of identities (generalized polynomial, rational, involution)
93B20 Minimal systems representations

Software:

NCAlgebra
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Anderson, G. W., Convergence of the largest singular value of a polynomial in independent Wigner matrices, Ann. Probab., 41, 2103-2181 (2013) · Zbl 1282.60007
[2] Antsaklis, P. J.; Michel, A. N., A Linear Systems Primer (2007), Birkhäuser Boston, Boston, Inc.: Birkhäuser Boston, Boston, Inc. Boston · Zbl 1168.93001
[3] Amitsur, S. A., Rational identities and applications to algebra and geometry, J. Algebra, 3, 304-359 (1966) · Zbl 0203.04003
[4] Bergman, G. M., Rational relations and rational identities in division rings. I, J. Algebra, 43, 252-266 (1976) · Zbl 0307.16012
[5] Bergman, G. M., Rational relations and rational identities in division rings. II, J. Algebra, 43, 267-297 (1976) · Zbl 0307.16013
[6] Ball, J. A.; Groenewald, G.; Malakorn, T., Structured noncommutative multidimensional linear systems, SIAM J. Control Optim., 44, 1474-1528 (2005) · Zbl 1139.93006
[7] Ball, J. A.; Groenewald, G.; Malakorn, T., Conservative structured noncommutative multidimensional linear systems, (The State Space Method Generalizations and Applications. The State Space Method Generalizations and Applications, Oper. Theory Adv. Appl., vol. 161 (2006), Birkhäuser: Birkhäuser Basel), 179-223 · Zbl 1110.47066
[8] Brešar, M.; Klep, I., A local-global principle for linear dependence of noncommutative polynomials, Israel J. Math., 193, 71-82 (2013) · Zbl 1293.16021
[9] Belinschi, S. T.; Mai, T.; Speicher, R., Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem, J. Reine Angew. Math., 732, 21-53 (2017) · Zbl 1456.60013
[10] Berstel, J.; Reutenauer, C., Noncommutative Rational Series with Applications, Encyclopedia Math. Appl., vol. 137 (2011), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1250.68007
[11] Camino, J. F.; Helton, J. W.; Skelton, R. E.; Ye, J., Matrix inequalities: a symbolic procedure to determine convexity automatically, Integral Equations Operator Theory, 46, 399-454 (2003) · Zbl 1046.68139
[12] Chistov, A. L.; Ivanyos, G.; Karpinski, M., Polynomial time algorithms for modules over finite dimensional algebras, (Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation. Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, Kihei, HI (1997), ACM: ACM New York), 68-74 · Zbl 0918.16001
[13] Cohn, P. M., Skew Fields. Theory of General Division Rings, Encyclopedia Math. Appl., vol. 57 (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0840.16001
[14] Cohn, P. M., Free Ideal Rings and Localization in General Rings, New Math. Monogr., vol. 3 (2006), Cambridge University Press · Zbl 1114.16001
[15] Cohn, P. M.; Reutenauer, C., A normal form in free fields, Canad. J. Math., 46, 517-531 (1994) · Zbl 0836.16012
[16] Derksen, H.; Makam, V., Polynomial degree bounds for matrix semi-invariants, Adv. Math., 310, 44-63 (2017) · Zbl 1361.15033
[17] Desmarais, P. C.; Martindale, W. S., Generalized rational identities and rings with involution, Israel J. Math., 36, 187-192 (1980) · Zbl 0444.16007
[18] Fliess, M., Matrices de Hankel, J. Math. Pures Appl. (9), 53, 197-222 (1974) · Zbl 0315.94051
[19] Formanek, E., Invariants and the ring of generic matrices, J. Algebra, 89, 178-223 (1984) · Zbl 0549.16008
[20] Gelfand, I. M.; Krob, D.; Lascoux, A.; Leclerc, B.; Retakh, V. S.; Thibon, J.-Y., Noncommutative symmetric functions, Adv. Math., 112, 218-348 (1995) · Zbl 0831.05063
[21] Gelfand, I. M.; Gelfand, S.; Retakh, V.; Wilson, R. L., Quasideterminants, Adv. Math., 193, 56-141 (2005) · Zbl 1079.15007
[22] Helton, J. W.; Klep, I.; McCullough, S., Free convex algebraic geometry, (Semidefinite Optimization and Convex Algebraic Geometry. Semidefinite Optimization and Convex Algebraic Geometry, MOS-SIAM Ser. Optim., vol. 13 (2013), SIAM: SIAM Philadelphia, PA), 341-405 · Zbl 1360.14008
[23] Helton, J. W.; McCullough, S.; Vinnikov, V., Noncommutative convexity arises from linear matrix inequalities, J. Funct. Anal., 240, 105-191 (2006) · Zbl 1135.47005
[24] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge University Press · Zbl 0576.15001
[25] Hrubeš, P.; Wigderson, A., Non-commutative arithmetic circuits with division, Theory Comput., 11, 357-393 (2015) · Zbl 1403.94130
[26] Kalyuzhnyi-Verbovetskiĭ, D. S.; Vinnikov, V., Singularities of rational functions and minimal factorizations: the noncommutative and the commutative setting, Linear Algebra Appl., 430, 869-889 (2009) · Zbl 1217.47032
[27] Kalyuzhnyi-Verbovetskiĭ, D. S.; Vinnikov, V., Noncommutative rational functions, their difference-differential calculus and realizations, Multidimens. Syst. Signal Process., 23, 49-77 (2012) · Zbl 1255.93073
[28] Kalyuzhnyi-Verbovetskiĭ, D. S.; Vinnikov, V., Foundations of Free Noncommutative Function Theory, Math. Surveys Monogr., vol. 199 (2014), American Mathematical Society · Zbl 1312.46003
[29] Klep, I.; Špenko, Š., Free function theory through matrix invariants · Zbl 1377.16017
[30] Klep, I.; Vinnikov, V.; Volčič, J., Null- and Positivstellensätze for rationally resolvable ideals · Zbl 1403.14007
[31] Lam, T. Y., A First Course in Noncommutative Rings, Grad. Texts in Math., vol. 131 (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0728.16001
[32] Lewin, J., Fields of fractions for group algebras of free groups, Trans. Amer. Math. Soc., 192, 339-346 (1974) · Zbl 0307.16009
[33] Lichtman, A. I., On universal fields of fractions for free algebras, J. Algebra, 231, 652-676 (2000) · Zbl 0959.17010
[34] de Oliveira, M. C.; Helton, J. W.; McCullough, S. A.; Putinar, M., Engineering systems and free semi-algebraic geometry, (Emerging Applications of Algebraic Geometry. Emerging Applications of Algebraic Geometry, IMA Vol. Math. Appl., vol. 149 (2009), Springer: Springer New York), 17-61 · Zbl 1156.14331
[35] Procesi, C., The invariant theory of \(n \times n\) matrices, Adv. Math., 19, 306-381 (1976) · Zbl 0331.15021
[36] Reutenauer, C., Inversion height in free fields, Selecta Math. (N.S.), 2, 93-109 (2010) · Zbl 0857.16021
[37] Rosen, J. D., Generalized rational identities and rings with involution, J. Algebra, 89, 416-436 (1984) · Zbl 0549.16010
[38] Rowen, L. H., Polynomial Identities in Ring Theory, Pure Appl. Math., vol. 84 (1980), Academic Press, Inc.: Academic Press, Inc. New York, London · Zbl 0461.16001
[39] Schützenberger, M. P., On the definition of a family of automata, Inf. Control, 4, 245-270 (1961) · Zbl 0104.00702
[40] Saltman, D. J., Lectures on Division Algebras, CBMS Reg. Conf. Ser. Math., vol. 94 (1999), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0934.16013
[41] Voiculescu, D.-V., Free analysis questions I: duality transform for the coalgebra of \(\partial_{X : B}\), Int. Math. Res. Not., 16, 793-822 (2004) · Zbl 1084.46053
[42] Voiculescu, D.-V., Free analysis questions II: the Grassmannian completion and the series expansions at the origin, J. Reine Angew. Math., 645, 155-236 (2010) · Zbl 1228.46058
[43] Volčič, J., On domains of noncommutative rational functions · Zbl 1376.16022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.