Meunier, Frédéric; Su, Francis Edward Multilabeled versions of Sperner’s and Fan’s lemmas and applications. (English) Zbl 1427.55002 SIAM J. Appl. Algebra Geom. 3, No. 3, 391-411 (2019). Reviewer: Zdzisław Dzedzej (Gdansk) MSC: 55M20 54H25 05E45 91B32 PDF BibTeX XML Cite \textit{F. Meunier} and \textit{F. E. Su}, SIAM J. Appl. Algebra Geom. 3, No. 3, 391--411 (2019; Zbl 1427.55002) Full Text: DOI arXiv
Popescu, Călin On Fan’s combinatorial Stokes formula. (English) Zbl 07157332 Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 61(109), No. 3, 327-332 (2018). Reviewer: Corina Mohorianu (Iaşi) MSC: 55U10 52B05 PDF BibTeX XML Cite \textit{C. Popescu}, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 61(109), No. 3, 327--332 (2018; Zbl 07157332)
Lee, Shyh-Nan; Chen, Kai-Hui; Shih, Mau-Hsiang Projections of octahedral \(n\)-spheres and multiscale Sperner’s lemma. (English) Zbl 06876359 J. Nonlinear Convex Anal. 19, No. 2, 297-312 (2018). MSC: 47H10 52A37 PDF BibTeX XML Cite \textit{S.-N. Lee} et al., J. Nonlinear Convex Anal. 19, No. 2, 297--312 (2018; Zbl 06876359) Full Text: Link
Asada, Megumi; Frick, Florian; Pisharody, Vivek; Polevy, Maxwell; Stoner, David; Tsang, Ling Hei; Wellner, Zoe Fair division and generalizations of Sperner- and KKM-type results. (English) Zbl 1385.54013 SIAM J. Discrete Math. 32, No. 1, 591-610 (2018). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 54H25 91B32 PDF BibTeX XML Cite \textit{M. Asada} et al., SIAM J. Discrete Math. 32, No. 1, 591--610 (2018; Zbl 1385.54013) Full Text: DOI arXiv
Mirzakhani, Maryam; Vondrák, Jan Sperner’s colorings and optimal partitioning of the simplex. (English) Zbl 1384.05188 Loebl, Martin (ed.) et al., A journey through discrete mathematics. A tribute to Jiří Matoušek. Cham: Springer (ISBN 978-3-319-44478-9/hbk; 978-3-319-44479-6/ebook). 615-631 (2017). Reviewer: Robert Davis (East Lansing) MSC: 05E45 05C65 PDF BibTeX XML Cite \textit{M. Mirzakhani} and \textit{J. Vondrák}, in: A journey through discrete mathematics. A tribute to Jiří Matoušek. Cham: Springer. 615--631 (2017; Zbl 1384.05188) Full Text: DOI arXiv
Tsai, Feng-Sheng; Li, Yuan-Chuan; Shih, Mau-Hsiang; Hsu, Sheng-Yi The hidden convex structure of intersection theorems. (English) Zbl 1387.52013 J. Nonlinear Convex Anal. 18, No. 6, 1015-1021 (2017). Reviewer: Mircea Balaj (Oradea) MSC: 52A35 46A55 52A07 PDF BibTeX XML Cite \textit{F.-S. Tsai} et al., J. Nonlinear Convex Anal. 18, No. 6, 1015--1021 (2017; Zbl 1387.52013) Full Text: Link
Kuture, Beauttie; Leong, Oscar; Loa, Christopher; Sondjaja, Mutiara; Su, Francis Edward Proving Tucker’s lemma with a volume argument. (English) Zbl 1360.05020 Harrington, Heather A. (ed.) et al., Algebraic and geometric methods in discrete mathematics. AMS special session on algebraic and geometric methods in applied discrete mathematics, San Antonio, TX, USA, January 11, 2015. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2321-6/pbk; 978-1-4704-3743-5/ebook). Contemporary Mathematics 685, 223-230 (2017). MSC: 05A99 51D20 55M20 PDF BibTeX XML Cite \textit{B. Kuture} et al., Contemp. Math. 685, 223--230 (2017; Zbl 1360.05020) Full Text: DOI arXiv
Musin, Oleg R. Sperner type lemma for quadrangulations. (English) Zbl 1339.05441 Mosc. J. Comb. Number Theory 5, No. 1-2, 26-35 (2015). Reviewer: S. A. Seyed Fakhari (Tehran) MSC: 05E45 55M25 PDF BibTeX XML Cite \textit{O. R. Musin}, Mosc. J. Comb. Number Theory 5, No. 1--2, 26--35 (2015; Zbl 1339.05441) Full Text: arXiv
Musin, Oleg R. Extensions of Sperner and Tucker’s lemma for manifolds. (English) Zbl 1307.05195 J. Comb. Theory, Ser. A 132, 172-187 (2015). MSC: 05C78 05B35 PDF BibTeX XML Cite \textit{O. R. Musin}, J. Comb. Theory, Ser. A 132, 172--187 (2015; Zbl 1307.05195) Full Text: DOI arXiv
Grant, Elyot; Ma, Will A geometric approach to combinatorial fixed-point theorems: extended abstract. (English) Zbl 1291.05024 Nešetřil, Jaroslav (ed.) et al., The seventh European conference on combinatorics, graph theory and applications. Extended abstracts of EuroComb 2013, Pisa, Italy, September 9–13, 2013. Pisa: Edizioni della Normale (ISBN 978-88-7642-474-8/pbk; 978-88-7642-475-5/ebook). Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series 16, 463-468 (2013). MSC: 05A99 55M20 52B05 PDF BibTeX XML Cite \textit{E. Grant} and \textit{W. Ma}, in: The seventh European conference on combinatorics, graph theory and applications. Extended abstracts of EuroComb 2013, Pisa, Italy, September 9--13, 2013. Pisa: Edizioni della Normale. 463--468 (2013; Zbl 1291.05024) Full Text: arXiv
Nyman, Kathryn L.; Su, Francis Edward A Borsuk-Ulam equivalent that directly implies Sperner’s lemma. (English) Zbl 1280.55001 Am. Math. Mon. 120, No. 4, 346-354 (2013). Reviewer: Mahender Singh (Manauli) MSC: 55M20 54H25 05E45 PDF BibTeX XML Cite \textit{K. L. Nyman} and \textit{F. E. Su}, Am. Math. Mon. 120, No. 4, 346--354 (2013; Zbl 1280.55001) Full Text: DOI
Bullington, Grady D. Generalizing Sperner’s lemma to a free module over a special principal ideal ring. (English) Zbl 1267.13012 J. Commut. Algebra 4, No. 3, 345-368 (2012). Reviewer: Yi-Huang Shen (Hefei) MSC: 13A99 05E40 PDF BibTeX XML Cite \textit{G. D. Bullington}, J. Commut. Algebra 4, No. 3, 345--368 (2012; Zbl 1267.13012) Full Text: DOI Euclid
Lee, Shyh-Nan; Chen, Chien-Hung; Shih, Mau-Hsiang Multiple combinatorial Stokes’ theorem with balanced structure. (English) Zbl 1209.05019 Taiwanese J. Math. 14, No. 3B, 1169-1200 (2010). MSC: 05A19 52B05 47H10 PDF BibTeX XML Cite \textit{S.-N. Lee} et al., Taiwanese J. Math. 14, No. 3B, 1169--1200 (2010; Zbl 1209.05019) Full Text: DOI
Cloutier, John; Nyman, Kathryn L.; Su, Francis Edward Two-player envy-free multi-cake division. (English) Zbl 1200.91146 Math. Soc. Sci. 59, No. 1, 26-37 (2010). MSC: 91B32 52B05 PDF BibTeX XML Cite \textit{J. Cloutier} et al., Math. Soc. Sci. 59, No. 1, 26--37 (2010; Zbl 1200.91146) Full Text: DOI arXiv
McLennan, Andrew; Tourky, Rabee Using volume to prove Sperner’s Lemma. (English) Zbl 1139.51008 Econ. Theory 35, No. 3, 593-597 (2008). MSC: 51D20 PDF BibTeX XML Cite \textit{A. McLennan} and \textit{R. Tourky}, Econ. Theory 35, No. 3, 593--597 (2008; Zbl 1139.51008) Full Text: DOI
Meunier, Frédéric A combinatorial proof of a theorem of Freund. (English) Zbl 1134.52304 J. Comb. Theory, Ser. A 115, No. 2, 317-325 (2008). MSC: 52B11 PDF BibTeX XML Cite \textit{F. Meunier}, J. Comb. Theory, Ser. A 115, No. 2, 317--325 (2008; Zbl 1134.52304) Full Text: DOI
Iga, Kevin; Maddox, Randall Pebble sets in convex polygons. (English) Zbl 1141.52001 Discrete Comput. Geom. 38, No. 4, 680-700 (2007). Reviewer: Johann Linhart (Salzburg) MSC: 52A10 52A35 52B05 52B55 05D05 PDF BibTeX XML Cite \textit{K. Iga} and \textit{R. Maddox}, Discrete Comput. Geom. 38, No. 4, 680--700 (2007; Zbl 1141.52001) Full Text: DOI
Lee, Shyh-Nan; Shih, Mau-Hsiang Retrieve a Sperner map from a Sperner matroid. (English) Zbl 1097.05011 Taiwanese J. Math. 10, No. 1, 181-185 (2006). MSC: 05B35 52C40 55N35 PDF BibTeX XML Cite \textit{S.-N. Lee} and \textit{M.-H. Shih}, Taiwanese J. Math. 10, No. 1, 181--185 (2006; Zbl 1097.05011) Full Text: DOI
De Loera, Jesus A.; Peterson, Elisha; Su, Francis Edward A polytopal generalization of Sperner’s lemma. (English) Zbl 1015.05089 J. Comb. Theory, Ser. A 100, No. 1, 1-26 (2002). Reviewer: Michael Joswig (Berlin) MSC: 05D05 52B05 PDF BibTeX XML Cite \textit{J. A. De Loera} et al., J. Comb. Theory, Ser. A 100, No. 1, 1--26 (2002; Zbl 1015.05089) Full Text: DOI
Kulpa, Wladyslaw The Poincaré-Miranda theorem. (English) Zbl 0891.47040 Am. Math. Mon. 104, No. 6, 545-550 (1997). Reviewer: J.Appell (Würzburg) MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{W. Kulpa}, Am. Math. Mon. 104, No. 6, 545--550 (1997; Zbl 0891.47040) Full Text: DOI
Atanassov, K. T. On Sperner’s lemma. (English) Zbl 1012.52501 Stud. Sci. Math. Hung. 32, No. 1-2, 71-74 (1996). MSC: 52B05 52B40 PDF BibTeX XML Cite \textit{K. T. Atanassov}, Stud. Sci. Math. Hung. 32, No. 1--2, 71--74 (1996; Zbl 1012.52501)
Kryński, Stanisław Remarks on matroids and Sperner’s lemma. (English) Zbl 0727.05015 Eur. J. Comb. 11, No. 5, 485-488 (1990). Reviewer: A.Recski (Budapest) MSC: 05B35 05A05 PDF BibTeX XML Cite \textit{S. Kryński}, Eur. J. Comb. 11, No. 5, 485--488 (1990; Zbl 0727.05015) Full Text: DOI
Yamamoto, Yoshitsugu Orientability of pseudomanifolds and generalizations of Sperner’s lemma. (English) Zbl 0655.90071 J. Oper. Res. Soc. Japan 31, No. 1, 19-41 (1988). MSC: 90C30 52Bxx 58C30 54H25 57Q15 57P99 65K10 90C33 PDF BibTeX XML Cite \textit{Y. Yamamoto}, J. Oper. Res. Soc. Japan 31, No. 1, 19--41 (1988; Zbl 0655.90071) Full Text: DOI
Cordovil, Raul On simplicial matroids and Sperner’s lemma. (English) Zbl 0602.05016 Matroid theory, Proc. Colloq., Szeged/Hung. 1982, Colloq. Math. Soc. János Bolyai 40, 97-105 (1985). MSC: 05B35 55M20 PDF BibTeX XML
Pickert, Günter Der kombinatorische Kern des Spernerschen Lemmas; eine Beweisanalyse. (English) Zbl 0544.05005 Math. Semesterber. 31, 142-146 (1984). Reviewer: R.Bodendiek MSC: 05A15 05B30 52A37 PDF BibTeX XML Cite \textit{G. Pickert}, Math. Semesterber. 31, 142--146 (1984; Zbl 0544.05005)
Struve, Rolf; Wittmann, Erich Christian Ein operativer Beweis des Spernerschen Lemmas. (English) Zbl 0544.05004 Math. Semesterber. 31, 134-141 (1984). Reviewer: R.Bodendiek MSC: 05A15 05B30 52A37 PDF BibTeX XML Cite \textit{R. Struve} and \textit{E. C. Wittmann}, Math. Semesterber. 31, 134--141 (1984; Zbl 0544.05004)
Sies, H. Topological degree and Sperner’s lemma. (English) Zbl 0549.55003 Fundam. Math. 118, 135-149 (1983). Reviewer: Yu. Zelinskij (Kyïv) MSC: 55M25 55M20 55Q99 54H25 05A17 PDF BibTeX XML Cite \textit{H. Sies}, Fundam. Math. 118, 135--149 (1983; Zbl 0549.55003) Full Text: DOI EuDML
Ni, Luqun A combinatorial approach to the topological degree. (English) Zbl 0511.55003 J. Math. Anal. Appl. 89, 386-399 (1982). MSC: 55M25 PDF BibTeX XML Cite \textit{L. Ni}, J. Math. Anal. Appl. 89, 386--399 (1982; Zbl 0511.55003) Full Text: DOI
de Caen, Dom; Gregory, D. A.; Pullman, N. J. The Boolean rank of zero-one matrices. (English) Zbl 0496.20052 Combinatorics and computing, Proc. 3rd Caribb. Conf., Cave Hill/ Barbados 1981, 169-173 (1981). MSC: 20M20 15A21 05B20 15A03 PDF BibTeX XML
Lindström, Bernt On matroids and Sperner’s lemma. (English) Zbl 0473.05022 Eur. J. Comb.2, 65-66 (1981). MSC: 05B35 05C65 55M99 PDF BibTeX XML
Filus, Lidia Combinatorial fixed-point algorithms. (English) Zbl 0439.65044 Game theory and related topics, Proc. Semin., Bonn/Hagen 1978, 165-172 (1979). MSC: 65J15 91B50 47H10 54H25 55M20 PDF BibTeX XML
Forster, W. Fixed point algorithms: Estimates for implementation on array processors. (English) Zbl 0417.65026 Z. Angew. Math. Mech. 59/01, T55-T57 (1979). MSC: 65H10 65J15 55M20 47J25 68Q25 PDF BibTeX XML Cite \textit{W. Forster}, Z. Angew. Math. Mech. 59, T55--T57 (1979; Zbl 0417.65026)