Liu, Zhenhai; Zeng, Shengda; Gasiński, Leszek; Kim, Yun-Ho Nonlocal double phase complementarity systems with convection term and mixed boundary conditions. (English) Zbl 07561769 J. Geom. Anal. 32, No. 9, Paper No. 241, 33 p. (2022). MSC: 35J20 35J25 35R35 35J60 35A23 PDF BibTeX XML Cite \textit{Z. Liu} et al., J. Geom. Anal. 32, No. 9, Paper No. 241, 33 p. (2022; Zbl 07561769) Full Text: DOI OpenURL
Yue, Meiling; Xu, Fei; Xie, Manting A multilevel Newton’s method for the Steklov eigenvalue problem. (English) Zbl 07560212 Adv. Comput. Math. 48, No. 3, Paper No. 33, 29 p. (2022). MSC: 35Q99 65N25 65N30 65N55 PDF BibTeX XML Cite \textit{M. Yue} et al., Adv. Comput. Math. 48, No. 3, Paper No. 33, 29 p. (2022; Zbl 07560212) Full Text: DOI OpenURL
Boukhsas, Abdelmajid; Ouhamou, Brahim Steklov eigenvalues problems for generalized \((p,q)\)-Laplacian type operators. (English) Zbl 07527261 Mem. Differ. Equ. Math. Phys. 85, 33-51 (2022). MSC: 35J92 35J66 35P30 35A01 35A15 PDF BibTeX XML Cite \textit{A. Boukhsas} and \textit{B. Ouhamou}, Mem. Differ. Equ. Math. Phys. 85, 33--51 (2022; Zbl 07527261) Full Text: Link OpenURL
He, Zunwu; Hua, Bobo Upper bounds for the Steklov eigenvalues on trees. (English) Zbl 07510381 Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 101, 15 p. (2022). Reviewer: Carlos Alfaro (Ciudad de México) MSC: 05C50 05C05 47A75 49J40 49R05 PDF BibTeX XML Cite \textit{Z. He} and \textit{B. Hua}, Calc. Var. Partial Differ. Equ. 61, No. 3, Paper No. 101, 15 p. (2022; Zbl 07510381) Full Text: DOI OpenURL
Xiong, Changwei On the spectra of three Steklov eigenvalue problems on warped product manifolds. (English) Zbl 07493884 J. Geom. Anal. 32, No. 5, Paper No. 153, 35 p. (2022). MSC: 35P15 35J25 35R01 58C40 PDF BibTeX XML Cite \textit{C. Xiong}, J. Geom. Anal. 32, No. 5, Paper No. 153, 35 p. (2022; Zbl 07493884) Full Text: DOI arXiv OpenURL
Tschanz, Léonard Upper bounds for Steklov eigenvalues of subgraphs of polynomial growth Cayley graphs. (English) Zbl 1484.05138 Ann. Global Anal. Geom. 61, No. 1, 37-55 (2022). MSC: 05C50 05C25 58C40 58J50 PDF BibTeX XML Cite \textit{L. Tschanz}, Ann. Global Anal. Geom. 61, No. 1, 37--55 (2022; Zbl 1484.05138) Full Text: DOI arXiv OpenURL
Cakoni, Fioralba; Monk, Peter; Zhang, Yangwen Target signatures for thin surfaces. (English) Zbl 1483.35141 Inverse Probl. 38, No. 2, Article ID 025011, 28 p. (2022). Reviewer: Xiao-Chuan Xu (Nanjing) MSC: 35P25 35J25 35R30 PDF BibTeX XML Cite \textit{F. Cakoni} et al., Inverse Probl. 38, No. 2, Article ID 025011, 28 p. (2022; Zbl 1483.35141) Full Text: DOI arXiv OpenURL
Manouni, Said El; Marino, Greta; Winkert, Patrick Existence results for double phase problems depending on Robin and Steklov eigenvalues for the \(p\)-Laplacian. (English) Zbl 1479.35487 Adv. Nonlinear Anal. 11, 304-320 (2022). Reviewer: Petru Jebelean (Timişoara) MSC: 35J92 35P30 35A01 35A15 PDF BibTeX XML Cite \textit{S. E. Manouni} et al., Adv. Nonlinear Anal. 11, 304--320 (2022; Zbl 1479.35487) Full Text: DOI arXiv OpenURL
Xu, Fei; Chen, Liu; Huang, Qiumei Local defect-correction method based on multilevel discretization for Steklov eigenvalue problem. (English) Zbl 1483.65174 ESAIM, Math. Model. Numer. Anal. 55, No. 6, 2899-2920 (2021). MSC: 65N25 65N30 PDF BibTeX XML Cite \textit{F. Xu} et al., ESAIM, Math. Model. Numer. Anal. 55, No. 6, 2899--2920 (2021; Zbl 1483.65174) Full Text: DOI OpenURL
Anoop, Thazhe Veetil; Biswas, Nirjan On global bifurcation for the nonlinear Steklov problems. (English) Zbl 07474134 Topol. Methods Nonlinear Anal. 58, No. 2, 731-763 (2021). Reviewer: Petr Tomiczek (Plzeň) MSC: 46E30 35J50 35J66 PDF BibTeX XML Cite \textit{T. V. Anoop} and \textit{N. Biswas}, Topol. Methods Nonlinear Anal. 58, No. 2, 731--763 (2021; Zbl 07474134) Full Text: DOI arXiv OpenURL
Xiong, Changwei Optimal estimates for Steklov eigenvalue gaps and ratios on warped product manifolds. (English) Zbl 1481.58016 Int. Math. Res. Not. 2021, No. 22, 16938-16962 (2021). MSC: 58J50 53C20 PDF BibTeX XML Cite \textit{C. Xiong}, Int. Math. Res. Not. 2021, No. 22, 16938--16962 (2021; Zbl 1481.58016) Full Text: DOI OpenURL
Xie, Manting; Xu, Fei; Yue, Meiling A type of full multigrid method for non-selfadjoint Steklov eigenvalue problems in inverse scattering. (English) Zbl 1481.65214 ESAIM, Math. Model. Numer. Anal. 55, No. 5, 1779-1802 (2021). MSC: 65N21 65N55 65N25 65N30 65N50 65N12 35P25 PDF BibTeX XML Cite \textit{M. Xie} et al., ESAIM, Math. Model. Numer. Anal. 55, No. 5, 1779--1802 (2021; Zbl 1481.65214) Full Text: DOI OpenURL
Colbois, Bruno; Verma, Sheela Sharp Steklov upper bound for submanifolds of revolution. (English) Zbl 1482.35142 J. Geom. Anal. 31, No. 11, 11214-11225 (2021). Reviewer: Davide Buoso (Alessandria) MSC: 35P15 35J25 35R01 58C40 PDF BibTeX XML Cite \textit{B. Colbois} and \textit{S. Verma}, J. Geom. Anal. 31, No. 11, 11214--11225 (2021; Zbl 1482.35142) Full Text: DOI arXiv OpenURL
Colbois, Bruno; Gittins, Katie Upper bounds for Steklov eigenvalues of submanifolds in Euclidean space via the intersection index. (English) Zbl 1472.35252 Differ. Geom. Appl. 78, Article ID 101777, 21 p. (2021). MSC: 35P15 35J25 58C40 58J05 PDF BibTeX XML Cite \textit{B. Colbois} and \textit{K. Gittins}, Differ. Geom. Appl. 78, Article ID 101777, 21 p. (2021; Zbl 1472.35252) Full Text: DOI arXiv OpenURL
Lepe, Felipe; Mora, David; Rivera, Gonzalo; Velásquez, Iván A virtual element method for the Steklov eigenvalue problem allowing small edges. (English) Zbl 1479.35677 J. Sci. Comput. 88, No. 2, Paper No. 44, 21 p. (2021). MSC: 35Q35 65N25 65N30 65N50 65N12 65N15 76B15 35A15 PDF BibTeX XML Cite \textit{F. Lepe} et al., J. Sci. Comput. 88, No. 2, Paper No. 44, 21 p. (2021; Zbl 1479.35677) Full Text: DOI arXiv OpenURL
Perrin, Hélène Isoperimetric upper bound for the first eigenvalue of discrete Steklov problems. (English) Zbl 1471.05063 J. Geom. Anal. 31, No. 8, 8144-8155 (2021). MSC: 05C50 05C25 39A12 15A42 PDF BibTeX XML Cite \textit{H. Perrin}, J. Geom. Anal. 31, No. 8, 8144--8155 (2021; Zbl 1471.05063) Full Text: DOI arXiv OpenURL
Krymski, Stanislav; Levitin, Michael; Parnovski, Leonid; Polterovich, Iosif; Sher, David A. Inverse Steklov spectral problem for curvilinear polygons. (English) Zbl 1471.65187 Int. Math. Res. Not. 2021, No. 1, 1-37 (2021). Reviewer: Mohammed El Aïdi (Bogotá) MSC: 65N25 35P15 35B40 PDF BibTeX XML Cite \textit{S. Krymski} et al., Int. Math. Res. Not. 2021, No. 1, 1--37 (2021; Zbl 1471.65187) Full Text: DOI arXiv OpenURL
Karim, Belhadj; Zerouali, Abdellah; Chakrone, Omar Steklov eigenvalue problem with \(a\)-harmonic solutions and variable exponents. (English) Zbl 1471.35147 Georgian Math. J. 28, No. 3, 363-373 (2021). MSC: 35J66 35A15 PDF BibTeX XML Cite \textit{B. Karim} et al., Georgian Math. J. 28, No. 3, 363--373 (2021; Zbl 1471.35147) Full Text: DOI OpenURL
Xu, Fei; Huang, Qiumei An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications. (English) Zbl 1471.65190 Sci. China, Math. 64, No. 3, 623-638 (2021). MSC: 65N25 65N30 65N55 65N50 65N15 35J61 PDF BibTeX XML Cite \textit{F. Xu} and \textit{Q. Huang}, Sci. China, Math. 64, No. 3, 623--638 (2021; Zbl 1471.65190) Full Text: DOI OpenURL
Zhang, Yu; Bi, Hai; Yang, Yidu Asymptotic lower bounds for eigenvalues of the Steklov eigenvalue problem with variable coefficients. (English) Zbl 07332686 Appl. Math., Praha 66, No. 1, 1-19 (2021). MSC: 65N25 65N30 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Appl. Math., Praha 66, No. 1, 1--19 (2021; Zbl 07332686) Full Text: DOI arXiv OpenURL
Verma, Sheela An isoperimetric inequality for the harmonic mean of the Steklov eigenvalues in hyperbolic space. (English) Zbl 1460.35242 Arch. Math. 116, No. 2, 193-201 (2021). Reviewer: Luigi Provenzano (Padova) MSC: 35P15 58J50 PDF BibTeX XML Cite \textit{S. Verma}, Arch. Math. 116, No. 2, 193--201 (2021; Zbl 1460.35242) Full Text: DOI arXiv OpenURL
Bucur, Dorin; Nahon, Mickaël Stability and instability issues of the Weinstock inequality. (English) Zbl 1458.35287 Trans. Am. Math. Soc. 374, No. 3, 2201-2223 (2021). MSC: 35P15 35J25 PDF BibTeX XML Cite \textit{D. Bucur} and \textit{M. Nahon}, Trans. Am. Math. Soc. 374, No. 3, 2201--2223 (2021; Zbl 1458.35287) Full Text: DOI arXiv OpenURL
Türk, Önder A DRBEM approximation of the Steklov eigenvalue problem. (English) Zbl 1464.65249 Eng. Anal. Bound. Elem. 122, 232-241 (2021). MSC: 65N38 65N25 PDF BibTeX XML Cite \textit{Ö. Türk}, Eng. Anal. Bound. Elem. 122, 232--241 (2021; Zbl 1464.65249) Full Text: DOI OpenURL
Zhang, Yu; Bi, Hai; Yang, Yidu A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering. (English) Zbl 1480.65325 Int. J. Comput. Math. 97, No. 7, 1412-1430 (2020). MSC: 65N25 65N30 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Int. J. Comput. Math. 97, No. 7, 1412--1430 (2020; Zbl 1480.65325) Full Text: DOI arXiv OpenURL
Ammari, Habib; Imeri, Kthim; Nigam, Nilima Optimization of Steklov-Neumann eigenvalues. (English) Zbl 1453.35056 J. Comput. Phys. 406, Article ID 109211, 15 p. (2020). MSC: 35J08 35B20 35P05 76B10 65N25 35A02 35A01 PDF BibTeX XML Cite \textit{H. Ammari} et al., J. Comput. Phys. 406, Article ID 109211, 15 p. (2020; Zbl 1453.35056) Full Text: DOI arXiv OpenURL
Fraser, Ailana Extremal eigenvalue problems and free boundary minimal surfaces in the ball. (English) Zbl 1453.53002 Gursky, Matthew J. (ed.) et al., Geometric analysis. Cetraro, Italy, June 18–22, 2018. Lecture notes given at the summer school. Cham: Springer. Lect. Notes Math. 2263, 1-40 (2020). MSC: 53-02 53C42 58J50 49Q05 PDF BibTeX XML Cite \textit{A. Fraser}, Lect. Notes Math. 2263, 1--40 (2020; Zbl 1453.53002) Full Text: DOI OpenURL
Verma, Sheela; Santhanam, G. On eigenvalue problems related to the Laplacian in a class of doubly connected domains. (English) Zbl 1450.35201 Monatsh. Math. 193, No. 4, 879-899 (2020). MSC: 35P15 35J25 58J50 PDF BibTeX XML Cite \textit{S. Verma} and \textit{G. Santhanam}, Monatsh. Math. 193, No. 4, 879--899 (2020; Zbl 1450.35201) Full Text: DOI arXiv OpenURL
Roth, Julien Reilly-type inequalities for Paneitz and Steklov eigenvalues. (English) Zbl 1447.35233 Potential Anal. 53, No. 3, 773-798 (2020). MSC: 35P15 53C20 53C24 53C42 58C40 PDF BibTeX XML Cite \textit{J. Roth}, Potential Anal. 53, No. 3, 773--798 (2020; Zbl 1447.35233) Full Text: DOI HAL OpenURL
Bruno, Oscar P.; Galkowski, Jeffrey Domains without dense Steklov nodal sets. (English) Zbl 1445.35271 J. Fourier Anal. Appl. 26, No. 3, Paper No. 45, 29 p. (2020). MSC: 35P20 35J25 PDF BibTeX XML Cite \textit{O. P. Bruno} and \textit{J. Galkowski}, J. Fourier Anal. Appl. 26, No. 3, Paper No. 45, 29 p. (2020; Zbl 1445.35271) Full Text: DOI arXiv OpenURL
Xu, Fei; Yue, Meiling; Huang, Qiumei; Ma, Hongkun An asymptotically exact a posteriori error estimator for non-selfadjoint Steklov eigenvalue problem. (English) Zbl 1447.35144 Appl. Numer. Math. 156, 210-227 (2020). MSC: 35J25 65N30 PDF BibTeX XML Cite \textit{F. Xu} et al., Appl. Numer. Math. 156, 210--227 (2020; Zbl 1447.35144) Full Text: DOI OpenURL
Meng, Jian; Mei, Liquan Discontinuous Galerkin methods of the non-selfadjoint Steklov eigenvalue problem in inverse scattering. (English) Zbl 1474.65447 Appl. Math. Comput. 381, Article ID 125307, 18 p. (2020). MSC: 65N30 65N25 65N12 65N15 35P25 PDF BibTeX XML Cite \textit{J. Meng} and \textit{L. Mei}, Appl. Math. Comput. 381, Article ID 125307, 18 p. (2020; Zbl 1474.65447) Full Text: DOI OpenURL
Gendron, Germain Uniqueness results in the inverse spectral Steklov problem. (English) Zbl 1441.58008 Inverse Probl. Imaging 14, No. 4, 631-664 (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 58C40 58J53 35P20 30D35 PDF BibTeX XML Cite \textit{G. Gendron}, Inverse Probl. Imaging 14, No. 4, 631--664 (2020; Zbl 1441.58008) Full Text: DOI arXiv OpenURL
Abreu, Jamil; Madeira, Gustavo F. Generalized eigenvalues of the \((P, 2)\)-Laplacian under a parametric boundary condition. (English) Zbl 1445.35275 Proc. Edinb. Math. Soc., II. Ser. 63, No. 1, 287-303 (2020). MSC: 35P30 35J60 35J92 35J20 35J66 PDF BibTeX XML Cite \textit{J. Abreu} and \textit{G. F. Madeira}, Proc. Edinb. Math. Soc., II. Ser. 63, No. 1, 287--303 (2020; Zbl 1445.35275) Full Text: DOI arXiv OpenURL
Hassannezhad, Asma; Laptev, Ari Eigenvalue bounds of mixed Steklov problems. (English) Zbl 1442.35280 Commun. Contemp. Math. 22, No. 2, Article ID 1950008, 23 p. (2020). MSC: 35P15 35P20 35S05 PDF BibTeX XML Cite \textit{A. Hassannezhad} and \textit{A. Laptev}, Commun. Contemp. Math. 22, No. 2, Article ID 1950008, 23 p. (2020; Zbl 1442.35280) Full Text: DOI arXiv OpenURL
Verma, Sheela Upper bound for the first nonzero eigenvalue related to the \(p\)-Laplacian. (English) Zbl 1445.35268 Proc. Indian Acad. Sci., Math. Sci. 130, No. 1, Paper No. 21, 11 p. (2020). MSC: 35P15 58J50 35J92 35J66 PDF BibTeX XML Cite \textit{S. Verma}, Proc. Indian Acad. Sci., Math. Sci. 130, No. 1, Paper No. 21, 11 p. (2020; Zbl 1445.35268) Full Text: DOI OpenURL
Zhao, Yan; Wu, Chuanxi; Mao, Jing; Du, Feng Eigenvalue comparisons in Steklov eigenvalue problem and some other eigenvalue estimates. (English) Zbl 1442.35282 Rev. Mat. Complut. 33, No. 2, 389-414 (2020). MSC: 35P15 53C20 PDF BibTeX XML Cite \textit{Y. Zhao} et al., Rev. Mat. Complut. 33, No. 2, 389--414 (2020; Zbl 1442.35282) Full Text: DOI arXiv OpenURL
Armentano, María G.; Lombardi, Ariel L. The Steklov eigenvalue problem in a cuspidal domain. (English) Zbl 1433.65265 Numer. Math. 144, No. 2, 237-270 (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65N25 65N30 65N15 35R11 65N12 PDF BibTeX XML Cite \textit{M. G. Armentano} and \textit{A. L. Lombardi}, Numer. Math. 144, No. 2, 237--270 (2020; Zbl 1433.65265) Full Text: DOI OpenURL
Gavitone, Nunzia; La Manna, Domenico Angelo; Paoli, Gloria; Trani, Leonardo A quantitative Weinstock inequality for convex sets. (English) Zbl 1427.35165 Calc. Var. Partial Differ. Equ. 59, No. 1, Paper No. 2, 20 p. (2020). Reviewer: Rodica Luca (Iaşi) MSC: 35P15 35B35 PDF BibTeX XML Cite \textit{N. Gavitone} et al., Calc. Var. Partial Differ. Equ. 59, No. 1, Paper No. 2, 20 p. (2020; Zbl 1427.35165) Full Text: DOI arXiv OpenURL
Xu, Fei A full multigrid method for the Steklov eigenvalue problem. (English) Zbl 07474778 Int. J. Comput. Math. 96, No. 12, 2371-2386 (2019). MSC: 65F15 65N15 65N25 65N30 65N50 PDF BibTeX XML Cite \textit{F. Xu}, Int. J. Comput. Math. 96, No. 12, 2371--2386 (2019; Zbl 07474778) Full Text: DOI OpenURL
Monzón, Gabriel A virtual element method for a biharmonic Steklov eigenvalue problem. (English) Zbl 1430.31002 Adv. Pure Appl. Math. 10, No. 4, 325-337 (2019). MSC: 31A30 35J40 65N30 PDF BibTeX XML Cite \textit{G. Monzón}, Adv. Pure Appl. Math. 10, No. 4, 325--337 (2019; Zbl 1430.31002) Full Text: DOI OpenURL
Alhejaili, Weaam; Kao, Chiu-Yen Numerical studies of the Steklov eigenvalue problem via conformal mappings. (English) Zbl 1428.35245 Appl. Math. Comput. 347, 785-802 (2019). MSC: 35P15 35J05 35J20 35J25 65N25 65N30 PDF BibTeX XML Cite \textit{W. Alhejaili} and \textit{C.-Y. Kao}, Appl. Math. Comput. 347, 785--802 (2019; Zbl 1428.35245) Full Text: DOI arXiv OpenURL
Davletov, D. B.; Davletov, O. B. Convergence of eigenfunctions of a Steklov-type problem in a half-strip with a small hole. (English. Russian original) Zbl 07123831 J. Math. Sci., New York 241, No. 5, 549-555 (2019); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 141, 42-47 (2017). MSC: 47A10 58J37 PDF BibTeX XML Cite \textit{D. B. Davletov} and \textit{O. B. Davletov}, J. Math. Sci., New York 241, No. 5, 549--555 (2019; Zbl 07123831); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 141, 42--47 (2017) Full Text: DOI OpenURL
You, Chun’Guang; Xie, Hehu; Liu, Xuefeng Guaranteed eigenvalue bounds for the Steklov eigenvalue problem. (English) Zbl 1427.65384 SIAM J. Numer. Anal. 57, No. 3, 1395-1410 (2019). Reviewer: Murli Gupta (Washington, D. C.) MSC: 65N30 65N25 65L15 65B99 35P15 PDF BibTeX XML Cite \textit{C. You} et al., SIAM J. Numer. Anal. 57, No. 3, 1395--1410 (2019; Zbl 1427.65384) Full Text: DOI arXiv OpenURL
Alhejaili, Weaam; Kao, Chiu-Yen Maximal convex combinations of sequential Steklov eigenvalues. (English) Zbl 1420.49049 J. Sci. Comput. 79, No. 3, 2006-2026 (2019). MSC: 49R05 35P15 49Q10 65N25 35J05 PDF BibTeX XML Cite \textit{W. Alhejaili} and \textit{C.-Y. Kao}, J. Sci. Comput. 79, No. 3, 2006--2026 (2019; Zbl 1420.49049) Full Text: DOI OpenURL
Zerouali, A.; Karim, B.; Chakrone, O.; Boukhsas, A. Resonant Steklov eigenvalue problem involving the \((p, q)\)-Laplacian. (English) Zbl 1438.35179 Afr. Mat. 30, No. 1-2, 171-179 (2019). MSC: 35J62 35J20 35J66 35J70 35P05 35P30 PDF BibTeX XML Cite \textit{A. Zerouali} et al., Afr. Mat. 30, No. 1--2, 171--179 (2019; Zbl 1438.35179) Full Text: DOI OpenURL
Colbois, Bruno; Girouard, Alexandre; Gittins, Katie Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space. (English) Zbl 1423.35273 J. Geom. Anal. 29, No. 2, 1811-1834 (2019). Reviewer: Luigi Provenzano (Padova) MSC: 35P15 58C40 PDF BibTeX XML Cite \textit{B. Colbois} et al., J. Geom. Anal. 29, No. 2, 1811--1834 (2019; Zbl 1423.35273) Full Text: DOI arXiv OpenURL
Provenzano, Luigi; Stubbe, Joachim Weyl-type bounds for Steklov eigenvalues. (English) Zbl 1409.35160 J. Spectr. Theory 9, No. 1, 349-377 (2019). MSC: 35P15 35J25 35P20 PDF BibTeX XML Cite \textit{L. Provenzano} and \textit{J. Stubbe}, J. Spectr. Theory 9, No. 1, 349--377 (2019; Zbl 1409.35160) Full Text: DOI arXiv OpenURL
Ferrero, Alberto; Lamberti, Pier Domenico Spectral stability for a class of fourth order Steklov problems under domain perturbations. (English) Zbl 1414.35071 Calc. Var. Partial Differ. Equ. 58, No. 1, Paper No. 33, 57 p. (2019). Reviewer: Giovanni Anello (Messina) MSC: 35J40 35B20 35P15 PDF BibTeX XML Cite \textit{A. Ferrero} and \textit{P. D. Lamberti}, Calc. Var. Partial Differ. Equ. 58, No. 1, Paper No. 33, 57 p. (2019; Zbl 1414.35071) Full Text: DOI arXiv Link OpenURL
Zerouali, Abdellah; Karim, Belhadj; Chakrone, Omar Nonlinear Steklov eigenvalue problem with variable exponents and without Ambrosetti-Rabinowitz condition. (English) Zbl 1442.35284 Int. J. Dyn. Syst. Differ. Equ. 8, No. 1-2, 113-122 (2018). MSC: 35P30 35P05 35A15 PDF BibTeX XML Cite \textit{A. Zerouali} et al., Int. J. Dyn. Syst. Differ. Equ. 8, No. 1--2, 113--122 (2018; Zbl 1442.35284) Full Text: DOI OpenURL
Heyden, S.; Ortiz, M. Optimizing information transmission rates drives brain gyrification. (English) Zbl 1425.92050 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 474, No. 2219, Article ID 20180527, 10 p. (2018). MSC: 92C30 PDF BibTeX XML Cite \textit{S. Heyden} and \textit{M. Ortiz}, Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 474, No. 2219, Article ID 20180527, 10 p. (2018; Zbl 1425.92050) Full Text: DOI OpenURL
Bi, Hai; Yang, Yidu; Yu, Yuanyuan; Han, Jiayu New error estimates for linear triangle finite elements in the Steklov eigenvalue problem. (English) Zbl 1424.65216 J. Comput. Math. 36, No. 5, 682-692 (2018). MSC: 65N25 65N15 65N30 PDF BibTeX XML Cite \textit{H. Bi} et al., J. Comput. Math. 36, No. 5, 682--692 (2018; Zbl 1424.65216) Full Text: DOI OpenURL
Doumatè, Jonas; Marcos, Aboubacar Weighted Steklov problem under nonresonance conditions. (English) Zbl 1424.35143 Bol. Soc. Parana. Mat. (3) 36, No. 4, 87-105 (2018). MSC: 35J30 35J70 35P30 PDF BibTeX XML Cite \textit{J. Doumatè} and \textit{A. Marcos}, Bol. Soc. Parana. Mat. (3) 36, No. 4, 87--105 (2018; Zbl 1424.35143) Full Text: Link OpenURL
Verma, Sheela Bounds for the Steklov eigenvalues. (English) Zbl 1402.53048 Arch. Math. 111, No. 6, 657-668 (2018). MSC: 53C42 58J50 PDF BibTeX XML Cite \textit{S. Verma}, Arch. Math. 111, No. 6, 657--668 (2018; Zbl 1402.53048) Full Text: DOI OpenURL
McGrath, Peter A characterization of the critical catenoid. (English) Zbl 1455.53032 Indiana Univ. Math. J. 67, No. 2, 889-897 (2018). Reviewer: Marina Ville (Paris) MSC: 53A10 53A05 PDF BibTeX XML Cite \textit{P. McGrath}, Indiana Univ. Math. J. 67, No. 2, 889--897 (2018; Zbl 1455.53032) Full Text: DOI arXiv OpenURL
Tan, Ting; An, Jing Spectral Galerkin approximation and rigorous error analysis for the Steklov eigenvalue problem in circular domain. (English) Zbl 1402.65171 Math. Methods Appl. Sci. 41, No. 10, 3764-3778 (2018). Reviewer: Andreas Kleefeld (Jülich) MSC: 65N35 65N25 65N15 35P15 PDF BibTeX XML Cite \textit{T. Tan} and \textit{J. An}, Math. Methods Appl. Sci. 41, No. 10, 3764--3778 (2018; Zbl 1402.65171) Full Text: DOI OpenURL
Jollivet, Alexandre; Sharafutdinov, Vladimir Steklov zeta-invariants and a compactness theorem for isospectral families of planar domains. (English) Zbl 1401.35344 J. Funct. Anal. 275, No. 7, 1712-1755 (2018). Reviewer: Eric Stachura (Marietta) MSC: 35R30 35P99 PDF BibTeX XML Cite \textit{A. Jollivet} and \textit{V. Sharafutdinov}, J. Funct. Anal. 275, No. 7, 1712--1755 (2018; Zbl 1401.35344) Full Text: DOI arXiv OpenURL
Nazarov, Sergei A.; Pérez, M. Eugenia On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary. (English) Zbl 1382.35025 Rev. Mat. Complut. 31, No. 1, 1-62 (2018). MSC: 35B27 35B25 35P05 35B40 47A75 74H45 35J25 PDF BibTeX XML Cite \textit{S. A. Nazarov} and \textit{M. E. Pérez}, Rev. Mat. Complut. 31, No. 1, 1--62 (2018; Zbl 1382.35025) Full Text: DOI Link OpenURL
Dominguez, Sebastian; Nigam, Nilima; Shahriari, Bobak A combined finite element and Bayesian optimization framework for shape optimization in spectral geometry. (English) Zbl 1397.65260 Comput. Math. Appl. 74, No. 11, 2874-2896 (2017). MSC: 65N30 65N25 58C40 49Q10 90C56 90C15 PDF BibTeX XML Cite \textit{S. Dominguez} et al., Comput. Math. Appl. 74, No. 11, 2874--2896 (2017; Zbl 1397.65260) Full Text: DOI OpenURL
Mora, David; Rivera, Gonzalo; Rodríguez, Rodolfo A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem. (English) Zbl 1397.65246 Comput. Math. Appl. 74, No. 9, 2172-2190 (2017). MSC: 65N25 65N30 65N15 65N50 PDF BibTeX XML Cite \textit{D. Mora} et al., Comput. Math. Appl. 74, No. 9, 2172--2190 (2017; Zbl 1397.65246) Full Text: DOI arXiv OpenURL
Zeng, Yuping; Wang, Feng A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems. (English) Zbl 1458.65141 Appl. Math., Praha 62, No. 3, 243-267 (2017). MSC: 65N15 65N25 65N30 PDF BibTeX XML Cite \textit{Y. Zeng} and \textit{F. Wang}, Appl. Math., Praha 62, No. 3, 243--267 (2017; Zbl 1458.65141) Full Text: DOI OpenURL
Girouard, Alexandre; Polterovich, Iosif Spectral geometry of the Steklov problem (survey article). (English) Zbl 1378.58026 J. Spectr. Theory 7, No. 2, 321-359 (2017). Reviewer: Magnus Goffeng (Göteborg) MSC: 58J50 35P15 35J25 PDF BibTeX XML Cite \textit{A. Girouard} and \textit{I. Polterovich}, J. Spectr. Theory 7, No. 2, 321--359 (2017; Zbl 1378.58026) Full Text: DOI OpenURL
Davletov, Dmitriĭ Borisovich; Kozhevnikov, Denis Vladimirovich The problem of Steklov type in a half-cylinder with a small cavity. (Russian. English summary) Zbl 1463.35198 Ufim. Mat. Zh. 8, No. 4, 63-89 (2016); translation in Ufa Math. J. 8, No. 4, 62-87 (2016). MSC: 35J05 35J25 47A10 47A55 47A75 47F05 PDF BibTeX XML Cite \textit{D. B. Davletov} and \textit{D. V. Kozhevnikov}, Ufim. Mat. Zh. 8, No. 4, 63--89 (2016; Zbl 1463.35198); translation in Ufa Math. J. 8, No. 4, 62--87 (2016) Full Text: DOI MNR OpenURL
Kulczycki, Tadeusz; Kwaśnicki, Mateusz; Siudeja, Bartłomiej The shape of the fundamental sloshing mode in axisymmetric containers. (English) Zbl 1360.76145 J. Eng. Math. 99, 157-183 (2016). MSC: 76M10 65N25 65N30 76B10 PDF BibTeX XML Cite \textit{T. Kulczycki} et al., J. Eng. Math. 99, 157--183 (2016; Zbl 1360.76145) Full Text: DOI arXiv Link OpenURL
Bi, Hai; Li, Hao; Yang, Yidu An adaptive algorithm based on the shifted inverse iteration for the Steklov eigenvalue problem. (English) Zbl 1382.65372 Appl. Numer. Math. 105, 64-81 (2016). MSC: 65N25 65N15 65N30 PDF BibTeX XML Cite \textit{H. Bi} et al., Appl. Numer. Math. 105, 64--81 (2016; Zbl 1382.65372) Full Text: DOI arXiv OpenURL
Bi, Hai; Li, Zhengxia; Yang, Yidu Local and parallel finite element algorithms for the Steklov eigenvalue problem. (English) Zbl 1337.65143 Numer. Methods Partial Differ. Equations 32, No. 2, 399-417 (2016). MSC: 65N25 65N30 PDF BibTeX XML Cite \textit{H. Bi} et al., Numer. Methods Partial Differ. Equations 32, No. 2, 399--417 (2016; Zbl 1337.65143) Full Text: DOI OpenURL
An, Jing An efficient Legendre-Galerkin spectral approximation for the Steklov eigenvalue problem. (Chinese. English summary) Zbl 07449308 Sci. Sin., Math. 45, No. 1, 83-92 (2015). MSC: 65N25 65N30 65N35 65N15 42C10 15A69 PDF BibTeX XML Cite \textit{J. An}, Sci. Sin., Math. 45, No. 1, 83--92 (2015; Zbl 07449308) Full Text: DOI OpenURL
Chechkina, Aleksandra Grigorievna; Sadovnichy, Viktor Antonovich Degeneration of Steklov-type boundary conditions in one spectral homogenization problem. (English) Zbl 1463.35063 Eurasian Math. J. 6, No. 3, 13-29 (2015). MSC: 35B27 35J25 35P05 35P15 47A10 47A75 49R05 PDF BibTeX XML Cite \textit{A. G. Chechkina} and \textit{V. A. Sadovnichy}, Eurasian Math. J. 6, No. 3, 13--29 (2015; Zbl 1463.35063) Full Text: DOI MNR OpenURL
Weng, Zhifeng; Zhai, Shuying; Feng, Xinlong An improved two-grid finite element method for the Steklov eigenvalue problem. (English) Zbl 1443.65303 Appl. Math. Modelling 39, No. 10-11, 2962-2972 (2015). MSC: 65N25 65N30 65N55 65N15 PDF BibTeX XML Cite \textit{Z. Weng} et al., Appl. Math. Modelling 39, No. 10--11, 2962--2972 (2015; Zbl 1443.65303) Full Text: DOI OpenURL
García, Gonzalo; Montaño, Óscar A lower bound for the first Steklov eigenvalue on a domain. (English) Zbl 1348.35154 Rev. Colomb. Mat. 49, No. 1, 95-104 (2015). MSC: 35P15 53C20 53C42 53C43 PDF BibTeX XML Cite \textit{G. García} and \textit{Ó. Montaño}, Rev. Colomb. Mat. 49, No. 1, 95--104 (2015; Zbl 1348.35154) Full Text: DOI Link Link OpenURL
Han, Xiaole; Li, Yu; Xie, Hehu A multilevel correction method for Steklov eigenvalue problem by nonconforming finite element methods. (English) Zbl 1349.65603 Numer. Math., Theory Methods Appl. 8, No. 3, 383-405 (2015). MSC: 65N25 65N30 65N55 35P15 PDF BibTeX XML Cite \textit{X. Han} et al., Numer. Math., Theory Methods Appl. 8, No. 3, 383--405 (2015; Zbl 1349.65603) Full Text: DOI Link OpenURL
Bandle, Catherine; Wagner, Alfred Second domain variation for problems with Robin boundary conditions. (English) Zbl 1329.49082 J. Optim. Theory Appl. 167, No. 2, 430-463 (2015). MSC: 49Q10 49K20 49J20 49R05 35J20 35P15 35N25 PDF BibTeX XML Cite \textit{C. Bandle} and \textit{A. Wagner}, J. Optim. Theory Appl. 167, No. 2, 430--463 (2015; Zbl 1329.49082) Full Text: DOI arXiv OpenURL
Raulot, Simon; Savo, Alessandro Sharp bounds for the first eigenvalue of a fourth-order Steklov problem. (English) Zbl 1325.58018 J. Geom. Anal. 25, No. 3, 1602-1619 (2015). Reviewer: Nadine Große (Leipzig) MSC: 58J50 35P15 35J40 PDF BibTeX XML Cite \textit{S. Raulot} and \textit{A. Savo}, J. Geom. Anal. 25, No. 3, 1602--1619 (2015; Zbl 1325.58018) Full Text: DOI arXiv OpenURL
Cheng, Pan; Lin, Zhi; Zhang, Wenzhong Five-order algorithms for solving Laplace’s Steklov eigenvalue on polygon by mechanical quadrature methods. (English) Zbl 1319.65108 J. Comput. Anal. Appl. 18, No. 1, 138-148 (2015). MSC: 65N25 65N38 35J05 65D15 65N12 PDF BibTeX XML Cite \textit{P. Cheng} et al., J. Comput. Anal. Appl. 18, No. 1, 138--148 (2015; Zbl 1319.65108) OpenURL
Mora, David; Rivera, Gonzalo; Rodríguez, Rodolfo A virtual element method for the Steklov eigenvalue problem. (English) Zbl 1330.65172 Math. Models Methods Appl. Sci. 25, No. 8, 1421-1445 (2015). Reviewer: Jiguang Sun (Dover) MSC: 65N25 65N30 35P15 65N15 PDF BibTeX XML Cite \textit{D. Mora} et al., Math. Models Methods Appl. Sci. 25, No. 8, 1421--1445 (2015; Zbl 1330.65172) Full Text: DOI OpenURL
El Khalil, Abdelouahed; Alaoui, My Driss Morchid; Touzani, Abdelfattah On the \(p\)-biharmonic operator with critical Sobolev exponent and nonlinear Steklov boundary condition. (English) Zbl 1390.35216 Int. J. Anal. 2014, Article ID 498386, 8 p. (2014). MSC: 35P30 35G30 PDF BibTeX XML Cite \textit{A. El Khalil} et al., Int. J. Anal. 2014, Article ID 498386, 8 p. (2014; Zbl 1390.35216) Full Text: DOI OpenURL
Karpukhin, Mikhail; Kokarev, Gerasim; Polterovich, Iosif Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces. (Bornes pour les multiplicités des valeurs propres de Steklov sur les surfaces riemanniennes.) (English. French summary) Zbl 1321.58027 Ann. Inst. Fourier 64, No. 6, 2481-2502 (2014). Reviewer: Laurent Guillopé (Nantes) MSC: 58J50 35P15 35J25 35B05 35R01 PDF BibTeX XML Cite \textit{M. Karpukhin} et al., Ann. Inst. Fourier 64, No. 6, 2481--2502 (2014; Zbl 1321.58027) Full Text: DOI arXiv OpenURL
Binoy; Santhanam, G. Sharp upperbound and a comparison theorem for the first nonzero Steklov eigenvalue. (English) Zbl 1300.53036 J. Ramanujan Math. Soc. 29, No. 2, 133-154 (2014). Reviewer: Andrew Bucki (Edmond) MSC: 53C20 43A85 22E30 58J50 PDF BibTeX XML Cite \textit{Binoy} and \textit{G. Santhanam}, J. Ramanujan Math. Soc. 29, No. 2, 133--154 (2014; Zbl 1300.53036) Full Text: arXiv OpenURL
Xie, Hehu A type of multilevel method for the Steklov eigenvalue problem. (English) Zbl 1312.65178 IMA J. Numer. Anal. 34, No. 2, 592-608 (2014). Reviewer: Martin Reißel (Aachen) MSC: 65N25 65N30 65N55 35P15 PDF BibTeX XML Cite \textit{H. Xie}, IMA J. Numer. Anal. 34, No. 2, 592--608 (2014; Zbl 1312.65178) Full Text: DOI OpenURL
Colbois, Bruno; Girouard, Alexandre The spectral gap of graphs and Steklov eigenvalues on surfaces. (English) Zbl 1286.58020 Electron. Res. Announc. Math. Sci. 21, 19-27 (2014). MSC: 58J50 35P15 PDF BibTeX XML Cite \textit{B. Colbois} and \textit{A. Girouard}, Electron. Res. Announc. Math. Sci. 21, 19--27 (2014; Zbl 1286.58020) Full Text: DOI arXiv OpenURL
Lin, Qun; Xie, Hehu Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. (English) Zbl 1273.65178 Inverse Probl. Imaging 7, No. 3, 795-811 (2013). MSC: 65N30 65N15 35J25 PDF BibTeX XML Cite \textit{Q. Lin} and \textit{H. Xie}, Inverse Probl. Imaging 7, No. 3, 795--811 (2013; Zbl 1273.65178) Full Text: DOI OpenURL
Leadi, Liamidi; Marcos, Aboubacar A weighted eigencurve for Steklov problems with a potential. (English) Zbl 1318.35056 NoDEA, Nonlinear Differ. Equ. Appl. 20, No. 3, 687-713 (2013). Reviewer: Giovanni Franzina (Trieste) MSC: 35J92 35J25 35J20 35P30 PDF BibTeX XML Cite \textit{L. Leadi} and \textit{A. Marcos}, NoDEA, Nonlinear Differ. Equ. Appl. 20, No. 3, 687--713 (2013; Zbl 1318.35056) Full Text: DOI OpenURL
Li, Qin; Lin, Qun; Xie, Hehu Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations. (English) Zbl 1274.65296 Appl. Math., Praha 58, No. 2, 129-151 (2013). Reviewer: Michal Krizek MSC: 65N25 65N30 35P15 35P10 65N12 PDF BibTeX XML Cite \textit{Q. Li} et al., Appl. Math., Praha 58, No. 2, 129--151 (2013; Zbl 1274.65296) Full Text: DOI Link OpenURL
Cao, Li-Qun; Zhang, Lei; Allegretto, Walter; Lin, Yanping Multiscale computation of a Steklov eigenvalue problem with rapidly oscillating coefficients. (English) Zbl 1290.65106 Int. J. Numer. Anal. Model. 10, No. 1, 42-73 (2013). Reviewer: Thomas Sonar (Braunschweig) MSC: 65N25 35R35 49J40 60G40 35P15 PDF BibTeX XML Cite \textit{L.-Q. Cao} et al., Int. J. Numer. Anal. Model. 10, No. 1, 42--73 (2013; Zbl 1290.65106) Full Text: Link OpenURL
Lin, Qun; Xie, Hehu A multilevel correction type of adaptive finite element method for Steklov eigenvalue problems. (English) Zbl 1313.65298 Brandts, J. (ed.) et al., Proceedings of the international conference ‘Applications of mathematics’, Prague, Czech Republic, May 2–5, 2012. In honor of the 60th birthday of Michal Křížek. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics (ISBN 978-80-85823-60-8/pbk). 134-143 (2012). Reviewer: Shuhua Zhang (Tianjin) MSC: 65N25 65N30 35P15 PDF BibTeX XML Cite \textit{Q. Lin} and \textit{H. Xie}, in: Proceedings of the international conference `Applications of mathematics', Prague, Czech Republic, May 2--5, 2012. In honor of the 60th birthday of Michal Křížek. Prague: Academy of Sciences of the Czech Republic, Institute of Mathematics. 134--143 (2012; Zbl 1313.65298) Full Text: arXiv Link OpenURL
Algazin, S. D. Numerical solution of the problem of Steklov. (Russian. English summary) Zbl 1274.65295 Mat. Model. 24, No. 3, 65-69 (2012). Reviewer: Sergei Georgievich Zhuravlev (Moskva) MSC: 65N25 58C40 35P15 PDF BibTeX XML Cite \textit{S. D. Algazin}, Mat. Model. 24, No. 3, 65--69 (2012; Zbl 1274.65295) Full Text: MNR OpenURL
Pagani, Carlo Domenico; Pierotti, Dario Multiple variational solutions to nonlinear Steklov problems. (English) Zbl 1255.35091 NoDEA, Nonlinear Differ. Equ. Appl. 19, No. 4, 417-436 (2012). Reviewer: Lubomira Softova (Aversa) MSC: 35J25 35J20 35A15 PDF BibTeX XML Cite \textit{C. D. Pagani} and \textit{D. Pierotti}, NoDEA, Nonlinear Differ. Equ. Appl. 19, No. 4, 417--436 (2012; Zbl 1255.35091) Full Text: DOI OpenURL
Girouard, Alexandre; Polterovich, Iosif Upper bounds for Steklov eigenvalues on surfaces. (English) Zbl 1257.58019 Electron. Res. Announc. Math. Sci. 19, 77-85 (2012). MSC: 58J50 35P15 PDF BibTeX XML Cite \textit{A. Girouard} and \textit{I. Polterovich}, Electron. Res. Announc. Math. Sci. 19, 77--85 (2012; Zbl 1257.58019) Full Text: DOI arXiv Link OpenURL
Russo, Anahí Dello; Alonso, Ana E. A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems. (English) Zbl 1236.65142 Comput. Math. Appl. 62, No. 11, 4100-4117 (2011). MSC: 65N25 65N30 PDF BibTeX XML Cite \textit{A. D. Russo} and \textit{A. E. Alonso}, Comput. Math. Appl. 62, No. 11, 4100--4117 (2011; Zbl 1236.65142) Full Text: DOI OpenURL
Hassannezhad, Asma Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem. (English) Zbl 1232.58023 J. Funct. Anal. 261, No. 12, 3419-3436 (2011). Reviewer: Peter B. Gilkey (Eugene) MSC: 58J50 35P15 PDF BibTeX XML Cite \textit{A. Hassannezhad}, J. Funct. Anal. 261, No. 12, 3419--3436 (2011; Zbl 1232.58023) Full Text: DOI OpenURL
Bi, Hai; Yang, Yidu A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem. (English) Zbl 1222.65121 Appl. Math. Comput. 217, No. 23, 9669-9678 (2011). Reviewer: Răzvan Răducanu (Iaşi) MSC: 65N25 65N30 35P15 65N55 65N15 PDF BibTeX XML Cite \textit{H. Bi} and \textit{Y. Yang}, Appl. Math. Comput. 217, No. 23, 9669--9678 (2011; Zbl 1222.65121) Full Text: DOI OpenURL
Emamizadeh, Behrouz; Zivari-Rezapour, Mohsen Rearrangements and minimization of the principal eigenvalue of a nonlinear Steklov problem. (English) Zbl 1220.35107 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 16, 5697-5704 (2011). MSC: 35P30 35J20 49R05 PDF BibTeX XML Cite \textit{B. Emamizadeh} and \textit{M. Zivari-Rezapour}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 16, 5697--5704 (2011; Zbl 1220.35107) Full Text: DOI OpenURL
Li, Qin; Yang, Yidu A two-grid discretization scheme for the Steklov eigenvalue problem. (English) Zbl 1220.65160 J. Appl. Math. Comput. 36, No. 1-2, 129-139 (2011). Reviewer: Răzvan Răducanu (Iaşi) MSC: 65N25 65N30 65N15 35P15 65N55 PDF BibTeX XML Cite \textit{Q. Li} and \textit{Y. Yang}, J. Appl. Math. Comput. 36, No. 1--2, 129--139 (2011; Zbl 1220.65160) Full Text: DOI OpenURL
Liu, Chungen; Zheng, Youquan Linking solutions for \(p\)-Laplace equations with nonlinear boundary conditions and indefinite weight. (English) Zbl 1218.35161 Calc. Var. Partial Differ. Equ. 41, No. 1-2, 261-284 (2011). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 35P30 35J92 35J60 35D30 35J25 35J20 PDF BibTeX XML Cite \textit{C. Liu} and \textit{Y. Zheng}, Calc. Var. Partial Differ. Equ. 41, No. 1--2, 261--284 (2011; Zbl 1218.35161) Full Text: DOI arXiv OpenURL
Li, Mingxia; Lin, Qun; Zhang, Shuhua Extrapolation and superconvergence of the Steklov eigenvalue problem. (English) Zbl 1213.65141 Adv. Comput. Math. 33, No. 1, 25-44 (2010). MSC: 65N25 65B05 PDF BibTeX XML Cite \textit{M. Li} et al., Adv. Comput. Math. 33, No. 1, 25--44 (2010; Zbl 1213.65141) Full Text: DOI OpenURL
Girouard, A.; Polterovich, I. On the Hersch-Payne-Schiffer inequalities for Steklov eigenvalues. (English. Russian original) Zbl 1217.35125 Funct. Anal. Appl. 44, No. 2, 106-117 (2010); translation from Funkts. Anal. Prilozh. 44, No. 2, 33-47 (2010). Reviewer: Jesús Hernández (Madrid) MSC: 35P05 49R05 35J25 47A75 PDF BibTeX XML Cite \textit{A. Girouard} and \textit{I. Polterovich}, Funct. Anal. Appl. 44, No. 2, 106--117 (2010; Zbl 1217.35125); translation from Funkts. Anal. Prilozh. 44, No. 2, 33--47 (2010) Full Text: DOI arXiv OpenURL
Anane, Aomar; Chakrone, Omar; Karim, Belhadj; Zerouali, Abdellah Fučik spectrum for the Steklov problem. (English) Zbl 1215.35114 Adv. Appl. Math. Sci. 7, No. 2, 111-118 (2010). MSC: 35P30 35J70 PDF BibTeX XML Cite \textit{A. Anane} et al., Adv. Appl. Math. Sci. 7, No. 2, 111--118 (2010; Zbl 1215.35114) OpenURL
Kumar, Prashant; Kumar, Manoj Simulation of a nonlinear Steklov eigenvalue problem using finite-element approximation. (English) Zbl 1197.65179 Comput. Math. Model. 21, No. 1, 109-116 (2010). MSC: 65N25 65N30 35P30 PDF BibTeX XML Cite \textit{P. Kumar} and \textit{M. Kumar}, Comput. Math. Model. 21, No. 1, 109--116 (2010; Zbl 1197.65179) Full Text: DOI OpenURL
Kulczycki, Tadeusz; Kwaśnicki, Mateusz; Małecki, Jacek; Stos, Andrzej Spectral properties of the Cauchy process on half-line and interval. (English) Zbl 1220.60029 Proc. Lond. Math. Soc. (3) 101, No. 2, 589-622 (2010). Reviewer: Michael Högele (Berlin) MSC: 60G52 35J25 35P15 35P20 PDF BibTeX XML Cite \textit{T. Kulczycki} et al., Proc. Lond. Math. Soc. (3) 101, No. 2, 589--622 (2010; Zbl 1220.60029) Full Text: DOI arXiv OpenURL
Pagani, Carlo Domenico; Pierotti, Dario Variational methods for nonlinear Steklov eigenvalue problems with an indefinite weight function. (English) Zbl 1198.35170 Calc. Var. Partial Differ. Equ. 39, No. 1-2, 35-58 (2010). MSC: 35P30 35J20 35J25 35B30 58E05 PDF BibTeX XML Cite \textit{C. D. Pagani} and \textit{D. Pierotti}, Calc. Var. Partial Differ. Equ. 39, No. 1--2, 35--58 (2010; Zbl 1198.35170) Full Text: DOI OpenURL
Lobo, M.; Pérez, M. E. On different quasimodes for the homogenization of Steklov-type eigenvalue problems. (English) Zbl 1220.35011 Constanda, C. (ed.) et al., Integral methods in science and engineering. Volume 1: Analytic methods. Papers presented at the 10th international conference on integral methods in science and engineering (IMSE 2008), Santander, Spain, July 7–10, 2008. Basel: Birkhäuser (ISBN 978-0-8176-4898-5/hbk; 978-0-8176-4899-2/ebook). 193-204 (2010). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 35B27 34G10 35J25 35P15 47N20 PDF BibTeX XML Cite \textit{M. Lobo} and \textit{M. E. Pérez}, in: Integral methods in science and engineering. Volume 1: Analytic methods. Papers presented at the 10th international conference on integral methods in science and engineering (IMSE 2008), Santander, Spain, July 7--10, 2008. Basel: Birkhäuser. 193--204 (2010; Zbl 1220.35011) Full Text: DOI OpenURL