Chen, Bingguang Moderate deviation principle for the two-dimensional stochastic Navier-Stokes equations with anisotropic viscosity. (English) Zbl 07659448 J. Math. Anal. Appl. 522, No. 2, Article ID 126979, 42 p. (2023). MSC: 60Hxx 35Qxx 60Fxx PDF BibTeX XML Cite \textit{B. Chen}, J. Math. Anal. Appl. 522, No. 2, Article ID 126979, 42 p. (2023; Zbl 07659448) Full Text: DOI arXiv OpenURL
Liu, Pan Liouville-type theorems for the stationary inhomogeneous incompressible MHD equations. (English) Zbl 07654836 J. Math. Anal. Appl. 521, No. 2, Article ID 126945, 17 p. (2023). MSC: 35Q35 76W05 76D05 35B53 35B65 PDF BibTeX XML Cite \textit{P. Liu}, J. Math. Anal. Appl. 521, No. 2, Article ID 126945, 17 p. (2023; Zbl 07654836) Full Text: DOI OpenURL
Debussche, Arnaud; Hug, Berenger; Mémin, Etienne A consistent stochastic large-scale representation of the Navier-Stokes equations. (English) Zbl 07646111 J. Math. Fluid Mech. 25, No. 1, Paper No. 19, 28 p. (2023). MSC: 76D06 76M35 35Q30 PDF BibTeX XML Cite \textit{A. Debussche} et al., J. Math. Fluid Mech. 25, No. 1, Paper No. 19, 28 p. (2023; Zbl 07646111) Full Text: DOI arXiv OpenURL
Tacchi, Matteo; Lasserre, Jean Bernard; Henrion, Didier Stokes, Gibbs, and volume computation of semi-algebraic sets. (English) Zbl 07644327 Discrete Comput. Geom. 69, No. 1, 260-283 (2023). Reviewer: Jaewoo Jung (Atlanta) MSC: 14P10 90C22 12D15 14Q20 28A75 35J05 53C65 65D30 90C59 PDF BibTeX XML Cite \textit{M. Tacchi} et al., Discrete Comput. Geom. 69, No. 1, 260--283 (2023; Zbl 07644327) Full Text: DOI arXiv OpenURL
Yuan, Baoquan; Wang, Feifei The Liouville theorems for 3D stationary tropical climate model in local Morrey spaces. (English) Zbl 1502.86005 Appl. Math. Lett. 138, Article ID 108533, 6 p. (2023). MSC: 86A08 35Q86 35Q30 PDF BibTeX XML Cite \textit{B. Yuan} and \textit{F. Wang}, Appl. Math. Lett. 138, Article ID 108533, 6 p. (2023; Zbl 1502.86005) Full Text: DOI OpenURL
Chen, Xin; Cruzeiro, Ana Bela; Ratiu, Tudor S. Stochastic variational principles for dissipative equations with advected quantities. (English) Zbl 07615133 J. Nonlinear Sci. 33, No. 1, Paper No. 5, 62 p. (2023). MSC: 76M60 76W05 76E25 76M35 PDF BibTeX XML Cite \textit{X. Chen} et al., J. Nonlinear Sci. 33, No. 1, Paper No. 5, 62 p. (2023; Zbl 07615133) Full Text: DOI arXiv OpenURL
Jabour, Abdelaziz; Bouidi, Abderrahim Local existence and uniqueness of strong solutions to the density-dependent incompressible Navier-Stokes-Korteweg system. (English) Zbl 1500.76009 J. Math. Anal. Appl. 517, No. 1, Article ID 126611, 15 p. (2023). Reviewer: Alain Brillard (Riedisheim) MSC: 76D03 76D05 76D45 35Q30 35Q53 PDF BibTeX XML Cite \textit{A. Jabour} and \textit{A. Bouidi}, J. Math. Anal. Appl. 517, No. 1, Article ID 126611, 15 p. (2023; Zbl 1500.76009) Full Text: DOI OpenURL
Arenas-Gullo, A.; Martínez-Manzano, F.; Fernández-Nieves, A. Vortex flow, a couple important theorems, and an introduction to distributions. (English) Zbl 07665425 Eur. J. Phys. 43, No. 6, Article ID 065802, 13 p. (2022). MSC: 76B47 76-01 PDF BibTeX XML Cite \textit{A. Arenas-Gullo} et al., Eur. J. Phys. 43, No. 6, Article ID 065802, 13 p. (2022; Zbl 07665425) Full Text: DOI OpenURL
Aramaki, Junichi Equivalent relations with the J. L. Lions lemma in a variable exponent Sobolev space and their applications. (English) Zbl 07663359 J. Math. Study 55, No. 3, 281-305 (2022). MSC: 35A01 35D30 35J62 35Q61 35A15 PDF BibTeX XML Cite \textit{J. Aramaki}, J. Math. Study 55, No. 3, 281--305 (2022; Zbl 07663359) Full Text: DOI OpenURL
Nguyen, Thieu Huy; Van Nguyen, Thi; Pham, Truong Xuan; Vu, Thi Ngoc Ha Periodic and almost periodic evolution flows and their stability on non-compact Einstein manifolds and applications. (English) Zbl 1503.35140 Ann. Pol. Math. 129, No. 2, 147-174 (2022). MSC: 35Q30 35B10 58J35 35B35 76D05 35R01 PDF BibTeX XML Cite \textit{T. H. Nguyen} et al., Ann. Pol. Math. 129, No. 2, 147--174 (2022; Zbl 1503.35140) Full Text: DOI OpenURL
Wang, Wei; Zhai, Jianliang; Zhang, Tusheng Stochastic two-dimensional Navier-Stokes equations on time-dependent domains. (English) Zbl 1502.35088 J. Theor. Probab. 35, No. 4, 2916-2939 (2022). MSC: 35Q30 76D05 60H15 35D35 35A01 35A02 60J65 35R60 PDF BibTeX XML Cite \textit{W. Wang} et al., J. Theor. Probab. 35, No. 4, 2916--2939 (2022; Zbl 1502.35088) Full Text: DOI OpenURL
Julia, Antoine A generalized Stokes’ theorem on integral currents. (English. French summary) Zbl 07612192 Ann. Sci. Éc. Norm. Supér. (4) 55, No. 4, 937-968 (2022). MSC: 28A25 26B20 14P10 49Q15 PDF BibTeX XML Cite \textit{A. Julia}, Ann. Sci. Éc. Norm. Supér. (4) 55, No. 4, 937--968 (2022; Zbl 07612192) Full Text: DOI arXiv OpenURL
Wang, Wei; Zhai, Jianliang; Zhang, Tusheng Large deviations for stochastic \(2D\) Navier-Stokes equations on time-dependent domains. (English) Zbl 1500.60016 Commun. Pure Appl. Anal. 21, No. 10, 3479-3498 (2022). MSC: 60F10 53C35 35Q30 35R60 60J65 PDF BibTeX XML Cite \textit{W. Wang} et al., Commun. Pure Appl. Anal. 21, No. 10, 3479--3498 (2022; Zbl 1500.60016) Full Text: DOI OpenURL
Watanabe, Keiichi Strong time-periodic solutions to chemotaxis-Navier-Stokes equations on bounded domains. (English) Zbl 1498.92036 Discrete Contin. Dyn. Syst. 42, No. 11, 5577-5590 (2022). MSC: 92C17 35Q30 35B10 PDF BibTeX XML Cite \textit{K. Watanabe}, Discrete Contin. Dyn. Syst. 42, No. 11, 5577--5590 (2022; Zbl 1498.92036) Full Text: DOI OpenURL
Kumar, Pardeep; Mohan, Manil T. Well-posedness of an inverse problem for two- and three-dimensional convective Brinkman-Forchheimer equations with the final overdetermination. (English) Zbl 1497.35520 Inverse Probl. Imaging 16, No. 5, 1255-1298 (2022). MSC: 35R30 35Q30 35Q35 PDF BibTeX XML Cite \textit{P. Kumar} and \textit{M. T. Mohan}, Inverse Probl. Imaging 16, No. 5, 1255--1298 (2022; Zbl 1497.35520) Full Text: DOI arXiv OpenURL
Liu, Pan A Liouville type theorem for the stationary compressible Navier-Stokes equations. (English) Zbl 1497.35346 Anal. Math. Phys. 12, No. 5, Paper No. 121, 10 p. (2022). MSC: 35Q30 76N06 76N10 PDF BibTeX XML Cite \textit{P. Liu}, Anal. Math. Phys. 12, No. 5, Paper No. 121, 10 p. (2022; Zbl 1497.35346) Full Text: DOI OpenURL
Kumar, Pardeep; Mohan, Manil T. Existence, uniqueness and stability of an inverse problem for two-dimensional convective Brinkman-Forchheimer equations with the integral overdetermination. (English) Zbl 1496.35451 Banach J. Math. Anal. 16, No. 4, Paper No. 58, 32 p. (2022). MSC: 35R30 35Q35 35Q30 PDF BibTeX XML Cite \textit{P. Kumar} and \textit{M. T. Mohan}, Banach J. Math. Anal. 16, No. 4, Paper No. 58, 32 p. (2022; Zbl 1496.35451) Full Text: DOI arXiv OpenURL
Kohr, Mirela; Mikhailov, Sergey E.; Wendland, Wolfgang L. On some mixed-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces. (English) Zbl 1498.35226 J. Math. Anal. Appl. 516, No. 1, Article ID 126464, 28 p. (2022). Reviewer: Giovanni Anello (Messina) MSC: 35J47 35Q30 35J57 PDF BibTeX XML Cite \textit{M. Kohr} et al., J. Math. Anal. Appl. 516, No. 1, Article ID 126464, 28 p. (2022; Zbl 1498.35226) Full Text: DOI OpenURL
Lei, Zhen; Ren, Xiao; Zhang, Qi S. A Liouville theorem for Axi-symmetric Navier-Stokes equations on \(\mathbb{R}^2 \times \mathbb{T}^1\). (English) Zbl 1496.35281 Math. Ann. 383, No. 1-2, 415-431 (2022). MSC: 35Q30 35B53 76D05 35B07 35B10 PDF BibTeX XML Cite \textit{Z. Lei} et al., Math. Ann. 383, No. 1--2, 415--431 (2022; Zbl 1496.35281) Full Text: DOI arXiv OpenURL
Zhang, Qi; Pan, Xinghong [Pan, X.; Zhang, Q.] A review of results on axially symmetric Navier-Stokes equations, with addendum by X. Pan and Q. Zhang. (English) Zbl 07568029 Anal. Theory Appl. 38, No. 3, 243-296 (2022). MSC: 35Q30 76N10 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{X. Pan}, Anal. Theory Appl. 38, No. 3, 243--296 (2022; Zbl 07568029) Full Text: DOI arXiv OpenURL
Maremonti, Paolo On the two-dimensional Stokes problem in exterior domains: the maximum modulus theorem. (English) Zbl 07559968 J. Math. Fluid Mech. 24, No. 3, Paper No. 83, 29 p. (2022). MSC: 35Q35 76D07 76D03 35B45 35B50 35A01 35A02 PDF BibTeX XML Cite \textit{P. Maremonti}, J. Math. Fluid Mech. 24, No. 3, Paper No. 83, 29 p. (2022; Zbl 07559968) Full Text: DOI OpenURL
Yang, Jiaqi On Liouville type theorem for the steady fractional Navier-Stokes equations in \(\mathbb{R}^3\). (English) Zbl 1492.35190 J. Math. Fluid Mech. 24, No. 3, Paper No. 81, 6 p. (2022). MSC: 35Q30 26A33 35B53 76D05 PDF BibTeX XML Cite \textit{J. Yang}, J. Math. Fluid Mech. 24, No. 3, Paper No. 81, 6 p. (2022; Zbl 1492.35190) Full Text: DOI OpenURL
Kikuchi, Hiroki; Kubo, Takayuki; Matsui, Ranmaru Existence of weak solution to the nonstationary Navier-Stokes equations approximated by pressure stabilization method. (English) Zbl 1495.76031 J. Math. Fluid Mech. 24, No. 3, Paper No. 80, 18 p. (2022). Reviewer: Alain Brillard (Riedisheim) MSC: 76D03 76D05 35Q30 PDF BibTeX XML Cite \textit{H. Kikuchi} et al., J. Math. Fluid Mech. 24, No. 3, Paper No. 80, 18 p. (2022; Zbl 1495.76031) Full Text: DOI OpenURL
Premlata, A. R.; Wei, Hsien-Hung Anisotropic stresslet and rheology of stick-slip Janus spheres. (English) Zbl 07559823 J. Fluid Mech. 945, Paper No. A1, 44 p. (2022). MSC: 76T20 76D07 PDF BibTeX XML Cite \textit{A. R. Premlata} and \textit{H.-H. Wei}, J. Fluid Mech. 945, Paper No. A1, 44 p. (2022; Zbl 07559823) Full Text: DOI OpenURL
Radayev, Yuriĭ Nikolaevich; Murashkin, Evgeniĭ Valer’evich Generalized pseudotensor formulations of the Stokes’ integral theorem. (English) Zbl 1496.74023 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 22, No. 2, 205-215 (2022). MSC: 74A35 74N15 PDF BibTeX XML Cite \textit{Y. N. Radayev} and \textit{E. V. Murashkin}, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 22, No. 2, 205--215 (2022; Zbl 1496.74023) Full Text: DOI MNR OpenURL
Choi, Jongkeun; Dong, Hongjie; Xu, Longjuan Gradient estimates for Stokes and Navier-Stokes systems with piecewise DMO coefficients. (English) Zbl 1495.76032 SIAM J. Math. Anal. 54, No. 3, 3609-3635 (2022). Reviewer: Alain Brillard (Riedisheim) MSC: 76D07 76D05 35Q30 PDF BibTeX XML Cite \textit{J. Choi} et al., SIAM J. Math. Anal. 54, No. 3, 3609--3635 (2022; Zbl 1495.76032) Full Text: DOI arXiv OpenURL
Deugoue, G.; Djoko, J. K.; Fouape, A. C. On the convergence of solutions of globally modified magnetohydrodynamics equations with locally Lipschitz delays terms. (English) Zbl 1492.76146 Quaest. Math. 45, No. 4, 627-653 (2022). MSC: 76W05 35Q35 35Q60 PDF BibTeX XML Cite \textit{G. Deugoue} et al., Quaest. Math. 45, No. 4, 627--653 (2022; Zbl 1492.76146) Full Text: DOI OpenURL
Enciso, Alberto; Peralta-Salas, Daniel Vortex reconnections in classical and quantum fluids. (English) Zbl 1484.35311 S\(\vec{\text{e}}\)MA J. 79, No. 1, 127-137 (2022). MSC: 35Q30 35Q55 PDF BibTeX XML Cite \textit{A. Enciso} and \textit{D. Peralta-Salas}, S\(\vec{\text{e}}\)MA J. 79, No. 1, 127--137 (2022; Zbl 1484.35311) Full Text: DOI OpenURL
Zhao, Caidi; Wang, Jintao; Caraballo, Tomás Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations. (English) Zbl 1484.35101 J. Differ. Equations 317, 474-494 (2022). MSC: 35B53 34D35 35B41 35Q30 35R60 76F20 PDF BibTeX XML Cite \textit{C. Zhao} et al., J. Differ. Equations 317, 474--494 (2022; Zbl 1484.35101) Full Text: DOI OpenURL
Hounkpe, F. On a toy-model related to the Navier-Stokes equations. (English) Zbl 07482916 J. Math. Sci., New York 260, No. 1, 118-141 (2022) and Zap. Nauchn. Semin. POMI 489, 173-206 (2020). MSC: 35Q30 76D05 35B65 35B06 PDF BibTeX XML Cite \textit{F. Hounkpe}, J. Math. Sci., New York 260, No. 1, 118--141 (2022; Zbl 07482916) Full Text: DOI arXiv OpenURL
Frolova, E.; Shibata, Y. On the maximal \(L_p\)-\(L_q\) regularity theorem for the linearized electro-magnetic field equations with interface conditions. (English) Zbl 07482915 J. Math. Sci., New York 260, No. 1, 87-117 (2022) and Zap. Nauchn. Semin. POMI 489, 130-172 (2020). MSC: 35Q35 76W05 76D07 76T06 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{E. Frolova} and \textit{Y. Shibata}, J. Math. Sci., New York 260, No. 1, 87--117 (2022; Zbl 07482915) Full Text: DOI OpenURL
Zang, Aibin Local well-posedness for boundary layer equations of Euler-Voigt equations in analytic setting. (English) Zbl 07433257 J. Differ. Equations 307, 1-28 (2022). MSC: 76D10 35Q31 76D05 PDF BibTeX XML Cite \textit{A. Zang}, J. Differ. Equations 307, 1--28 (2022; Zbl 07433257) Full Text: DOI OpenURL
Duffy, Dean G. Advanced engineering mathematics with MATLAB. 5th edition. (English) Zbl 1487.00002 Advances in Applied Mathematics (Boca Raton). Boca Raton, FL: CRC Press (ISBN 978-0-367-62405-7/hbk; 978-1-003-10930-3/ebook). xix, 595 p. (2022). MSC: 00A06 33F05 33F10 33F99 97F50 42A16 44A10 34B24 35L05 PDF BibTeX XML Cite \textit{D. G. Duffy}, Advanced engineering mathematics with MATLAB. 5th edition. Boca Raton, FL: CRC Press (2022; Zbl 1487.00002) OpenURL
Tidriri, Moulay D. Existence, global regularity and uniqueness of solutions of the Navier-Stokes equations in space dimension 3 when the initial data are regular. (English) Zbl 07612943 Aust. J. Math. Anal. Appl. 18, No. 2, Article No. 21, 126 p. (2021). MSC: 35Q30 76D03 76D05 49Q15 58C35 28A75 26B30 35B60 35B65 35Q35 PDF BibTeX XML Cite \textit{M. D. Tidriri}, Aust. J. Math. Anal. Appl. 18, No. 2, Article No. 21, 126 p. (2021; Zbl 07612943) Full Text: Link OpenURL
Ling, Min; Han, Weimin Well-posedness analysis of a stationary Navier-Stokes hemivariational inequality. (English) Zbl 07525626 Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 22, 14 p. (2021). MSC: 47-XX 54-XX PDF BibTeX XML Cite \textit{M. Ling} and \textit{W. Han}, Fixed Point Theory Algorithms Sci. Eng. 2021, Paper No. 22, 14 p. (2021; Zbl 07525626) Full Text: DOI OpenURL
Lei, Zhen; Ren, Xiao; Zhang, Qi S. Liouville type theorems for axially symmetric Navier-Stokes equations. (Chinese. English summary) Zbl 1499.35137 Sci. Sin., Math. 51, No. 6, 971-984 (2021). MSC: 35B53 35Q30 PDF BibTeX XML Cite \textit{Z. Lei} et al., Sci. Sin., Math. 51, No. 6, 971--984 (2021; Zbl 1499.35137) Full Text: DOI OpenURL
Prosviryakov, Evgeniĭ Yur’evich Recovery of radial-axial velocity in axisymmetric swirling flows of a viscous incompressible fluid in the Lagrangian consideration of vorticity evolution. (Russian. English summary) Zbl 07482141 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 31, No. 3, 505-516 (2021). MSC: 35Q30 76D05 76D17 76D50 76U05 35B07 35N10 PDF BibTeX XML Cite \textit{E. Y. Prosviryakov}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 31, No. 3, 505--516 (2021; Zbl 07482141) Full Text: DOI MNR OpenURL
Chen, Gui-Qiang G.; Torres, Monica Divergence-measure fields: Gauss-Green formulas and normal traces. (English) Zbl 1494.53001 Notices Am. Math. Soc. 68, No. 8, 1282-1290 (2021). Reviewer: Martin Chuaqui Farrú (Santiago de Chile) MSC: 53-02 53A45 26B15 PDF BibTeX XML Cite \textit{G.-Q. G. Chen} and \textit{M. Torres}, Notices Am. Math. Soc. 68, No. 8, 1282--1290 (2021; Zbl 1494.53001) Full Text: DOI arXiv OpenURL
Lamzoud, K.; Assoudi, R.; Bouisfi, F.; Chaoui, M. A sphere held fixed in a Poiseuille flow near a rough wall. (English) Zbl 1495.76033 Russ. J. Nonlinear Dyn. 17, No. 3, 289-306 (2021). MSC: 76D07 76M45 PDF BibTeX XML Cite \textit{K. Lamzoud} et al., Russ. J. Nonlinear Dyn. 17, No. 3, 289--306 (2021; Zbl 1495.76033) Full Text: DOI MNR OpenURL
Maremonti, Paolo A remark on the non-uniqueness in \(L^{\infty}\) of the solutions to the two-dimensional Stokes problem in exterior domains. (English) Zbl 1485.35326 J. Evol. Equ. 21, No. 3, 3055-3077 (2021). Reviewer: Fatma Hıra (Atakum) MSC: 35Q35 35B45 76D07 35A01 35A02 PDF BibTeX XML Cite \textit{P. Maremonti}, J. Evol. Equ. 21, No. 3, 3055--3077 (2021; Zbl 1485.35326) Full Text: DOI OpenURL
Skalák, Zdeněk A regularity criterion for the Navier-Stokes equations via one diagonal entry of the velocity gradient. (English) Zbl 1475.35243 Commun. Math. Sci. 19, No. 4, 1101-1112 (2021). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{Z. Skalák}, Commun. Math. Sci. 19, No. 4, 1101--1112 (2021; Zbl 1475.35243) Full Text: DOI OpenURL
Shlapunov, Alexander Anatolievich; Tarkhanov, Nikolai An open mapping theorem for the Navier-Stokes type equations associated with the de Rham complex over \(\mathbb{R}^n\). (English) Zbl 1479.35633 Sib. Èlektron. Mat. Izv. 18, No. 2, 1433-1466 (2021). MSC: 35Q30 35K45 35B65 58A10 58A12 47B01 76D05 PDF BibTeX XML Cite \textit{A. A. Shlapunov} and \textit{N. Tarkhanov}, Sib. Èlektron. Mat. Izv. 18, No. 2, 1433--1466 (2021; Zbl 1479.35633) Full Text: DOI OpenURL
Phan, Tuoc; Robertson, Timothy On Masuda uniqueness theorem for Leray-Hopf weak solutions in mixed-norm spaces. (English) Zbl 1496.76039 Eur. J. Mech., B, Fluids 90, 18-28 (2021). Reviewer: Alain Brillard (Riedisheim) MSC: 76D03 35Q30 76D05 PDF BibTeX XML Cite \textit{T. Phan} and \textit{T. Robertson}, Eur. J. Mech., B, Fluids 90, 18--28 (2021; Zbl 1496.76039) Full Text: DOI OpenURL
Hirokami, Arata; Heshmat, Samia; Tomioka, Satoshi Accurate numerical method to solve flux distribution of Poisson’s equation. (English) Zbl 07431519 Math. Comput. Simul. 190, 329-342 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{A. Hirokami} et al., Math. Comput. Simul. 190, 329--342 (2021; Zbl 07431519) Full Text: DOI OpenURL
Jing, Zhao; Liu, Zhenhai; Vilches, Emilio; Wen, Chingfeng; Yao, Jen-Chih Optimal control of an evolution hemivariational inequality involving history-dependent operators. (English) Zbl 1477.49053 Commun. Nonlinear Sci. Numer. Simul. 103, Article ID 105992, 17 p. (2021). MSC: 49N35 49J20 49J21 49J45 49J53 35Q30 49J40 PDF BibTeX XML Cite \textit{Z. Jing} et al., Commun. Nonlinear Sci. Numer. Simul. 103, Article ID 105992, 17 p. (2021; Zbl 1477.49053) Full Text: DOI OpenURL
Klitgaard, N.; Loll, R.; Reitz, M.; Toriumi, R. Geometric flux formula for the gravitational Wilson loop. (English) Zbl 1483.53091 Classical Quantum Gravity 38, No. 7, Article ID 075011, 33 p. (2021). Reviewer: Arkadiusz Bochniak (Kraków) MSC: 53C80 53C25 83C27 PDF BibTeX XML Cite \textit{N. Klitgaard} et al., Classical Quantum Gravity 38, No. 7, Article ID 075011, 33 p. (2021; Zbl 1483.53091) Full Text: DOI arXiv OpenURL
Wang, Wendong Liouville type theorems for the planar stationary MHD equations with growth at infinity. (English) Zbl 1477.35137 J. Math. Fluid Mech. 23, No. 4, Paper No. 88, 12 p. (2021). MSC: 35Q30 35Q35 35B53 76D03 76D05 76W05 PDF BibTeX XML Cite \textit{W. Wang}, J. Math. Fluid Mech. 23, No. 4, Paper No. 88, 12 p. (2021; Zbl 1477.35137) Full Text: DOI arXiv OpenURL
Chae, Dongho; Kim, Junha; Wolf, Jörg On Liouville type theorems in the stationary non-Newtonian fluids. (English) Zbl 1479.35652 J. Differ. Equations 302, 710-727 (2021). MSC: 35Q35 35Q30 76A05 76D05 76D03 35B53 35D30 PDF BibTeX XML Cite \textit{D. Chae} et al., J. Differ. Equations 302, 710--727 (2021; Zbl 1479.35652) Full Text: DOI arXiv OpenURL
Aramaki, Junichi On the J. L. Lions lemma and its applications to the Maxwell-Stokes type problem and the Korn inequality. (English) Zbl 1488.35522 Commun. Math. Res. 37, No. 2, 209-235 (2021). MSC: 35Q61 35D30 PDF BibTeX XML Cite \textit{J. Aramaki}, Commun. Math. Res. 37, No. 2, 209--235 (2021; Zbl 1488.35522) Full Text: DOI OpenURL
Prokudin, D. A. Existence of weak solutions to the problem on three-dimensional steady heat-conductive motions of compressible viscous multicomponent mixtures. (English. Russian original) Zbl 1487.35323 Sib. Math. J. 62, No. 5, 895-907 (2021); translation from Sib. Mat. Zh. 62, No. 5, 1109-1123 (2021). MSC: 35Q35 35D30 76N06 76N10 76T30 PDF BibTeX XML Cite \textit{D. A. Prokudin}, Sib. Math. J. 62, No. 5, 895--907 (2021; Zbl 1487.35323); translation from Sib. Mat. Zh. 62, No. 5, 1109--1123 (2021) Full Text: DOI OpenURL
Brady, John F. Phoretic motion in active matter. (English) Zbl 1493.76108 J. Fluid Mech. 922, Paper No. A10, 27 p. (2021). MSC: 76T20 76A99 PDF BibTeX XML Cite \textit{J. F. Brady}, J. Fluid Mech. 922, Paper No. A10, 27 p. (2021; Zbl 1493.76108) Full Text: DOI OpenURL
Daddi-Moussa-Ider, Abdallah; Nasouri, Babak; Vilfan, Andrej; Golestanian, Ramin Optimal swimmers can be pullers, pushers or neutral depending on the shape. (English) Zbl 1491.76101 J. Fluid Mech. 922, Paper No. R5, 11 p. (2021). MSC: 76Z10 76D07 76D55 92C10 PDF BibTeX XML Cite \textit{A. Daddi-Moussa-Ider} et al., J. Fluid Mech. 922, Paper No. R5, 11 p. (2021; Zbl 1491.76101) Full Text: DOI arXiv OpenURL
Mortini, Raymond; Rupp, Rudolf A note on simultaneous approximation on Vitushkin sets. (English) Zbl 1486.30109 Hiroshima Math. J. 51, No. 1, 57-63 (2021). Reviewer: Konstantin Malyutin (Kursk) MSC: 30E10 26B20 PDF BibTeX XML Cite \textit{R. Mortini} and \textit{R. Rupp}, Hiroshima Math. J. 51, No. 1, 57--63 (2021; Zbl 1486.30109) Full Text: DOI OpenURL
Aramaki, Junichi On a version of the de Rham theorem and an application to the Maxwell-Stokes type problem. (English) Zbl 1473.35394 J. Anal. 29, No. 3, 873-890 (2021). MSC: 35Q30 35Q60 35J20 58A12 PDF BibTeX XML Cite \textit{J. Aramaki}, J. Anal. 29, No. 3, 873--890 (2021; Zbl 1473.35394) Full Text: DOI OpenURL
Chae, Dongho; Wolf, Jörg On Liouville type theorems for the stationary MHD and Hall-MHD systems. (English) Zbl 1470.35255 J. Differ. Equations 295, 233-248 (2021). MSC: 35Q30 76D05 76D03 76W05 81V70 PDF BibTeX XML Cite \textit{D. Chae} and \textit{J. Wolf}, J. Differ. Equations 295, 233--248 (2021; Zbl 1470.35255) Full Text: DOI arXiv OpenURL
Doria, Celso Melchiades Differentiability in Banach spaces, differential forms and applications. (English) Zbl 1479.46001 Cham: Springer (ISBN 978-3-030-77833-0/hbk; 978-3-030-77836-1/pbk; 978-3-030-77834-7/ebook). xiv, 362 p. (2021). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46-01 47-01 58-01 46G05 46G12 PDF BibTeX XML Cite \textit{C. M. Doria}, Differentiability in Banach spaces, differential forms and applications. Cham: Springer (2021; Zbl 1479.46001) Full Text: DOI OpenURL
Arioli, Gianni; Gazzola, Filippo; Koch, Hans Uniqueness and bifurcation branches for planar steady Navier-Stokes equations under Navier boundary conditions. (English) Zbl 1468.35104 J. Math. Fluid Mech. 23, No. 3, Paper No. 49, 20 p. (2021). MSC: 35Q30 76D05 35B32 35A02 68V15 PDF BibTeX XML Cite \textit{G. Arioli} et al., J. Math. Fluid Mech. 23, No. 3, Paper No. 49, 20 p. (2021; Zbl 1468.35104) Full Text: DOI OpenURL
Krylov, N. V. Rubio de Francia extrapolation theorem and related topics in the theory of elliptic and parabolic equations. A survey. (English) Zbl 1468.35110 St. Petersbg. Math. J. 32, No. 3, 389-413 (2021) and Algebra Anal. 32, No. 3, 5-38 (2020). MSC: 35Q30 35-02 PDF BibTeX XML Cite \textit{N. V. Krylov}, St. Petersbg. Math. J. 32, No. 3, 389--413 (2021; Zbl 1468.35110) Full Text: DOI arXiv OpenURL
Xi, Xuan-Xuan; Hou, Mimi; Zhou, Xian-Feng; Wen, Yanhua Approximate controllability for mild solution of time-fractional Navier-Stokes equations with delay. (English) Zbl 1465.35401 Z. Angew. Math. Phys. 72, No. 3, Paper No. 113, 26 p. (2021). MSC: 35R11 35Q30 35B40 47H10 93B05 PDF BibTeX XML Cite \textit{X.-X. Xi} et al., Z. Angew. Math. Phys. 72, No. 3, Paper No. 113, 26 p. (2021; Zbl 1465.35401) Full Text: DOI OpenURL
Lévy, Guillaume Retracted: A uniqueness lemma with applications to regularization and incompressible fluid mechanics. (English) Zbl 1464.35185 Sci. China, Math. 64, No. 4, 711-724 (2021); retraction note ibid. 64, No. 8, 1935 (2021). MSC: 35Q30 35Q31 35Q35 35D30 35Q49 35A01 76D05 PDF BibTeX XML Cite \textit{G. Lévy}, Sci. China, Math. 64, No. 4, 711--724 (2021; Zbl 1464.35185) Full Text: DOI OpenURL
Chamorro, Diego; Jarrín, Oscar; Lemarié-Rieusset, Pierre-Gilles Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces. (English) Zbl 1466.35282 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 3, 689-710 (2021). MSC: 35Q30 76D05 35D30 PDF BibTeX XML Cite \textit{D. Chamorro} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 3, 689--710 (2021; Zbl 1466.35282) Full Text: DOI arXiv OpenURL
Song, Wenjing; Su, Wenhuo Vanishing viscosity in the Navier-Stokes equations of compressible heat-conducting flows with the spherical symmetry. (English) Zbl 1460.76662 Appl. Anal. 100, No. 5, 1121-1142 (2021). MSC: 76N10 76N06 76M45 35Q30 80A19 PDF BibTeX XML Cite \textit{W. Song} and \textit{W. Su}, Appl. Anal. 100, No. 5, 1121--1142 (2021; Zbl 1460.76662) Full Text: DOI OpenURL
Stepanov, Eugene; Trevisan, Dario Towards geometric integration of rough differential forms. (English) Zbl 1461.53058 J. Geom. Anal. 31, No. 3, 2766-2828 (2021). MSC: 53C65 58A10 49Q15 60H05 PDF BibTeX XML Cite \textit{E. Stepanov} and \textit{D. Trevisan}, J. Geom. Anal. 31, No. 3, 2766--2828 (2021; Zbl 1461.53058) Full Text: DOI arXiv OpenURL
Li, Zijin; Pan, Xinghong Liouville theorem of the 3D stationary MHD system: for D-solutions converging to non-zero constant vectors. (English) Zbl 1460.35261 NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 12, 15 p. (2021). MSC: 35Q30 76D05 76W05 35B53 PDF BibTeX XML Cite \textit{Z. Li} and \textit{X. Pan}, NoDEA, Nonlinear Differ. Equ. Appl. 28, No. 2, Paper No. 12, 15 p. (2021; Zbl 1460.35261) Full Text: DOI OpenURL
Chae, Dongho Relative decay conditions on Liouville type theorem for the steady Navier-Stokes system. (English) Zbl 1460.35251 J. Math. Fluid Mech. 23, No. 1, Paper No. 21, 6 p. (2021). MSC: 35Q30 76D05 76D03 35B53 PDF BibTeX XML Cite \textit{D. Chae}, J. Math. Fluid Mech. 23, No. 1, Paper No. 21, 6 p. (2021; Zbl 1460.35251) Full Text: DOI arXiv OpenURL
Zvyagin, A. V. Navier-Stokes-alpha model with temperature-dependent viscosity. (English. Russian original) Zbl 1492.35191 Dokl. Math. 101, No. 2, 122-125 (2020); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 491, 53-56 (2020). MSC: 35Q30 76D05 76A10 PDF BibTeX XML Cite \textit{A. V. Zvyagin}, Dokl. Math. 101, No. 2, 122--125 (2020; Zbl 1492.35191); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 491, 53--56 (2020) Full Text: DOI OpenURL
Mackay, R. S. Use of Stokes’ theorem for plasma confinement. (English) Zbl 1462.76215 Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 378, No. 2174, Article ID 20190519, 7 p. (2020). MSC: 76X05 78A25 PDF BibTeX XML Cite \textit{R. S. Mackay}, Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 378, No. 2174, Article ID 20190519, 7 p. (2020; Zbl 1462.76215) Full Text: DOI OpenURL
Cardona, Jorge E.; Kapitanski, Lev Semiflow selection and Markov selection theorems. (English) Zbl 1477.34086 Topol. Methods Nonlinear Anal. 56, No. 1, 197-227 (2020). Reviewer: Valerii V. Obukhovskij (Voronezh) MSC: 34G25 28B20 35Q30 60J25 PDF BibTeX XML Cite \textit{J. E. Cardona} and \textit{L. Kapitanski}, Topol. Methods Nonlinear Anal. 56, No. 1, 197--227 (2020; Zbl 1477.34086) Full Text: DOI arXiv Euclid OpenURL
Drivas, Theodore D.; Holm, Darryl D. Circulation and energy theorem preserving stochastic fluids. (English) Zbl 1464.76023 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 2776-2814 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 76D06 76B03 76M35 35Q30 35Q31 PDF BibTeX XML Cite \textit{T. D. Drivas} and \textit{D. D. Holm}, Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 6, 2776--2814 (2020; Zbl 1464.76023) Full Text: DOI arXiv OpenURL
Aramaki, J. On the de Rham theorem and an application to the Maxwell-Stokes type problem. (English) Zbl 1458.35397 J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 6, 356-364 (2020) and Izv. Nats. Akad. Nauk Armen., Mat. 55, No. 6, 23-36 (2020). MSC: 35Q60 35A01 35D30 35Q35 35J20 58A12 PDF BibTeX XML Cite \textit{J. Aramaki}, J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 6, 356--364 (2020; Zbl 1458.35397) Full Text: DOI OpenURL
Ito, Masahiko; Takushi, Yamato \(q\)-difference equations for \(q\)-hypergeometric integrals of type \(G_2\). (English) Zbl 1465.33016 Ryukyu Math. J. 33, 1-59 (2020). Reviewer: Christoph Koutschan (Linz) MSC: 33D60 39A13 PDF BibTeX XML Cite \textit{M. Ito} and \textit{Y. Takushi}, Ryukyu Math. J. 33, 1--59 (2020; Zbl 1465.33016) Full Text: Link OpenURL
Li, Zhouyu; Liu, Pan; Niu, Pengcheng Remarks on Liouville type theorems for the 3D stationary MHD equations. (English) Zbl 1456.35164 Bull. Korean Math. Soc. 57, No. 5, 1151-1164 (2020). MSC: 35Q35 35B65 35B53 76W05 76D05 PDF BibTeX XML Cite \textit{Z. Li} et al., Bull. Korean Math. Soc. 57, No. 5, 1151--1164 (2020; Zbl 1456.35164) Full Text: DOI OpenURL
Korobkov, Mikhail V.; Pileckas, Konstantin; Russo, Remigio A simple proof of regularity of steady-state distributional solutions to the Navier-Stokes equations. (English) Zbl 1448.76053 J. Math. Fluid Mech. 22, No. 4, Paper No. 55, 8 p. (2020). MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{M. V. Korobkov} et al., J. Math. Fluid Mech. 22, No. 4, Paper No. 55, 8 p. (2020; Zbl 1448.76053) Full Text: DOI OpenURL
Sauri, Orimar On the divergence and vorticity of vector ambit fields. (English) Zbl 1455.60071 Stochastic Processes Appl. 130, No. 10, 6184-6225 (2020). MSC: 60G60 60E07 60G51 PDF BibTeX XML Cite \textit{O. Sauri}, Stochastic Processes Appl. 130, No. 10, 6184--6225 (2020; Zbl 1455.60071) Full Text: DOI arXiv OpenURL
Dragomir, Silvestru Sever Approximating the volume integral by a surface integral via the divergence theorem. (English) Zbl 1479.26021 Appl. Math. 47, No. 1, 75-98 (2020). MSC: 26D15 26B15 26B20 PDF BibTeX XML Cite \textit{S. S. Dragomir}, Appl. Math. 47, No. 1, 75--98 (2020; Zbl 1479.26021) Full Text: DOI OpenURL
Gorodski, Claudio Smooth manifolds. (English) Zbl 1459.53001 Compact Textbooks in Mathematics. Cham: Birkhäuser (ISBN 978-3-030-49774-3/pbk; 978-3-030-49775-0/ebook). xii, 154 p. (2020). Reviewer: Gabriel Eduard Vilcu (Ploieşti) MSC: 53-01 22E15 53B20 53B30 58A12 58A30 PDF BibTeX XML Cite \textit{C. Gorodski}, Smooth manifolds. Cham: Birkhäuser (2020; Zbl 1459.53001) Full Text: DOI OpenURL
Drivas, Theodore D.; Holm, Darryl D.; Leahy, James-Michael Lagrangian averaged stochastic advection by Lie transport for fluids. (English) Zbl 1471.76024 J. Stat. Phys. 179, No. 5-6, 1304-1342 (2020). MSC: 76D06 76M35 35Q30 60H15 PDF BibTeX XML Cite \textit{T. D. Drivas} et al., J. Stat. Phys. 179, No. 5--6, 1304--1342 (2020; Zbl 1471.76024) Full Text: DOI arXiv OpenURL
Mohan, Manil T. On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations. (English) Zbl 1436.76008 Evol. Equ. Control Theory 9, No. 2, 301-339 (2020). MSC: 76D06 35Q35 76D03 76M10 93B05 93D23 PDF BibTeX XML Cite \textit{M. T. Mohan}, Evol. Equ. Control Theory 9, No. 2, 301--339 (2020; Zbl 1436.76008) Full Text: DOI OpenURL
Sossinsky, A. B. De Rham cohomology and integration in manifolds. (English) Zbl 1443.58001 Math. Notes 107, No. 6, 1034-1037 (2020). Reviewer: Ahmed Lesfari (El Jadida) MSC: 58A12 58A10 58C35 PDF BibTeX XML Cite \textit{A. B. Sossinsky}, Math. Notes 107, No. 6, 1034--1037 (2020; Zbl 1443.58001) Full Text: DOI OpenURL
Chae, Dongho; Wolf, Jörg On Liouville type theorem for stationary non-Newtonian fluid equations. (English) Zbl 1442.35296 J. Nonlinear Sci. 30, No. 4, 1503-1517 (2020). MSC: 35Q30 76A05 76D05 76D03 35B53 PDF BibTeX XML Cite \textit{D. Chae} and \textit{J. Wolf}, J. Nonlinear Sci. 30, No. 4, 1503--1517 (2020; Zbl 1442.35296) Full Text: DOI OpenURL
Colombo, Maria; De Lellis, Camillo; Massaccesi, Annalisa The generalized Caffarelli-Kohn-Nirenberg theorem for the hyperdissipative Navier-Stokes system. (English) Zbl 1442.35298 Commun. Pure Appl. Math. 73, No. 3, 609-663 (2020). MSC: 35Q30 35D30 35B65 76D05 PDF BibTeX XML Cite \textit{M. Colombo} et al., Commun. Pure Appl. Math. 73, No. 3, 609--663 (2020; Zbl 1442.35298) Full Text: DOI arXiv OpenURL
Ledesma, Diego S. A local solution to the Navier-Stokes equations on manifolds via stochastic representation. (English) Zbl 1440.35238 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111927, 8 p. (2020). MSC: 35Q30 58J65 35A01 35R60 PDF BibTeX XML Cite \textit{D. S. Ledesma}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 198, Article ID 111927, 8 p. (2020; Zbl 1440.35238) Full Text: DOI OpenURL
Exnerova, Vendula Honzlova; Maly, Jan; Martio, Olli A version of Stokes’s theorem using test curves. (English) Zbl 1461.26005 Indiana Univ. Math. J. 69, No. 1, 295-330 (2020). Reviewer: Piotr Sworowski (Bydgoszcz) MSC: 26B20 26A16 28A75 53A07 58A25 PDF BibTeX XML Cite \textit{V. H. Exnerova} et al., Indiana Univ. Math. J. 69, No. 1, 295--330 (2020; Zbl 1461.26005) Full Text: DOI Link OpenURL
Li, Shuai; Wang, Wendong A Liouville theorem for the plane shear thickening fluids. (English) Zbl 1433.76040 Appl. Math. Lett. 105, Article ID 106334, 6 p. (2020). MSC: 76D05 35Q30 PDF BibTeX XML Cite \textit{S. Li} and \textit{W. Wang}, Appl. Math. Lett. 105, Article ID 106334, 6 p. (2020; Zbl 1433.76040) Full Text: DOI OpenURL
Mathiaud, J.; Mieussens, L. BGK and Fokker-Planck models of the Boltzmann equation for gases with discrete levels of vibrational energy. (English) Zbl 1437.82020 J. Stat. Phys. 178, No. 5, 1076-1095 (2020). MSC: 82C40 82C31 82D05 76P05 76N15 35Q84 35Q20 35Q30 PDF BibTeX XML Cite \textit{J. Mathiaud} and \textit{L. Mieussens}, J. Stat. Phys. 178, No. 5, 1076--1095 (2020; Zbl 1437.82020) Full Text: DOI arXiv OpenURL
Jarrín, Oscar A remark on the Liouville problem for stationary Navier-Stokes equations in Lorentz and Morrey spaces. (English) Zbl 1433.35228 J. Math. Anal. Appl. 486, No. 1, Article ID 123871, 16 p. (2020). MSC: 35Q30 46E30 35B53 76D05 PDF BibTeX XML Cite \textit{O. Jarrín}, J. Math. Anal. Appl. 486, No. 1, Article ID 123871, 16 p. (2020; Zbl 1433.35228) Full Text: DOI arXiv OpenURL
Zhang, Yuhong; Shan, Li; Hou, Yanren New approach to prove the stability of a decoupled algorithm for a fluid-fluid interaction problem. (English) Zbl 1440.65239 J. Comput. Appl. Math. 371, Article ID 112695, 19 p. (2020). MSC: 65N30 65M06 76M10 76M20 65M12 65M15 76D05 76T06 47H10 PDF BibTeX XML Cite \textit{Y. Zhang} et al., J. Comput. Appl. Math. 371, Article ID 112695, 19 p. (2020; Zbl 1440.65239) Full Text: DOI OpenURL
Seregin, G.; Wang, W. Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations. (English) Zbl 1434.35063 St. Petersbg. Math. J. 31, No. 2, 387-393 (2020) and Algebra Anal. 31, No. 2, 269-278 (2019). MSC: 35Q30 35B53 PDF BibTeX XML Cite \textit{G. Seregin} and \textit{W. Wang}, St. Petersbg. Math. J. 31, No. 2, 387--393 (2020; Zbl 1434.35063) Full Text: DOI arXiv OpenURL
Zhou, Gedi; Prosperetti, Andrea Lamb’s solution and the stress moments for a sphere in Stokes flow. (English) Zbl 1478.76022 Eur. J. Mech., B, Fluids 79, 270-282 (2020). MSC: 76D07 76T20 PDF BibTeX XML Cite \textit{G. Zhou} and \textit{A. Prosperetti}, Eur. J. Mech., B, Fluids 79, 270--282 (2020; Zbl 1478.76022) Full Text: DOI OpenURL
Comi, Giovanni E.; Magnani, Valentino The Gauss-Green theorem in stratified groups. (English) Zbl 07146124 Adv. Math. 360, Article ID 106916, 85 p. (2020). MSC: 26B20 22E30 53C17 PDF BibTeX XML Cite \textit{G. E. Comi} and \textit{V. Magnani}, Adv. Math. 360, Article ID 106916, 85 p. (2020; Zbl 07146124) Full Text: DOI arXiv OpenURL
Chae, Dongho Note on the Liouville type problem for the stationary Navier-Stokes equations in \(\mathbb{R}^3\). (English) Zbl 1427.35174 J. Differ. Equations 268, No. 3, 1043-1049 (2020). MSC: 35Q30 76D05 76D03 35B40 PDF BibTeX XML Cite \textit{D. Chae}, J. Differ. Equations 268, No. 3, 1043--1049 (2020; Zbl 1427.35174) Full Text: DOI arXiv OpenURL
Schulz, Simon Liouville type theorem for the stationary equations of magneto-hydrodynamics. (English) Zbl 1499.35139 Acta Math. Sci., Ser. B, Engl. Ed. 39, No. 2, 491-497 (2019). MSC: 35B53 35Q30 76W05 PDF BibTeX XML Cite \textit{S. Schulz}, Acta Math. Sci., Ser. B, Engl. Ed. 39, No. 2, 491--497 (2019; Zbl 1499.35139) Full Text: DOI arXiv OpenURL
Fuchs, Martin; Müller, Jan A Liouville theorem for stationary incompressible fluids of von Mises type. (English) Zbl 1499.76037 Acta Math. Sci., Ser. B, Engl. Ed. 39, No. 1, 1-10 (2019). MSC: 76D05 76D07 76M30 35Q30 PDF BibTeX XML Cite \textit{M. Fuchs} and \textit{J. Müller}, Acta Math. Sci., Ser. B, Engl. Ed. 39, No. 1, 1--10 (2019; Zbl 1499.76037) Full Text: DOI arXiv OpenURL
Sato, N.; Yamada, M. Local representation and construction of Beltrami fields. (English) Zbl 1451.35015 Physica D 391, 8-16 (2019). MSC: 35B06 76D07 35F50 PDF BibTeX XML Cite \textit{N. Sato} and \textit{M. Yamada}, Physica D 391, 8--16 (2019; Zbl 1451.35015) Full Text: DOI arXiv OpenURL
Zhang, Linghai Properties of solutions of \(n\)-dimensional incompressible Navier-Stokes equations. (English) Zbl 1449.35343 Ann. Appl. Math. 35, No. 4, 392-448 (2019). MSC: 35Q30 35D30 PDF BibTeX XML Cite \textit{L. Zhang}, Ann. Appl. Math. 35, No. 4, 392--448 (2019; Zbl 1449.35343) OpenURL
Lamzoud, Khalid; Assoudi, Redouane; Bouisfi, Firdouss; Chaoui, Mohamed A spherical particle settling towards a corrugated wall. (English) Zbl 1433.76042 Russ. J. Nonlinear Dyn. 15, No. 2, 125-134 (2019). MSC: 76D07 74F10 PDF BibTeX XML Cite \textit{K. Lamzoud} et al., Russ. J. Nonlinear Dyn. 15, No. 2, 125--134 (2019; Zbl 1433.76042) Full Text: DOI MNR OpenURL
Gerasimovičs, Andris; Hairer, Martin Hörmander’s theorem for semilinear SPDEs. (English) Zbl 1462.60084 Electron. J. Probab. 24, Paper No. 132, 56 p. (2019). Reviewer: Dimitra Antonopoulou (Chester) MSC: 60H15 60H07 60H05 35Q30 35K57 35R60 PDF BibTeX XML Cite \textit{A. Gerasimovičs} and \textit{M. Hairer}, Electron. J. Probab. 24, Paper No. 132, 56 p. (2019; Zbl 1462.60084) Full Text: DOI arXiv Euclid OpenURL
Giga, Yoshikazu; Gu, Zhongyang; Hsu, Pen-Yuan Continuous alignment of vorticity direction prevents the blow-up of the Navier-Stokes flow under the no-slip boundary condition. (English) Zbl 1447.35246 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111579, 11 p. (2019). Reviewer: Il’ya Sh. Mogilevskii (Tver’) MSC: 35Q30 76D05 35B65 35B35 PDF BibTeX XML Cite \textit{Y. Giga} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 189, Article ID 111579, 11 p. (2019; Zbl 1447.35246) Full Text: DOI OpenURL
González Cervantes, J. Oscar On Cauchy integral theorem for quaternionic slice regular functions. (English) Zbl 1429.30039 Complex Anal. Oper. Theory 13, No. 6, 2527-2539 (2019). MSC: 30G35 PDF BibTeX XML Cite \textit{J. O. González Cervantes}, Complex Anal. Oper. Theory 13, No. 6, 2527--2539 (2019; Zbl 1429.30039) Full Text: DOI OpenURL
Anikonov, Yuriĭ Evgen’evich; Ayupova, Natal’ya Borisovna; Neshchadim, Mikhaĭl Vladimirovich Ray expansions and identification questions for Navier-Stockes equations. (Ray expansions and identification questions for Navie-Stockes equations.) (Russian. English summary) Zbl 1428.35273 Sib. Èlektron. Mat. Izv. 16, 1567-1580 (2019). MSC: 35Q30 35C10 35A10 76D05 93B30 35R30 PDF BibTeX XML Cite \textit{Y. E. Anikonov} et al., Sib. Èlektron. Mat. Izv. 16, 1567--1580 (2019; Zbl 1428.35273) Full Text: DOI OpenURL