×

A blended pressure/density based method for the computation of incompressible and compressible flows. (English) Zbl 1047.76062

Summary: An alternative method to low speed preconditioning for the computation of nearly incompressible flows with compressible methods is developed. For this approach the leading terms of the flux difference splitting (FDS) approximate Riemann solver are analyzed in the incompressible limit. In combination with the requirement of the velocity field to be divergence-free, an elliptic equation to solve for a pressure correction to enforce the divergence-free velocity field on the discrete level is derived. The pressure correction equation established is shown to be equivalent to classical methods for incompressible flows. In order to allow the computation of flows at all speeds, a blending technique for the transition from the incompressible, pressure based formulation to the compressible, density based formulation is established. It is found necessary to use preconditioning with this blending technique to account for a remaining ”compressible” contribution in the incompressible limit, and a suitable matrix directly applicable to conservative residuals is derived. Thus, a coherent framework is established to cover the discretization of both incompressible and compressible flows. Compared with standard preconditioning techniques, the blended pressure/density based approach showed improved robustness for high lift flows close to separation.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76N15 Gas dynamics (general theory)
76B99 Incompressible inviscid fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] V.N. Vatsa, M.D. Sanetrik, E.B. Parlette, Development of a flexible and efficient multigrid-based flow solver (unpublished), AIAA Paper 93-0677, 1993; V.N. Vatsa, M.D. Sanetrik, E.B. Parlette, Development of a flexible and efficient multigrid-based flow solver (unpublished), AIAA Paper 93-0677, 1993
[2] Mavriplis, D. J., A three-dimensional multigrid Reynolds-averaged Navier-Stokes solver on unstructured meshes, AIAA J., 30, 445-453 (1995) · Zbl 0824.76049
[3] T. Gerhold, O. Friedrich, J. Evans, M. Galle, Calculation of complex three-dimensional configurations employing the DLR TAU code (unpublished), AIAA Paper 97-0167, 1997; T. Gerhold, O. Friedrich, J. Evans, M. Galle, Calculation of complex three-dimensional configurations employing the DLR TAU code (unpublished), AIAA Paper 97-0167, 1997
[4] D.C. Jespersen, T.H. Pulliam, P.G. Buning, Recent enhancements to OVERFLOW (unpublished), AIAA Paper 97-0644, 1997; D.C. Jespersen, T.H. Pulliam, P.G. Buning, Recent enhancements to OVERFLOW (unpublished), AIAA Paper 97-0644, 1997
[5] S. Krist, R. Biedron, C. Rumsey, CFL3D User’s Manual (Version 5.0), NASA TM-1998-208444, 1998; S. Krist, R. Biedron, C. Rumsey, CFL3D User’s Manual (Version 5.0), NASA TM-1998-208444, 1998
[6] Kroll, N.; Rossow, C.-C.; Becker, K.; Thiele, F., The MEGAFLOW project, Aerospace Sci. Technol., 4, 223-237 (2000) · Zbl 0955.76079
[7] Turkel, E., Preconditioning techniques in computational fluid dynamics, Annu. Rev. Fluid Mech., 31, 385-416 (1999)
[8] Choi, Y.-H.; Merkle, C. L., The application of preconditioning to viscous flows, J. Comput. Phys., 105, 207-223 (1993) · Zbl 0768.76032
[9] Weiss, J. M.; Smith, W. A., Preconditioning applied to variable and constant density flows, AIAA J., 33, 2050-2057 (1995) · Zbl 0849.76072
[10] Darmofal, D. L.; Van Leer, B., Local preconditioning: manipulating mother nature to fool father time, (Caughey, D.; Hafez, M., Computing the Future 2: Computational Fluid Dynamics and Transonic Flow (1998)) · Zbl 0988.76059
[11] Rudnik, R.; Melber, S.; Ronzheimer, A.; Brodersen, O., Three-Dimensional Navier-Stokes Simulations for transport aircraft high lift configurations, AIAA J., 38, 5, 895-903 (2001)
[12] Karki, K. C.; Patankar, S. V., Pressure based calculation procedure for viscous flows at all speed in arbitrary configurations, AIAA J., 27, 1167-1174 (1989)
[13] Demirdzic, I.; Lilek, Z.; Peric, M., A colocated finite volume method for predicting flows at all speeds, Int. J. Numer. Meth. Fluids, 16, 1029-1050 (1993) · Zbl 0774.76066
[14] Zhou, G.; Davidson, L., A pressure-based euler scheme for transonic internal and external flows, Comp. Fluid Dyn., 5, 169-188 (1995)
[15] Karimian, S. M.H.; Schneider, G. E., Pressure-Based control-volume finite element method for flow at all speeds, AIAA J., 33, 1611-1618 (1995) · Zbl 0851.76040
[16] Bijl, H.; Wesseling, P., A unified method for computing incompressible and compressible flows in boundary fitted coordinates, J. Comput. Phys., 141, 153-177 (1998) · Zbl 0918.76054
[17] S.R. Mathur, J.Y. Murthy, All speed flows on unstructured meshes using a pressure correction approach (unpublished), AIAA Paper 99-3365, 1999; S.R. Mathur, J.Y. Murthy, All speed flows on unstructured meshes using a pressure correction approach (unpublished), AIAA Paper 99-3365, 1999
[18] Lien, F.-S., A pressure-based unstructured grid method for all-speed flows, Int. J. Numer. Methods Fluids, 33, 355-374 (2000) · Zbl 0977.76057
[19] Roe, P. L., Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[20] Rossow, C.-C., A flux splitting scheme for compressible and incompressible flows, J. Comput. Phys., 164, 104-122 (2000) · Zbl 0991.76048
[21] Rhie, C. M.; Chow, W. L., Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J., 21, 11, 1525-1532 (1983) · Zbl 0528.76044
[22] Guillard, H.; Viozat, C., On the behaviour of upwind schemes in the low Mach number limit, Comput. & Fluids, 28, 63-86 (1999) · Zbl 0963.76062
[23] Patankar, S. V., Numerical heat transfer and fluid flow (1980), McGraw-Hill: McGraw-Hill New York · Zbl 0595.76001
[24] Hirsch, C., Numerical Computation of Internal and External Flows (1990), Wiley: Wiley Chichester/NewYork/Brisbane/Toronto/Singapore · Zbl 0742.76001
[25] Armfield, S. W., Ellipticity, accuracy, and convergence of the discrete Navier-Stokes equations, J. Comput. Phys., 114, 176-184 (1994) · Zbl 0810.76061
[26] Th. Pulliam, Artificial dissipation models for the euler equations (unpublished), AIAA Paper 85-0438, 1985; Th. Pulliam, Artificial dissipation models for the euler equations (unpublished), AIAA Paper 85-0438, 1985
[27] Ferziger, J. H.; Peric, M., Computational Methods for Fluid Dynamics (2002), Springer: Springer Berlin, Heidelberg, NewYork, ISBN 3-540-42074-6 · Zbl 0869.76003
[28] Anderson, W. K.; Bonhaus, D. L., An implicit upwind algorithm for computing turbulent flows on unstructured grids, Comput. & Fluids, 23, 1, 1-21 (1994) · Zbl 0806.76053
[29] Haselbacher, A.; Blazek, J., Accurate and efficient discretization of Navier-Stokes equations on mixed grids, AIAA J., 38, 2094-2102 (2000)
[30] Rossow, C.-C., Convergence acceleration on unstructured meshes, (Contributions to the 12th STAB/DGLR Symposium Stuttgart 2000. Contributions to the 12th STAB/DGLR Symposium Stuttgart 2000, Notes on Numerical Fluid Mechanics, vol. 77 (2002), Springer: Springer Berlin/Heidelberg/NewYork), 304-311 · Zbl 1112.76410
[31] Spalart, P. R.; Allmaras, S. R., A one-equation turbulence model for aerodynamic flows, La Recherche Aerospatiale, 1, 5-21 (1994)
[32] Noll, B., Numerische Strömungsmechanik (1993), Springer: Springer Berlin/Heidelberg/NewYork, ISBN 3-540-56712-7 · Zbl 0795.76001
[33] Rossow, C.-C., A simple flux-vector splitting scheme for compressible flows, (Contributions to the 11th STAB/DGLR Symposium Berlin 1998. Contributions to the 11th STAB/DGLR Symposium Berlin 1998, Notes on Numerical Fluid Mechanics, vol. 72 (1999), Vieweg: Vieweg Braunschweig, Wiesbaden), 355-362
[34] R. Radespiel, E. Turkel, N. Kroll, Assessment of preconditioning methods, DLR-Forschungsbericht, FB 95-29, 1995; R. Radespiel, E. Turkel, N. Kroll, Assessment of preconditioning methods, DLR-Forschungsbericht, FB 95-29, 1995 · Zbl 0831.76057
[35] Schwamborn, D.; Gerhold, T.; Hannemann, V., On the validation of the DLR-TAU Code, (Contributions to the 11th STAB/DGLR Symposium Berlin 1998. Contributions to the 11th STAB/DGLR Symposium Berlin 1998, Notes on Numerical Fluid Mechanics, vol. 72 (1999), Vieweg: Vieweg Braunschweig, Wiesbaden), 426-433
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.