×

Found 28 Documents (Results 1–28)

100
MathJax

Quasi-invariance for the Navier-Stokes equations. (English) Zbl 1408.35125

Fefferman, Charles L. (ed.) et al., Partial differential equations in fluid mechanics. Based on the workshop “PDEs in Fluid Mechanics”, Warwick, UK, September 26–30, 2016. Cambridge: Cambridge University Press. Lond. Math. Soc. Lect. Note Ser. 452, 97-112 (2018).
MSC:  35Q30 76B03 45E10
PDF BibTeX XML Cite

On Stokes phenomena for the alternate discrete PI equation. (English) Zbl 1404.34108

Filipuk, Galina (ed.) et al., Analytic, algebraic and geometric aspects of differential equations. Bȩdlewo, Poland, September 6–19, 2015. Cham: Birkhäuser/Springer (ISBN 978-3-319-52841-0/hbk; 978-3-319-52842-7/ebook). Trends in Mathematics, 369-381 (2017).
PDF BibTeX XML Cite
Full Text: DOI

Derivative formula and applications for hyperdissipative stochastic Navier-Stokes/Burgers equations. (English) Zbl 1264.60047

MSC:  60H15 60J75 60J45
PDF BibTeX XML Cite
Full Text: DOI arXiv

Integral theorems for functions and differential forms in \(C^m\). (English) Zbl 0991.32002

Chapman & Hall/CRC Research Notes in Mathematics. 428. Boca Raton, FL: Chapman & Hall/CRC. x, 204 p. (2002).
PDF BibTeX XML Cite

Functional analysis applied to partial differential equations. (Analyse fonctionnelle appliquée aux équations aux dérivées partielles.) (French) Zbl 0929.46027

Mathématiques. Paris: Presses Universitaires de France. 230 p. (1999).
MSC:  46E35 35K15
PDF BibTeX XML Cite

Filter Results by …

Document Type

Reviewing State

all top 5

Year of Publication

all top 3

Classification