Balcerzak, Marek; Leonetti, Paolo A Tauberian theorem for ideal statistical convergence. (English) Zbl 1440.40003 Indag. Math., New Ser. 31, No. 1, 83-95 (2020). Reviewer: İbrahim Çanak (İzmir) MSC: 40A35 40E05 PDF BibTeX XML Cite \textit{M. Balcerzak} and \textit{P. Leonetti}, Indag. Math., New Ser. 31, No. 1, 83--95 (2020; Zbl 1440.40003) Full Text: DOI arXiv
Nuray, Fatih; Akin, Nimet Four dimensional logarithmic transformation into \(\mathscr{L}_u\). (English) Zbl 1438.40025 J. Class. Anal. 14, No. 1, 49-55 (2019). MSC: 40C05 40B05 PDF BibTeX XML Cite \textit{F. Nuray} and \textit{N. Akin}, J. Class. Anal. 14, No. 1, 49--55 (2019; Zbl 1438.40025) Full Text: DOI
Okur, Muhammet Ali; Totur, Ümit Tauberian theorems for the logarithmic summability methods of integrals. (English) Zbl 1420.40003 Positivity 23, No. 1, 55-73 (2019). Reviewer: Sefa Anıl Sezer (Istanbul) MSC: 40E05 40A10 40C10 PDF BibTeX XML Cite \textit{M. A. Okur} and \textit{Ü. Totur}, Positivity 23, No. 1, 55--73 (2019; Zbl 1420.40003) Full Text: DOI
Totur, Ü.; Çanak, İ. A Tauberian theorem for the power-series summability method. (English) Zbl 1428.40004 Ukr. Math. J. 69, No. 12, 1981-1996 (2018) and Ukr. Mat. Zh. 69, No. 12, 1701-1713 (2017). MSC: 40E05 40G10 PDF BibTeX XML Cite \textit{Ü. Totur} and \textit{İ. Çanak}, Ukr. Math. J. 69, No. 12, 1981--1996 (2018; Zbl 1428.40004) Full Text: DOI
Totur, Ümit; Okur, Muhammet Ali; Çanak, İbrahim One-sided Tauberian conditions for the \((\bar{N}, p)\) summability of integrals. (English) Zbl 1424.40038 Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80, No. 2, 65-74 (2018). MSC: 40E05 40A10 40G05 PDF BibTeX XML Cite \textit{Ü. Totur} et al., Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80, No. 2, 65--74 (2018; Zbl 1424.40038)
Debruyne, Gregory; Vindas, Jasson Optimal Tauberian constant in Ingham’s theorem for Laplace transforms. (English) Zbl 1410.11113 Isr. J. Math. 228, No. 2, 557-586 (2018). Reviewer: Isabel Marrero (La Laguna) MSC: 11M45 40D05 42B10 PDF BibTeX XML Cite \textit{G. Debruyne} and \textit{J. Vindas}, Isr. J. Math. 228, No. 2, 557--586 (2018; Zbl 1410.11113) Full Text: DOI
Totur, Ümit; Okur, Muhammet Ali On Tauberian conditions for the logarithmic methods of integrability. (English) Zbl 1400.40003 Bull. Malays. Math. Sci. Soc. (2) 41, No. 2, 879-892 (2018). Reviewer: İbrahim Çanak (İzmir) MSC: 40E05 40A10 40C10 PDF BibTeX XML Cite \textit{Ü. Totur} and \textit{M. A. Okur}, Bull. Malays. Math. Sci. Soc. (2) 41, No. 2, 879--892 (2018; Zbl 1400.40003) Full Text: DOI
Hagelstein, Paul; Parissis, Ioannis; Saari, Olli Sharp inequalities for one-sided Muckenhoupt weights. (English) Zbl 1383.42017 Collect. Math. 69, No. 1, 151-161 (2018). MSC: 42B25 42B35 PDF BibTeX XML Cite \textit{P. Hagelstein} et al., Collect. Math. 69, No. 1, 151--161 (2018; Zbl 1383.42017) Full Text: DOI
Totur, Ümit; Okur, Muhammet A. On logarithmic averages of sequences and its applications. (English) Zbl 07244537 Kuwait J. Sci. 43, No. 4, 56-67 (2016). MSC: 40E05 40A10 40G05 PDF BibTeX XML Cite \textit{Ü. Totur} and \textit{M. A. Okur}, Kuwait J. Sci. 43, No. 4, 56--67 (2016; Zbl 07244537) Full Text: Link
Debruyne, Gregory; Vindas, Jasson Generalization of the Wiener-Ikehara theorem. (English) Zbl 1382.40018 Ill. J. Math. 60, No. 2, 613-624 (2016). Reviewer: İbrahim Çanak (İzmir) MSC: 40E05 11M45 PDF BibTeX XML Cite \textit{G. Debruyne} and \textit{J. Vindas}, Ill. J. Math. 60, No. 2, 613--624 (2016; Zbl 1382.40018) Full Text: Euclid arXiv
Hagelstein, Paul; Parissis, Ioannis Solyanik estimates in ergodic theory. (English) Zbl 1354.37013 Colloq. Math. 145, No. 2, 193-207 (2016). Reviewer: Thomas B. Ward (Leeds) MSC: 37A45 42B25 PDF BibTeX XML Cite \textit{P. Hagelstein} and \textit{I. Parissis}, Colloq. Math. 145, No. 2, 193--207 (2016; Zbl 1354.37013) Full Text: DOI
Braha, Naim L. Tauberian conditions under which \(\lambda\)-statistical convergence follows from statistical summability \((V,\lambda)\). (English) Zbl 1349.40018 Miskolc Math. Notes 16, No. 2, 695-703 (2016). MSC: 40E05 40G15 PDF BibTeX XML Cite \textit{N. L. Braha}, Miskolc Math. Notes 16, No. 2, 695--703 (2016; Zbl 1349.40018) Full Text: DOI
Çanak, İbrahim; Totur, Ümit Some classical Tauberian theorems for \((C,1,1,1)\) summable triple sequences. (English) Zbl 1354.40004 Georgian Math. J. 23, No. 1, 33-42 (2016). MSC: 40E05 40B05 PDF BibTeX XML Cite \textit{İ. Çanak} and \textit{Ü. Totur}, Georgian Math. J. 23, No. 1, 33--42 (2016; Zbl 1354.40004) Full Text: DOI
Totur, Ümit; Okur, Muhammet Ali Alternative proofs of some classical Tauberian theorems for the weighted mean method of integrals. (English) Zbl 06749190 Filomat 29, No. 10, 2281-2287 (2015). MSC: 40E05 PDF BibTeX XML Cite \textit{Ü. Totur} and \textit{M. A. Okur}, Filomat 29, No. 10, 2281--2287 (2015; Zbl 06749190) Full Text: DOI
Nuray, Fatih; Patterson, Richard Some Tauberian theorems for four-dimensional Euler and Borel summability. (English) Zbl 1343.40005 Adv. Difference Equ. 2015, Paper No. 50, 8 p. (2015). MSC: 40B05 40C05 PDF BibTeX XML Cite \textit{F. Nuray} and \textit{R. Patterson}, Adv. Difference Equ. 2015, Paper No. 50, 8 p. (2015; Zbl 1343.40005) Full Text: DOI
Hagelstein, Paul; Parissis, Ioannis Solyanik estimates and local Hölder continuity of halo functions of geometric maximal operators. (English) Zbl 1331.42022 Adv. Math. 285, 434-453 (2015). Reviewer: Kathryn Hare (Waterloo) MSC: 42B25 42B20 42B35 PDF BibTeX XML Cite \textit{P. Hagelstein} and \textit{I. Parissis}, Adv. Math. 285, 434--453 (2015; Zbl 1331.42022) Full Text: DOI arXiv
Hagelstein, Paul; Luque, Teresa; Parissis, Ioannis Tauberian conditions, Muckenhoupt weights, and differentiation properties of weighted bases. (English) Zbl 1330.42013 Trans. Am. Math. Soc. 367, No. 11, 7999-8032 (2015). Reviewer: Javier Soria (Barcelona) MSC: 42B25 42B35 PDF BibTeX XML Cite \textit{P. Hagelstein} et al., Trans. Am. Math. Soc. 367, No. 11, 7999--8032 (2015; Zbl 1330.42013) Full Text: DOI arXiv
Gerhold, Stefan Small-maturity digital options in Lévy models: an analytic approach. (English) Zbl 1321.60093 Lith. Math. J. 55, No. 2, 222-230 (2015). MSC: 60G51 60E10 91G20 91G80 PDF BibTeX XML Cite \textit{S. Gerhold}, Lith. Math. J. 55, No. 2, 222--230 (2015; Zbl 1321.60093) Full Text: DOI
Çanak, İbrahim; Totur, Ü. A theorem for the \((J,p)\) summability method. (English) Zbl 1349.40002 Acta Math. Hung. 145, No. 1, 220-228 (2015). Reviewer: Antonio López-Carmona (Granada) MSC: 40A05 40E05 40G10 41A05 PDF BibTeX XML Cite \textit{İ. Çanak} and \textit{Ü. Totur}, Acta Math. Hung. 145, No. 1, 220--228 (2015; Zbl 1349.40002) Full Text: DOI
Talo, Özer; Başar, Feyzi On the slowly decreasing sequences of fuzzy numbers. (English) Zbl 1286.40005 Abstr. Appl. Anal. 2013, Article ID 891986, 7 p. (2013). MSC: 40A35 40E05 46S40 PDF BibTeX XML Cite \textit{Ö. Talo} and \textit{F. Başar}, Abstr. Appl. Anal. 2013, Article ID 891986, 7 p. (2013; Zbl 1286.40005) Full Text: DOI
Çanak, İbrahim; Totur, Ümit Some Tauberian theorems for the weighted mean methods of summability. (English) Zbl 1231.40010 Comput. Math. Appl. 62, No. 6, 2609-2615 (2011). MSC: 40E05 PDF BibTeX XML Cite \textit{İ. Çanak} and \textit{Ü. Totur}, Comput. Math. Appl. 62, No. 6, 2609--2615 (2011; Zbl 1231.40010) Full Text: DOI
Yang, Dachun; Yuan, Wen Characterizations of Besov-type and Triebel-Lizorkin-type spaces via maximal functions and local means. (English) Zbl 1225.46033 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 12, 3805-3820 (2010). Reviewer: A. Turan Gürkanlı (Samsun) MSC: 46E35 42B25 42B15 PDF BibTeX XML Cite \textit{D. Yang} and \textit{W. Yuan}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 12, 3805--3820 (2010; Zbl 1225.46033) Full Text: DOI
Malinen, J.; Nevanlinna, O.; Yuan, Z. On a Tauberian condition for bounded linear operators. (English) Zbl 1179.47001 Math. Proc. R. Ir. Acad. 109A, No. 1, 101-108 (2009). Reviewer: Petru A. Cojuhari (Kraków) MSC: 47A10 PDF BibTeX XML Cite \textit{J. Malinen} et al., Math. Proc. R. Ir. Acad. 109A, No. 1, 101--108 (2009; Zbl 1179.47001) Full Text: DOI
Hagelstein, Paul; Stokolos, Alexander Tauberian conditions for geometric maximal operators. (English) Zbl 1170.42007 Trans. Am. Math. Soc. 361, No. 6, 3031-3040 (2009). Reviewer: Niels Jacob (Swansea) MSC: 42B25 26B05 PDF BibTeX XML Cite \textit{P. Hagelstein} and \textit{A. Stokolos}, Trans. Am. Math. Soc. 361, No. 6, 3031--3040 (2009; Zbl 1170.42007) Full Text: DOI
Móricz, Ferenc Statistical extensions of some classical Tauberian theorems in nondiscrete setting. (English) Zbl 1112.40004 Colloq. Math. 107, No. 1, 45-56 (2007). MSC: 40E05 40G05 40C10 PDF BibTeX XML Cite \textit{F. Móricz}, Colloq. Math. 107, No. 1, 45--56 (2007; Zbl 1112.40004) Full Text: DOI
Móricz, Ferenc Ordinary convergence follows from statistical summability \((C,1)\) in the case of slowly decreasing or oscillating sequences. (English) Zbl 1046.40006 Colloq. Math. 99, No. 2, 207-219 (2004). MSC: 40E05 40G05 PDF BibTeX XML Cite \textit{F. Móricz}, Colloq. Math. 99, No. 2, 207--219 (2004; Zbl 1046.40006) Full Text: DOI
Pati, T. Extended Tauberian theorems. (English) Zbl 1067.40003 Dikshit, H. P. (ed.) et al., Analysis and applications. Outcome of the conference dedicated to Professor Tribikram Pati on the occasion of his 70th birthday, Ujjain, India, 1999. New Delhi: Narosa Publishing House; Boca Raton, FL: Chapman and Hall/CRC (ISBN 81-7319-470-X/hbk; 0-8493-1721-5/hbk). 235-250 (2002). Reviewer: Ulrich Stadtmüller (MR 2004e:40001) MSC: 40E05 40G05 40G10 PDF BibTeX XML Cite \textit{T. Pati}, in: Analysis and applications. Outcome of the conference dedicated to Professor Tribikram Pati on the occasion of his 70th birthday, Ujjain, India, 1999. New Delhi: Narosa Publishing House; Boca Raton, FL: Chapman and Hall/CRC. 235--250 (2002; Zbl 1067.40003)
Stadtmüller, U. One-sided Tauberian conditions and double sequences. (English) Zbl 1026.40003 Period. Math. Hung. 45, No. 1-2, 135-146 (2002). Reviewer: Ferenc Móricz (Szeged) MSC: 40E05 PDF BibTeX XML Cite \textit{U. Stadtmüller}, Period. Math. Hung. 45, No. 1--2, 135--146 (2002; Zbl 1026.40003) Full Text: DOI
Pati, T. On a Tauberian theorem of Hardy and Littlewood. (English) Zbl 0985.40008 Proc. Indian Acad. Sci., Math. Sci. 111, No. 2, 221-227 (2001). Reviewer: Ulrich Stadtmüller (Ulm) MSC: 40E15 40G10 40E05 PDF BibTeX XML Cite \textit{T. Pati}, Proc. Indian Acad. Sci., Math. Sci. 111, No. 2, 221--227 (2001; Zbl 0985.40008) Full Text: DOI
Tietz, Hubert; Zeller, Karl The theorem of Vijayaraghavan and Hardy. (Der Satz von Vijayaraghavan und Hardy.) (German) Zbl 0989.40008 Arch. Math. 77, No. 1, 47-55 (2001). Reviewer: Hans-Heinrich Körle (Marburg) MSC: 40E05 PDF BibTeX XML Cite \textit{H. Tietz} and \textit{K. Zeller}, Arch. Math. 77, No. 1, 47--55 (2001; Zbl 0989.40008) Full Text: DOI
Chandra, Prem Absolute Riesz summability and a criterion for the absolute convergence of a Fourier series. (English) Zbl 0995.42004 Ranchi Univ. Math. J. 25(1994), 9-18 (2000). MSC: 42A20 42A24 PDF BibTeX XML Cite \textit{P. Chandra}, Ranchi Univ. Math. J. 25, 9--18 (2000; Zbl 0995.42004)
Móricz, Ferenc Tauberian theorems for Cesàro summable double integrals over \(\mathbb{R}_+^2\). (English) Zbl 0949.40012 Stud. Math. 138, No. 1, 41-52 (2000). Reviewer: I.L.Sukla (Orissa) MSC: 40E05 40B05 PDF BibTeX XML Cite \textit{F. Móricz}, Stud. Math. 138, No. 1, 41--52 (2000; Zbl 0949.40012) Full Text: DOI EuDML
Parameswaran, Mangalam R. A new look at some Tauberian classes of sequences. (English) Zbl 0955.40002 J. Anal. 7, 57-64 (1999). Reviewer: U.Stadtmüller (Ulm) MSC: 40E05 PDF BibTeX XML Cite \textit{M. R. Parameswaran}, J. Anal. 7, 57--64 (1999; Zbl 0955.40002)
Tietz, Hubert; Zeller, Karl One-sided \(O\)-Tauber conditions for summability subfields with sectional convergence. (Einseitige \(O\)-Tauber-Bedingungen für Teilwirkfelder mit Abschnittskonvergenz.) (German) Zbl 0936.40005 Result. Math. 36, No. 3-4, 365-372 (1999). Reviewer: H.-H.Körle (Marburg) MSC: 40E05 PDF BibTeX XML Cite \textit{H. Tietz} and \textit{K. Zeller}, Result. Math. 36, No. 3--4, 365--372 (1999; Zbl 0936.40005) Full Text: DOI
Tietz, Hubert; Zeller, Karl Characterization of \(O\)-Tauberian conditions for partial fields of effectiveness of sectional convergence. (Charakterisierung von \(O\)-Tauber-Bedingungen für Teilwirkfelder mit Abschnittskonvergenz.) (German) Zbl 0929.40005 Result. Math. 35, No. 3-4, 380-391 (1999). Reviewer: Gerald A.Heuer (Moorhead) MSC: 40E10 40E15 PDF BibTeX XML Cite \textit{H. Tietz} and \textit{K. Zeller}, Result. Math. 35, No. 3--4, 380--391 (1999; Zbl 0929.40005) Full Text: DOI
Fridy, John A.; Khan, Mohammad K. Characterizations of density Tauberian theorems. (English) Zbl 0930.40002 Analysis, München 18, No. 2, 145-156 (1998). Reviewer: I.L.Sukla (Orissa) MSC: 40E05 PDF BibTeX XML Cite \textit{J. A. Fridy} and \textit{M. K. Khan}, Analysis, München 18, No. 2, 145--156 (1998; Zbl 0930.40002) Full Text: DOI
Warlimont, Richard Tauberian theorems for sequences linked by a convolution. (English) Zbl 0936.11051 Math. Nachr. 193, 211-234 (1998). Reviewer: Wolfgang Schwarz (Frankfurt am Main) MSC: 11M45 11N80 11T55 30B30 11N37 PDF BibTeX XML Cite \textit{R. Warlimont}, Math. Nachr. 193, 211--234 (1998; Zbl 0936.11051) Full Text: DOI
Krishnan, V. K. A gap Tauberian theorem connecting Borel and Cesàro summabilities. (English) Zbl 0918.40006 J. Anal. 5, 9-24 (1997). MSC: 40G10 40E05 40G05 PDF BibTeX XML Cite \textit{V. K. Krishnan}, J. Anal. 5, 9--24 (1997; Zbl 0918.40006)
Inoue, A. Abel-Tauber theorems for Fourier-Stieltjes coefficients. (English) Zbl 0889.42004 J. Math. Anal. Appl. 211, No. 2, 460-480 (1997). Reviewer: A.L.Brodskij (Severodonetsk) MSC: 42A38 62M10 PDF BibTeX XML Cite \textit{A. Inoue}, J. Math. Anal. Appl. 211, No. 2, 460--480 (1997; Zbl 0889.42004) Full Text: DOI
Fridli, S. On the \(L_ 1\)-convergence of Fourier series. (English) Zbl 0883.42005 Stud. Math. 125, No. 2, 161-174 (1997). Reviewer: L.Leindler (Szeged) MSC: 42A20 42A55 42A16 42A32 PDF BibTeX XML Cite \textit{S. Fridli}, Stud. Math. 125, No. 2, 161--174 (1997; Zbl 0883.42005) Full Text: DOI EuDML
Badiozzaman, A. J.; Thorpe, B. Some best possible Tauberian results for Abel and Cesàro summability. II. (English) Zbl 0861.40004 J. Lond. Math. Soc., II. Ser. 53, No. 3, 529-538 (1996). Reviewer: W.Beekmann (Hagen) MSC: 40G05 40G10 PDF BibTeX XML Cite \textit{A. J. Badiozzaman} and \textit{B. Thorpe}, J. Lond. Math. Soc., II. Ser. 53, No. 3, 529--538 (1996; Zbl 0861.40004) Full Text: DOI
Stadtmüller, U. On a family of summability methods and one-sided Tauberian conditions. (English) Zbl 0860.40004 J. Math. Anal. Appl. 196, No. 1, 99-119 (1995). Reviewer: D.C.Russell (Toronto) MSC: 40E05 40G10 40G05 PDF BibTeX XML Cite \textit{U. Stadtmüller}, J. Math. Anal. Appl. 196, No. 1, 99--119 (1995; Zbl 0860.40004) Full Text: DOI
Brossard, Jean; Chevalier, Lucien An optimal converse of the pointwise Fatou theorem. (Une réciproque optimale du théorème de Fatou ponctuel.) (French) Zbl 0867.31006 Adv. Math. 115, No. 2, 300-318 (1995). Reviewer: D.H.Armitage (Belfast) MSC: 31A20 40A10 PDF BibTeX XML Cite \textit{J. Brossard} and \textit{L. Chevalier}, Adv. Math. 115, No. 2, 300--318 (1995; Zbl 0867.31006) Full Text: DOI
Chen, Chang-Pao; Yeh, Ching-Dong Tauberian conditions for Cesàro summability of trigonometric series. (English) Zbl 0829.42004 Chin. J. Math. 23, No. 3, 245-256 (1995). MSC: 42A24 42A20 42A32 PDF BibTeX XML Cite \textit{C.-P. Chen} and \textit{C.-D. Yeh}, Chin. J. Math. 23, No. 3, 245--256 (1995; Zbl 0829.42004)
Love, E. R. Abel summability of certain series of Legendre functions. (English) Zbl 0807.42021 Proc. Lond. Math. Soc., III. Ser. 69, No. 3, 629-672 (1994). Reviewer: E.R.Love (Victoria) MSC: 42C15 40E99 40G10 PDF BibTeX XML Cite \textit{E. R. Love}, Proc. Lond. Math. Soc. (3) 69, No. 3, 629--672 (1994; Zbl 0807.42021) Full Text: DOI
Parameswaran, Mangalam R. A general Tauberian condition that implies Euler summability. (English) Zbl 0806.40005 Can. Math. Bull. 37, No. 3, 393-398 (1994). MSC: 40G05 40E05 40G10 PDF BibTeX XML Cite \textit{M. R. Parameswaran}, Can. Math. Bull. 37, No. 3, 393--398 (1994; Zbl 0806.40005) Full Text: DOI
Daboussi, Hedi; Indlekofer, Karl-Heinz Two elementary proofs of Halász’s theorem. (English) Zbl 0724.11045 Math. Z. 209, No. 1, 43-52 (1992). Reviewer: H.Daboussi (Orsay) MSC: 11N37 11N64 11M45 40D10 PDF BibTeX XML Cite \textit{H. Daboussi} and \textit{K.-H. Indlekofer}, Math. Z. 209, No. 1, 43--52 (1992; Zbl 0724.11045) Full Text: DOI EuDML
Zhuk, V. V. On the question of convergence of a trigonometric Fourier series at a point. (English. Russian original) Zbl 0796.42003 Russ. Acad. Sci., Dokl., Math. 46, No. 2, 349-353 (1993); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 326, No. 5, 770-775 (1992). Reviewer: L.Leindler (Szeged) MSC: 42A20 42A50 PDF BibTeX XML Cite \textit{V. V. Zhuk}, Russ. Acad. Sci., Dokl., Math. 46, No. 2, 1 (1992; Zbl 0796.42003); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 326, No. 5, 770--775 (1992)
Paluszynski, Maciej; Taibleson, Mitchell H.; Weiss, Guido Characterization of Lipschitz spaces via the commutator operator of Coifman, Rochberg, and Weiss. (English) Zbl 0804.46031 Rev. Unión Mat. Argent. 37, No. 1-2, 142-144 (1991). Reviewer: K.D.Bierstedt (Paderborn) MSC: 46E15 45E10 46E30 47G10 PDF BibTeX XML Cite \textit{M. Paluszynski} et al., Rev. Unión Mat. Argent. 37, No. 1--2, 142--144 (1991; Zbl 0804.46031)
Bojmatov, K. Kh. Multidimensional distribution functions for degenerate elliptic operators. (English. Russian original) Zbl 0780.47035 Sov. Math., Dokl. 43, No. 2, 350-354 (1991); translation from Dokl. Akad. Nauk SSSR 317, No. 2, 271-275 (1991). Reviewer: A.Pryde (Clayton) MSC: 47F05 35J70 40E05 PDF BibTeX XML Cite \textit{K. Kh. Bojmatov}, Sov. Math., Dokl. 43, No. 2, 350--354 (1991; Zbl 0780.47035); translation from Dokl. Akad. Nauk SSSR 317, No. 2, 271--275 (1991)
Khan, Mohammad Kazim Statistical methods in analysis. I: Some Tauberian theorems for absolute summability. (English) Zbl 0739.40005 Pakistan J. Stat. 7, No. 1, 21-32 (1991). Reviewer: J.L.Teugels (Heverlee) MSC: 40E05 40G05 40G10 40D25 PDF BibTeX XML Cite \textit{M. K. Khan}, Pakistan J. Stat. 7, No. 1, 21--32 (1991; Zbl 0739.40005)
Grow, David; Stanojević, Vera B. Representations of Fourier coefficients in Tauberian \(L^ 1\)-convergence classes. (English) Zbl 0737.42003 J. Math. Anal. Appl. 160, No. 1, 47-50 (1991). Reviewer: S.Aljančić (Beograd) MSC: 42A16 26A12 PDF BibTeX XML Cite \textit{D. Grow} and \textit{V. B. Stanojević}, J. Math. Anal. Appl. 160, No. 1, 47--50 (1991; Zbl 0737.42003) Full Text: DOI
Petersen, G. M. The closure of Tauberian sets. (English) Zbl 0722.40007 Southeast Asian Bull. Math. 14, No. 1, 67-72 (1990). Reviewer: D.Leviatan (Edmonton) MSC: 40E05 PDF BibTeX XML Cite \textit{G. M. Petersen}, Southeast Asian Bull. Math. 14, No. 1, 67--72 (1990; Zbl 0722.40007)
Armitage, David H.; Maddox, Ivor J. Discrete Abel means. (English) Zbl 0717.40014 Analysis 10, No. 2-3, 177-186 (1990). MSC: 40E05 PDF BibTeX XML Cite \textit{D. H. Armitage} and \textit{I. J. Maddox}, Analysis 10, No. 2--3, 177--186 (1990; Zbl 0717.40014) Full Text: DOI
Borwein, David A Tauberian theorem concerning Dirichlet series. (English) Zbl 0699.40005 Math. Proc. Camb. Philos. Soc. 105, No. 3, 481-484 (1989). Reviewer: Wolfgang Schwarz (Frankfurt / Main) MSC: 40E05 PDF BibTeX XML Cite \textit{D. Borwein}, Math. Proc. Camb. Philos. Soc. 105, No. 3, 481--484 (1989; Zbl 0699.40005) Full Text: DOI
Móricz, Ferenc On \(L^ 1\)-convergence of Walsh-Fourier series. I. (English) Zbl 0683.42007 Rend. Circ. Mat. Palermo, II. Ser. 38, No. 3, 411-418 (1989). MSC: 42A20 42C10 PDF BibTeX XML Cite \textit{F. Móricz}, Rend. Circ. Mat. Palermo (2) 38, No. 3, 411--418 (1989; Zbl 0683.42007) Full Text: DOI
Maddox, Ivor J. A Tauberian theorem for statistical convergence. (English) Zbl 0739.40001 Math. Proc. Camb. Philos. Soc. 106, No. 2, 277-280 (1989). Reviewer: J.L.Teugels (Heverlee) MSC: 40A05 40E05 PDF BibTeX XML Cite \textit{I. J. Maddox}, Math. Proc. Camb. Philos. Soc. 106, No. 2, 277--280 (1989; Zbl 0739.40001) Full Text: DOI
Borwein, David; Markovich, Tom A Tauberian theorem concerning Borel-type and Cesàro methods of summability. (English) Zbl 0631.40006 Can. J. Math. 40, No. 1, 228-247 (1988). MSC: 40E05 40G05 40G10 PDF BibTeX XML Cite \textit{D. Borwein} and \textit{T. Markovich}, Can. J. Math. 40, No. 1, 228--247 (1988; Zbl 0631.40006) Full Text: DOI
Das, G.; Panda, K. C.; Sahoo, S. Some Tauberian theorems and their applications to \((D_{\gamma,\delta})\) method of summability. (English) Zbl 0651.40005 Indian J. Math. 29, 23-35 (1987). Reviewer: L.Leindler MSC: 40E05 PDF BibTeX XML Cite \textit{G. Das} et al., Indian J. Math. 29, 23--35 (1987; Zbl 0651.40005)
Rangachari, M. S. On Lambert and Ingham summability. (English) Zbl 0652.40011 J. Natl. Acad. Math. India 3, 145-152 (1985). Reviewer: C.G.Lascarides MSC: 40E05 40G99 PDF BibTeX XML Cite \textit{M. S. Rangachari}, J. Natl. Acad. Math. India 3, 145--152 (1985; Zbl 0652.40011)
Tietz, Hubert Über Umkehrbedingungen bei gewöhnlicher und absoluter Limitierung. (German) Zbl 0512.40004 Stud. Math. 80, 47-52 (1984). MSC: 40E05 40F05 PDF BibTeX XML Cite \textit{H. Tietz}, Stud. Math. 80, 47--52 (1984; Zbl 0512.40004) Full Text: DOI EuDML
Kogan, D. A. On the question of summability of integrals. (Russian) Zbl 0605.40007 Issledovanie Operatornykh Uravnenij v Funktsional’nykh Prostranstvakh, Mat. Zap. 12, No. 4, 46-55 (1983). MSC: 40G05 PDF BibTeX XML
Gripenberg, Gustaf Two Tauberian theorems for nonconvolution Volterra integral operators. (English) Zbl 0533.45007 Proc. Am. Math. Soc. 89, 219-225 (1983). Reviewer: O.Staffans MSC: 45M05 45D05 45P05 PDF BibTeX XML Cite \textit{G. Gripenberg}, Proc. Am. Math. Soc. 89, 219--225 (1983; Zbl 0533.45007) Full Text: DOI
Gaier, Dieter Gap theorems for logarithmic summability. (English) Zbl 0485.40008 Analysis 1, 9-24 (1981). MSC: 40E05 40E15 PDF BibTeX XML Cite \textit{D. Gaier}, Analysis 1, 9--24 (1981; Zbl 0485.40008) Full Text: DOI
Parameswaran, Mangalam R. Tauberian theorems for product methods. I. (English) Zbl 0616.40003 J. Indian Math. Soc., New Ser. 44, 157-163 (1980). MSC: 40E05 PDF BibTeX XML Cite \textit{M. R. Parameswaran}, J. Indian Math. Soc., New Ser. 44, 157--163 (1980; Zbl 0616.40003)
Fridy, J. A.; Roberts, K. L. Some Tauberian theorems for Euler and Borel summability. (English) Zbl 0445.40005 Int. J. Math. Math. Sci. 3, 731-738 (1980). MSC: 40E05 40G05 40G10 PDF BibTeX XML Cite \textit{J. A. Fridy} and \textit{K. L. Roberts}, Int. J. Math. Math. Sci. 3, 731--738 (1980; Zbl 0445.40005) Full Text: DOI EuDML
Parameswaran, M. R. A general Tauberian theorem. (English) Zbl 0417.40005 Glas. Mat., III. Ser. 14(34), 83-86 (1979). MSC: 40E05 40G05 40G10 PDF BibTeX XML Cite \textit{M. R. Parameswaran}, Glas. Mat., III. Ser. 14(34), 83--86 (1979; Zbl 0417.40005)
Stadtmüller, U.; Trautner, R. Tauberian theorems for Laplace transforms. (English) Zbl 0409.44003 J. Reine Angew. Math. 311-312, 283-290 (1979). MSC: 44A10 40E05 PDF BibTeX XML Cite \textit{U. Stadtmüller} and \textit{R. Trautner}, J. Reine Angew. Math. 311--312, 283--290 (1979; Zbl 0409.44003) Full Text: Crelle EuDML
Agnew, R. P. Borel transforms of Tauberian series. (English) Zbl 0077.06502 Math. Z. 67, 51-62 (1957). Reviewer: V. Garten MSC: 40G10 40D10 40E10 PDF BibTeX XML Cite \textit{R. P. Agnew}, Math. Z. 67, 51--62 (1957; Zbl 0077.06502) Full Text: DOI EuDML