Ben Makhlouf, Abdellatif Superstability of higher-order fractional differential equations. (English) Zbl 07674979 An. Univ. Craiova, Ser. Mat. Inf. 49, No. 1, 11-14 (2022). MSC: 34A08 47H10 PDF BibTeX XML Cite \textit{A. Ben Makhlouf}, An. Univ. Craiova, Ser. Mat. Inf. 49, No. 1, 11--14 (2022; Zbl 07674979) Full Text: DOI OpenURL
Qi, Feng Taylor’s series expansions for real powers of two functions containing squares of inverse cosine function, closed-form formula for specific partial Bell polynomials, and series representations for real powers of pi. (English) Zbl 07606391 Demonstr. Math. 55, 710-736 (2022). MSC: 41A58 05A19 11B73 11B83 11C08 11S05 12D05 26A24 26C05 33B10 PDF BibTeX XML Cite \textit{F. Qi}, Demonstr. Math. 55, 710--736 (2022; Zbl 07606391) Full Text: DOI arXiv OpenURL
Dăianu, Dan M. Samples of homogeneous functions. (English) Zbl 1496.41002 Result. Math. 77, No. 2, Paper No. 78, 14 p. (2022). MSC: 41A10 22A10 41A58 41A80 PDF BibTeX XML Cite \textit{D. M. Dăianu}, Result. Math. 77, No. 2, Paper No. 78, 14 p. (2022; Zbl 1496.41002) Full Text: DOI OpenURL
Bardaro, Carlo; Butzer, Paul L.; Mantellini, Ilaria; Schmeisser, Gerhard Polar-analytic functions: old and new results, applications. (English) Zbl 1486.30004 Result. Math. 77, No. 2, Paper No. 64, 26 p. (2022). MSC: 30B10 30E20 30C20 PDF BibTeX XML Cite \textit{C. Bardaro} et al., Result. Math. 77, No. 2, Paper No. 64, 26 p. (2022; Zbl 1486.30004) Full Text: DOI OpenURL
Dragomir, Silvestru Sever Two points Taylor’s type representations for analytic complex functions with integral remainders. (English) Zbl 07660047 An. Științ. Univ. “Ovidius” Constanța, Ser. Mat. 29, No. 2, 131-154 (2021). MSC: 30B10 26D15 26D10 PDF BibTeX XML Cite \textit{S. S. Dragomir}, An. Științ. Univ. ``Ovidius'' Constanța, Ser. Mat. 29, No. 2, 131--154 (2021; Zbl 07660047) Full Text: DOI OpenURL
Nystedt, Patrik Arc length of function graphs via Taylor’s formula. (English) Zbl 1491.97024 Int. J. Math. Educ. Sci. Technol. 52, No. 2, 310-323 (2021). MSC: 97I50 97I30 97I40 26A06 PDF BibTeX XML Cite \textit{P. Nystedt}, Int. J. Math. Educ. Sci. Technol. 52, No. 2, 310--323 (2021; Zbl 1491.97024) Full Text: DOI arXiv OpenURL
Noeiaghdam, Zahra; Rahmani, Morteza; Allahviranloo, Tofigh Introduction of the numerical methods in quantum calculus with uncertainty. (English) Zbl 1501.34002 J. Math. Model. 9, No. 2, 303-322 (2021). MSC: 34A07 34A08 05A30 41A58 65B15 65L05 34A12 PDF BibTeX XML Cite \textit{Z. Noeiaghdam} et al., J. Math. Model. 9, No. 2, 303--322 (2021; Zbl 1501.34002) Full Text: DOI OpenURL
Manouchehrian, Ameneh; HaghBin, Ahmad; Jafari, Hossein Bivariate generalized Taylor’s formula and its applications to solve FPDEs. (English) Zbl 1465.35013 Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 3, 11 p. (2021). MSC: 35A22 35R11 PDF BibTeX XML Cite \textit{A. Manouchehrian} et al., Int. J. Appl. Comput. Math. 7, No. 1, Paper No. 3, 11 p. (2021; Zbl 1465.35013) Full Text: DOI OpenURL
Liu, Yaru; Liu, Shenquan; Zhan, Feibiao; Zhang, Xiaohan Firing patterns of the modified Hodgkin-Huxley models subject to Taylor’s formula. (English) Zbl 07530169 Physica A 547, Article ID 124405, 19 p. (2020). MSC: 82-XX PDF BibTeX XML Cite \textit{Y. Liu} et al., Physica A 547, Article ID 124405, 19 p. (2020; Zbl 07530169) Full Text: DOI OpenURL
Akkouchi, Mohamed An estimate of the remainder in Taylor’s perturbed formula and applications. (English) Zbl 1474.26015 Bull. Int. Math. Virtual Inst. 10, No. 1, 135-143 (2020). MSC: 26A24 26D15 PDF BibTeX XML Cite \textit{M. Akkouchi}, Bull. Int. Math. Virtual Inst. 10, No. 1, 135--143 (2020; Zbl 1474.26015) OpenURL
Tripathy, A. K. On unbounded oscillation of fourth order functional difference equations. (English) Zbl 1474.39023 Differ. Equ. Appl. 12, No. 3, 259-275 (2020). MSC: 39A21 39A12 PDF BibTeX XML Cite \textit{A. K. Tripathy}, Differ. Equ. Appl. 12, No. 3, 259--275 (2020; Zbl 1474.39023) Full Text: DOI OpenURL
Odibat, Zaid Fractional power series solutions of fractional differential equations by using generalized Taylor series. (English) Zbl 1455.34009 Appl. Comput. Math. 19, No. 1, 47-58 (2020). MSC: 34A08 34A25 34C20 41A58 34A12 PDF BibTeX XML Cite \textit{Z. Odibat}, Appl. Comput. Math. 19, No. 1, 47--58 (2020; Zbl 1455.34009) Full Text: Link OpenURL
Dragomir, Silvestru Sever Approximating the integral of analytic complex functions on paths from convex domains in terms of generalized Ostrowski and trapezoid type rules. (English) Zbl 07225646 Daras, Nicholas J. (ed.) et al., Computational mathematics and variational analysis. Cham: Springer. Springer Optim. Appl. 159, 81-106 (2020). MSC: 65Jxx 49Jxx PDF BibTeX XML Cite \textit{S. S. Dragomir}, Springer Optim. Appl. 159, 81--106 (2020; Zbl 07225646) Full Text: DOI OpenURL
Senio, Petro S. Matrix representation of Taylor’s formula for mappings in finite dimensional spaces. (English) Zbl 1423.41047 Mat. Stud. 51, No. 1, 92-106 (2019). MSC: 41A58 PDF BibTeX XML Cite \textit{P. S. Senio}, Mat. Stud. 51, No. 1, 92--106 (2019; Zbl 1423.41047) Full Text: DOI OpenURL
Chanchlani, Lata; Alha, Subhash; Gupta, Jaya Generalization of Taylor’s formula and differential transform method for composite fractional \(q\)-derivative. (English) Zbl 1408.26007 Ramanujan J. 48, No. 1, 21-32 (2019). MSC: 26A33 33E12 34A12 35A22 PDF BibTeX XML Cite \textit{L. Chanchlani} et al., Ramanujan J. 48, No. 1, 21--32 (2019; Zbl 1408.26007) Full Text: DOI OpenURL
You, Xu; Chen, Di-Rong A new sequence convergent to Euler-Mascheroni constant. (English) Zbl 1497.11293 J. Inequal. Appl. 2018, Paper No. 75, 8 p. (2018). MSC: 11Y60 41A25 41A20 PDF BibTeX XML Cite \textit{X. You} and \textit{D.-R. Chen}, J. Inequal. Appl. 2018, Paper No. 75, 8 p. (2018; Zbl 1497.11293) Full Text: DOI OpenURL
Tang, Qilin; Liao, Yongzhi; Hu, Min A study of higher order differential conditions for vector optimization. (Chinese. English summary) Zbl 1438.49029 J. Sichuan Norm. Univ., Nat. Sci. 41, No. 6, 757-763 (2018). MSC: 49K15 PDF BibTeX XML Cite \textit{Q. Tang} et al., J. Sichuan Norm. Univ., Nat. Sci. 41, No. 6, 757--763 (2018; Zbl 1438.49029) Full Text: DOI OpenURL
Azamov, Abdulla A language of terms of Taylor’s formula for quadratic dynamical systems and its fractality. (English) Zbl 1431.65095 Azamov, Abdulla (ed.) et al., Differential equations and dynamical systems. 2 USUZCAMP. Selected papers based on the presentations at the special session of the 2nd USA-Uzbekistan conference on analysis and mathematical physics, Urgench, Uzbekistan, August 8–12, 2017. Cham: Springer. Springer Proc. Math. Stat. 268, 25-40 (2018). Reviewer: Serhiy Yanchuk (Berlin) MSC: 65L05 68Q42 65L20 65D25 03B65 PDF BibTeX XML Cite \textit{A. Azamov}, Springer Proc. Math. Stat. 268, 25--40 (2018; Zbl 1431.65095) Full Text: DOI OpenURL
Kuznetsov, D. F. Development and application of the Fourier method for the numerical solution of Ito stochastic differential equations. (English. Russian original) Zbl 1483.65016 Comput. Math. Math. Phys. 58, No. 7, 1058-1070 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 7 (2018). MSC: 65C30 60H05 60H10 PDF BibTeX XML Cite \textit{D. F. Kuznetsov}, Comput. Math. Math. Phys. 58, No. 7, 1058--1070 (2018; Zbl 1483.65016); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 7 (2018) Full Text: DOI arXiv OpenURL
Dăianu, Dan M. Taylor type formula with Fréchet polynomials. (English) Zbl 1401.41006 Aequationes Math. 92, No. 4, 695-707 (2018). Reviewer: Francisco Pérez Acosta (La Laguna) MSC: 41A10 39A70 41A65 41A80 39B82 PDF BibTeX XML Cite \textit{D. M. Dăianu}, Aequationes Math. 92, No. 4, 695--707 (2018; Zbl 1401.41006) Full Text: DOI OpenURL
Nosheen, Ammara; Bibi, Rabia; Pečarić, Josip Jensen-Steffensen inequality for diamond integrals, its converse and improvements via Green function and Taylor’s formula. (English) Zbl 1396.26037 Aequationes Math. 92, No. 2, 289-309 (2018). Reviewer: József Sándor (Cluj-Napoca) MSC: 26D15 39A13 34N05 PDF BibTeX XML Cite \textit{A. Nosheen} et al., Aequationes Math. 92, No. 2, 289--309 (2018; Zbl 1396.26037) Full Text: DOI OpenURL
Furdui, Ovidiu; Sîntămărian, Alina Exotic series with fractional part function. (English) Zbl 1418.40002 Gaz. Mat., Ser. A 35(114), No. 3-4, 1-12 (2017). MSC: 40A05 PDF BibTeX XML Cite \textit{O. Furdui} and \textit{A. Sîntămărian}, Gaz. Mat., Ser. A 35(114), No. 3--4, 1--12 (2017; Zbl 1418.40002) OpenURL
Anastassiou, George A. Strong right fractional calculus for Banach space valued functions. (English) Zbl 1382.26005 Proyecciones 36, No. 1, 149-186 (2017). MSC: 26A33 26D10 26D15 46B25 PDF BibTeX XML Cite \textit{G. A. Anastassiou}, Proyecciones 36, No. 1, 149--186 (2017; Zbl 1382.26005) Full Text: DOI OpenURL
Rock, John A. A lecture on integration by parts. (English) Zbl 1366.26016 Math. Sci. 42, No. 1, 29-37 (2017). MSC: 26A36 PDF BibTeX XML Cite \textit{J. A. Rock}, Math. Sci. 42, No. 1, 29--37 (2017; Zbl 1366.26016) Full Text: arXiv OpenURL
Odibat, Zaid M.; Kumar, Sunil; Shawagfeh, Nabil; Alsaedi, Ahmed; Hayat, Tasawar A study on the convergence conditions of generalized differential transform method. (English) Zbl 1354.26013 Math. Methods Appl. Sci. 40, No. 1, 40-48 (2017). MSC: 26A33 34A08 65L20 PDF BibTeX XML Cite \textit{Z. M. Odibat} et al., Math. Methods Appl. Sci. 40, No. 1, 40--48 (2017; Zbl 1354.26013) Full Text: DOI OpenURL
Li, C. K. The powers of the Dirac delta function by Caputo fractional derivatives. (English) Zbl 1488.46076 J. Fract. Calc. Appl. 7, No. 1, 12-23 (2016). MSC: 46F10 26A33 PDF BibTeX XML Cite \textit{C. K. Li}, J. Fract. Calc. Appl. 7, No. 1, 12--23 (2016; Zbl 1488.46076) Full Text: Link OpenURL
Fan, Meng; Wang, Tongke; Chang, Huibin A fractional interpolation formula for non-smooth functions. (Chinese. English summary) Zbl 1363.65012 Math. Numer. Sin. 38, No. 2, 212-224 (2016). MSC: 65D05 26A33 41A05 41A80 PDF BibTeX XML Cite \textit{M. Fan} et al., Math. Numer. Sin. 38, No. 2, 212--224 (2016; Zbl 1363.65012) OpenURL
Azamov, Abdulla A.; Bekimov, M. A. An approximation algorithm for quadratic dynamic systems based on N. Chomsky’s grammar for Taylor’s formula. (English. Russian original) Zbl 1353.65069 Proc. Steklov Inst. Math. 293, Suppl. 1, S17-S21 (2016); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 21, No. 2, 21-25 (2015). Reviewer: Kai Diethelm (Braunschweig) MSC: 65L05 65L20 68Q42 65L70 34A34 PDF BibTeX XML Cite \textit{A. A. Azamov} and \textit{M. A. Bekimov}, Proc. Steklov Inst. Math. 293, S17--S21 (2016; Zbl 1353.65069); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 21, No. 2, 21--25 (2015) Full Text: DOI OpenURL
Fan, Meng; Wang, Tongke Remainder estimation of cubic Lagrange interpolation for fractional smooth functions. (Chinese. English summary) Zbl 1363.65011 J. Tianjin Norm. Univ., Nat. Sci. Ed. 36, No. 2, 1-5 (2016). MSC: 65D05 26A33 41A80 41A05 PDF BibTeX XML Cite \textit{M. Fan} and \textit{T. Wang}, J. Tianjin Norm. Univ., Nat. Sci. Ed. 36, No. 2, 1--5 (2016; Zbl 1363.65011) OpenURL
Dubeau, François On Euler-Maclaurin formula. (English) Zbl 1328.65007 J. Comput. Appl. Math. 296, 649-660 (2016). MSC: 65B15 65D30 41A55 PDF BibTeX XML Cite \textit{F. Dubeau}, J. Comput. Appl. Math. 296, 649--660 (2016; Zbl 1328.65007) Full Text: DOI OpenURL
Anastassiou, George A.; Argyros, Ioannis K. A convergence analysis for a certain family of extended iterative methods. II: Applications to fractional calculus. (English) Zbl 1389.47153 Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 44, 143-151 (2015). MSC: 47J25 26A33 65J15 PDF BibTeX XML Cite \textit{G. A. Anastassiou} and \textit{I. K. Argyros}, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 44, 143--151 (2015; Zbl 1389.47153) OpenURL
Aglić Aljinović, Andrea; Khan, Asif R.; Pečarić, Josip E. Weighted majorization theorems via generalization of Taylor’s formula. (English) Zbl 1334.26038 J. Inequal. Appl. 2015, Paper No. 196, 22 p. (2015). MSC: 26D15 26D20 PDF BibTeX XML Cite \textit{A. Aglić Aljinović} et al., J. Inequal. Appl. 2015, Paper No. 196, 22 p. (2015; Zbl 1334.26038) Full Text: DOI OpenURL
Pečarić, Josip; Perušić Pribanić, Anamarija; Smoljak Kalamir, Ksenija Generalizations of Steffensen’s inequality via Taylor’s formula. (English) Zbl 1336.26041 J. Inequal. Appl. 2015, Paper No. 207, 25 p. (2015). MSC: 26D15 26D20 PDF BibTeX XML Cite \textit{J. Pečarić} et al., J. Inequal. Appl. 2015, Paper No. 207, 25 p. (2015; Zbl 1336.26041) Full Text: DOI OpenURL
Wang, Tongke; Li, Na; Gao, Guanghua The asymptotic expansion and extrapolation of trapezoidal rule for integrals with fractional order singularities. (English) Zbl 1317.65066 Int. J. Comput. Math. 92, No. 3, 579-590 (2015). MSC: 65D30 26A33 PDF BibTeX XML Cite \textit{T. Wang} et al., Int. J. Comput. Math. 92, No. 3, 579--590 (2015; Zbl 1317.65066) Full Text: DOI OpenURL
Li, Chenkuan; Li, Changpin On defining the distributions \(\delta^k\) and \((\delta')^k\) by fractional derivatives. (English) Zbl 1338.46053 Appl. Math. Comput. 246, 502-513 (2014). MSC: 46F20 PDF BibTeX XML Cite \textit{C. Li} and \textit{C. Li}, Appl. Math. Comput. 246, 502--513 (2014; Zbl 1338.46053) Full Text: DOI OpenURL
Xu, Hongmin; You, Xu Continued fraction inequalities for the Euler-Mascheroni constant. (English) Zbl 1332.11111 J. Inequal. Appl. 2014, Paper No. 343, 11 p. (2014). MSC: 11Y60 41A25 41A20 PDF BibTeX XML Cite \textit{H. Xu} and \textit{X. You}, J. Inequal. Appl. 2014, Paper No. 343, 11 p. (2014; Zbl 1332.11111) Full Text: DOI arXiv OpenURL
Borceux, Francis An algebraic approach to geometry. Geometric trilogy II. (English) Zbl 1298.51002 Cham: Springer (ISBN 978-3-319-01732-7/hbk; 978-3-319-01733-4/ebook; 978-3-319-01804-1/set). xvii, 430 p. (2014). Reviewer: Rolf Riesinger (Wien) MSC: 51-01 01A05 51A15 51N10 51N15 51N20 51N35 14H05 14N05 PDF BibTeX XML Cite \textit{F. Borceux}, An algebraic approach to geometry. Geometric trilogy II. Cham: Springer (2014; Zbl 1298.51002) Full Text: DOI OpenURL
Michalíková, Alžbeta Taylor’s theorem for functions, defined on Atanassov IF-sets. (English) Zbl 1390.26047 Notes IFS 19, No. 3, 34-41 (2013). MSC: 26E50 PDF BibTeX XML Cite \textit{A. Michalíková}, Notes IFS 19, No. 3, 34--41 (2013; Zbl 1390.26047) Full Text: Link OpenURL
Khalilova, Z. I. Compact subdifferentials of higher orders and their applications to variational problems. (Russian) Zbl 1311.49037 Din. Sist., Simferopol’ 3(31), No. 1-2, 115-133 (2013). MSC: 49J52 PDF BibTeX XML Cite \textit{Z. I. Khalilova}, Din. Sist., Simferopol' 3(31), No. 1--2, 115--133 (2013; Zbl 1311.49037) OpenURL
Wysocki, Hubert The Nabla difference model of the operational calculus. (English) Zbl 1291.44014 Demonstr. Math. 46, No. 2, 315-326 (2013). Reviewer: Deshna Loonker (Jodhpur) MSC: 44A40 44A55 39A13 39A70 PDF BibTeX XML Cite \textit{H. Wysocki}, Demonstr. Math. 46, No. 2, 315--326 (2013; Zbl 1291.44014) Full Text: DOI OpenURL
Hussain, Sabir Generalization of Ostrowski and Chebyshev type inequalities involving many functions. (English) Zbl 1277.26027 Aequationes Math. 85, No. 3, 409-419 (2013). Reviewer: Qingkai Kong (DeKalb) MSC: 26D10 PDF BibTeX XML Cite \textit{S. Hussain}, Aequationes Math. 85, No. 3, 409--419 (2013; Zbl 1277.26027) Full Text: DOI OpenURL
Dhara, Anulekha; Mehra, Aparna Second-order optimality conditions in minimax optimization problems. (English) Zbl 1279.90188 J. Optim. Theory Appl. 156, No. 3, 567-590 (2013). Reviewer: Armin Hoffmann (Ilmenau) MSC: 90C47 90C46 49K27 90C22 90C48 49K35 PDF BibTeX XML Cite \textit{A. Dhara} and \textit{A. Mehra}, J. Optim. Theory Appl. 156, No. 3, 567--590 (2013; Zbl 1279.90188) Full Text: DOI OpenURL
Perić, Tunjo; Babić, Zoran Financial structure optimization by using a goal programming approach. (English) Zbl 1357.90138 Croat. Oper. Res. Rev. (CRORR) 3, 150-162 (2012). MSC: 90C29 90C32 91G80 91G10 PDF BibTeX XML Cite \textit{T. Perić} and \textit{Z. Babić}, Croat. Oper. Res. Rev. (CRORR) 3, 150--162 (2012; Zbl 1357.90138) OpenURL
Mert, Raziye Oscillation of higher-order neutral dynamic equations on time scales. (English) Zbl 1294.34086 Adv. Difference Equ. 2012, Paper No. 68, 11 p. (2012). MSC: 34N05 34K11 PDF BibTeX XML Cite \textit{R. Mert}, Adv. Difference Equ. 2012, Paper No. 68, 11 p. (2012; Zbl 1294.34086) Full Text: DOI OpenURL
Pečarić, Josip; Ribičić Penava, Mihaela Sharp integral inequalities based on general three-point formula via a generalization of Montgomery identity. (English) Zbl 1274.26071 An. Univ. Craiova, Ser. Mat. Inf. 39, No. 2, 132-147 (2012). MSC: 26D15 PDF BibTeX XML Cite \textit{J. Pečarić} and \textit{M. Ribičić Penava}, An. Univ. Craiova, Ser. Mat. Inf. 39, No. 2, 132--147 (2012; Zbl 1274.26071) OpenURL
Guo, Peng; Li, Changpin; Chen, Guanrong On the fractional mean-value theorem. (English) Zbl 1258.26003 Int. J. Bifurcation Chaos Appl. Sci. Eng. 22, No. 5, Paper No. 1250104, 6 p. (2012). MSC: 26A33 PDF BibTeX XML Cite \textit{P. Guo} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 22, No. 5, Paper No. 1250104, 6 p. (2012; Zbl 1258.26003) Full Text: DOI OpenURL
Saberi Najafi, H.; Mirshafaei, S. R.; Arsanjani Toroqi, E. An approximate solution of the Mathieu fractional equation by using the generalized differential transform method (Gdtm). (English) Zbl 1246.34011 Appl. Appl. Math. 7, No. 1, 374-384 (2012). MSC: 34A08 34A12 34A25 PDF BibTeX XML Cite \textit{H. Saberi Najafi} et al., Appl. Appl. Math. 7, No. 1, 374--384 (2012; Zbl 1246.34011) Full Text: Link OpenURL
Yang, Shijun Absolutely (completely) monotonic functions and Jordan-type inequalities. (English) Zbl 1242.26039 Appl. Math. Lett. 25, No. 3, 571-574 (2012). MSC: 26D15 PDF BibTeX XML Cite \textit{S. Yang}, Appl. Math. Lett. 25, No. 3, 571--574 (2012; Zbl 1242.26039) Full Text: DOI OpenURL
Coleman, Rodney Calculus on normed vector spaces. (English) Zbl 1258.46001 Universitext. London: Springer (ISBN 978-1-4614-3893-9/pbk; 978-1-4614-3894-6/ebook). xi, 249 p. (2012). Reviewer: Stefan Cobzaş (Cluj-Napoca) MSC: 46-01 26E15 37C10 46G05 46G25 46T20 49K27 PDF BibTeX XML Cite \textit{R. Coleman}, Calculus on normed vector spaces. London: Springer (2012; Zbl 1258.46001) Full Text: DOI OpenURL
Argyros, Ioannis K.; Ren, Hongmin A relationship between the Lipschitz constants appearing in Taylor’s formula. (English) Zbl 1252.65095 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 18, No. 4, 345-351 (2011). Reviewer: Omar Lakkis (Falmer) MSC: 65J15 47J25 PDF BibTeX XML Cite \textit{I. K. Argyros} and \textit{H. Ren}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 18, No. 4, 345--351 (2011; Zbl 1252.65095) Full Text: DOI OpenURL
Karpuz, Başak; Özkan, Umut Mutlu Some generalizations for Opial’s inequality involving several functions and their derivatives of arbitrary order on arbitrary time scales. (English) Zbl 1208.26036 Math. Inequal. Appl. 14, No. 1, Article ID 07, 79-92 (2011). MSC: 26D15 39A13 PDF BibTeX XML Cite \textit{B. Karpuz} and \textit{U. M. Özkan}, Math. Inequal. Appl. 14, No. 1, Article ID 07, 79--92 (2011; Zbl 1208.26036) Full Text: DOI OpenURL
Purohit, S. D.; Raina, R. K. Generalized \(q\)-Taylor’s series and applications. (English) Zbl 1289.26014 Gen. Math. 18, No. 3, 19-28 (2010). MSC: 26A33 33D15 33D90 PDF BibTeX XML Cite \textit{S. D. Purohit} and \textit{R. K. Raina}, Gen. Math. 18, No. 3, 19--28 (2010; Zbl 1289.26014) OpenURL
Zhan, Zaidong; Wei, Wei Taylor’s formula and chain rules on time scales. (Chinese. English summary) Zbl 1240.26071 Math. Pract. Theory 40, No. 7, 199-204 (2010). MSC: 26E70 34N05 PDF BibTeX XML Cite \textit{Z. Zhan} and \textit{W. Wei}, Math. Pract. Theory 40, No. 7, 199--204 (2010; Zbl 1240.26071) OpenURL
Dragomir, S. S.; Thompson, H. B. A two points Taylor’s formula for the generalised Riemann integral. (English) Zbl 1223.41018 Demonstr. Math. 43, No. 4, 827-840 (2010). MSC: 41A55 26D15 26D10 PDF BibTeX XML Cite \textit{S. S. Dragomir} and \textit{H. B. Thompson}, Demonstr. Math. 43, No. 4, 827--840 (2010; Zbl 1223.41018) Full Text: DOI OpenURL
Ginchev, Ivan; La Torre, Davide; Rocca, Matteo \(C^{k,1}\) functions, characterization, Taylor’s formula and optimization: a survey. (English) Zbl 1228.49015 Real Anal. Exch. 35(2009-2010), No. 2, 311-342 (2010). Reviewer: Armin Hoffmann (Ilmenau) MSC: 49J52 26B05 47B39 26B10 26B25 49K10 49-02 26-02 PDF BibTeX XML Cite \textit{I. Ginchev} et al., Real Anal. Exch. 35, No. 2, 311--342 (2010; Zbl 1228.49015) Full Text: DOI OpenURL
Karpuz, Başak; Kaymakçalan, Billûr; Özkan, Umut Mutlu Some multi-dimensional Opial-type inequalities on time scales. (English) Zbl 1218.26035 J. Math. Inequal. 4, No. 2, 207-216 (2010). MSC: 26E70 26D10 26D15 PDF BibTeX XML Cite \textit{B. Karpuz} et al., J. Math. Inequal. 4, No. 2, 207--216 (2010; Zbl 1218.26035) Full Text: DOI Link OpenURL
Kurulay, Muhammet; Bayram, Mustafa Power series method for linear partial differential equations of fractional order. (English) Zbl 1213.35173 Commun. Math. Appl. 1, No. 2, 71-76 (2010). MSC: 35C10 35R11 35A35 PDF BibTeX XML Cite \textit{M. Kurulay} and \textit{M. Bayram}, Commun. Math. Appl. 1, No. 2, 71--76 (2010; Zbl 1213.35173) OpenURL
Wysocki, Hubert Taylor’s formula for the forward difference via operational calculus. (English) Zbl 1240.44004 Stud. Sci. Math. Hung. 47, No. 1, 46-53 (2010). Reviewer: Danuta Przeworska-Rolewicz (Warszawa) MSC: 44A40 44A55 PDF BibTeX XML Cite \textit{H. Wysocki}, Stud. Sci. Math. Hung. 47, No. 1, 46--53 (2010; Zbl 1240.44004) Full Text: DOI OpenURL
Navascués, M. A. Local approximation of functions with several variables. (English) Zbl 1195.41033 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 6, 1569-1584 (2010). MSC: 41A63 41A17 PDF BibTeX XML Cite \textit{M. A. Navascués}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73, No. 6, 1569--1584 (2010; Zbl 1195.41033) Full Text: DOI OpenURL
Kurulay, Muhammet; Bayram, Mustafa A novel power series method for solving second order partial differential equations. (English) Zbl 1213.65140 Eur. J. Pure Appl. Math. 2, No. 2, 268-277 (2009). MSC: 65N22 35J25 35C10 PDF BibTeX XML Cite \textit{M. Kurulay} and \textit{M. Bayram}, Eur. J. Pure Appl. Math. 2, No. 2, 268--277 (2009; Zbl 1213.65140) OpenURL
Liu, Yingfan; Zhao, Hongniu; Wang, Youguo Some summation limit problems. (English) Zbl 1200.00025 Far East J. Math. Educ. 3, No. 3, 287-293 (2009). MSC: 00A35 97I50 PDF BibTeX XML Cite \textit{Y. Liu} et al., Far East J. Math. Educ. 3, No. 3, 287--293 (2009; Zbl 1200.00025) Full Text: Link OpenURL
Xu, Yanyan; Chen, Guanggui; Lei, Wenhui Error estimates for approximate approximations with Gaussian kernels on multivariate compact intervals. (Chinese. English summary) Zbl 1212.41075 J. Sichuan Norm. Univ., Nat. Sci. 32, No. 5, 581-587 (2009). MSC: 41A46 41A55 PDF BibTeX XML Cite \textit{Y. Xu} et al., J. Sichuan Norm. Univ., Nat. Sci. 32, No. 5, 581--587 (2009; Zbl 1212.41075) OpenURL
Aglić Aljinović, A.; Pečarić, J.; Ribičić Penava, M. Sharp integral inequalities based on general two-point formulae via an extension of Montgomery’s identity. (English) Zbl 1188.26012 ANZIAM J. 51, No. 1, 67-101 (2009). MSC: 26D15 26D20 41A55 PDF BibTeX XML Cite \textit{A. Aglić Aljinović} et al., ANZIAM J. 51, No. 1, 67--101 (2009; Zbl 1188.26012) Full Text: DOI OpenURL
Navascués, M. A. Local variability of non-smooth functions. (English) Zbl 1181.26010 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 7, 2506-2518 (2009). Reviewer: Shingo Saito (Kyushu) MSC: 26A27 41A58 26A12 26C99 54C30 26A24 PDF BibTeX XML Cite \textit{M. A. Navascués}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 7, 2506--2518 (2009; Zbl 1181.26010) Full Text: DOI OpenURL
Anwar, Matloob; Pečarić, Josip E. On a generalization of the Hermite-Hadamard inequality. II. (English) Zbl 1163.26313 JIPAM, J. Inequal. Pure Appl. Math. 9, No. 4, Paper No. 105, 4 p. (2008). MSC: 26A51 26A46 26A48 PDF BibTeX XML Cite \textit{M. Anwar} and \textit{J. E. Pečarić}, JIPAM, J. Inequal. Pure Appl. Math. 9, No. 4, Paper No. 105, 4 p. (2008; Zbl 1163.26313) Full Text: EuDML EMIS OpenURL
Cerone, P. Estimation of divergence measures with Taylor-like results. (English) Zbl 1148.26303 Int. J. Math. Game Theory Algebra 17, No. 3, 165-181 (2008). MSC: 26D15 41A58 PDF BibTeX XML Cite \textit{P. Cerone}, Int. J. Math. Game Theory Algebra 17, No. 3, 165--181 (2008; Zbl 1148.26303) OpenURL
Adell, José A.; Sangüesa, C. Error bounds in divided difference expansions. A probabilistic perspective. (English) Zbl 1091.65023 J. Math. Anal. Appl. 318, No. 1, 352-364 (2006). Reviewer: Iulian Coroian (Baia Mare) MSC: 65D25 41A80 62E17 62H20 62J10 65C60 62G30 PDF BibTeX XML Cite \textit{J. A. Adell} and \textit{C. Sangüesa}, J. Math. Anal. Appl. 318, No. 1, 352--364 (2006; Zbl 1091.65023) Full Text: DOI OpenURL
Šoltés, Vincent; Šoltés, Michal Analysis of duration and convexity of coupon obligation. (English) Zbl 1212.91021 Creat. Math. Inform. 14, 83-86 (2005). MSC: 91B25 PDF BibTeX XML Cite \textit{V. Šoltés} and \textit{M. Šoltés}, Creat. Math. Inform. 14, 83--86 (2005; Zbl 1212.91021) OpenURL
Adell, José A.; Jodrá, Pedro Sharp estimates for the median of the \(\Gamma\)(\(n\)+1,1) distribution. (English) Zbl 1074.60011 Stat. Probab. Lett. 71, No. 2, 185-191 (2005). Reviewer: Neculai Curteanu (Iaşi) MSC: 60E05 60E15 62E17 PDF BibTeX XML Cite \textit{J. A. Adell} and \textit{P. Jodrá}, Stat. Probab. Lett. 71, No. 2, 185--191 (2005; Zbl 1074.60011) Full Text: DOI OpenURL
Crespi, Giovanni P.; La Torre, Davide; Rocca, Matteo Second order optimality conditions for nonsmooth multiobjective optimization problems. (English) Zbl 1138.90467 Eberhard, Andrew (ed.) et al., Generalized convexity, generalized monotonicity and applications. Proceedings of the 7th international symposium on generalized convexity and generalized monotonicity, Hanoi, Vietnam, August 27–31, 2002. New York, NY: Springer (ISBN 0-387-23638-4/hbk). Nonconvex Optimization and Its Applications 77, 213-228 (2005). MSC: 90C29 90C30 26A24 PDF BibTeX XML Cite \textit{G. P. Crespi} et al., Nonconvex Optim. Appl. 77, 213--228 (2005; Zbl 1138.90467) OpenURL
Manuel, M. Maria Susai; Xavier, G. Britto Antony; Thandapani, E. Generalized difference calculus of sequences of real and complex numbers. (English) Zbl 1136.39011 Int. J. Comput. Numer. Anal. Appl. 6, No. 4, 401-415 (2004). MSC: 39A70 39A12 26A24 30B50 PDF BibTeX XML Cite \textit{M. M. S. Manuel} et al., Int. J. Comput. Numer. Anal. Appl. 6, No. 4, 401--415 (2004; Zbl 1136.39011) OpenURL
Gerhardt, Claus Analysis. I. Transl. from the 2002 German edition. (English) Zbl 1104.26001 International Series in Analysis. Somerville: International Press (ISBN 1-57146-153-1/hbk). viii, 280 p. (2003). Reviewer: Ryszard Pawlak (Łódź) MSC: 26-01 00-01 PDF BibTeX XML Cite \textit{C. Gerhardt}, Analysis. I. Transl. from the 2002 German edition. Somerville: International Press (2004; Zbl 1104.26001) OpenURL
Higgins, Raegan J.; Peterson, Allan Cauchy functions and Taylor’s formula for time scales \(\mathbb T\). (English) Zbl 1065.39032 Aulbach, Bernd (ed.) et al., New progress in difference equations. Proceedings of the 6th international conference on difference equations, Augsburg, Germany July 30–August 3, 2001. Boca Raton, FL: CRC Press (ISBN 0-415-31675-8/hbk). 299-308 (2004). MSC: 39A12 26A24 34B27 PDF BibTeX XML Cite \textit{R. J. Higgins} and \textit{A. Peterson}, in: New progress in difference equations. Proceedings of the 6th international conference on difference equations, Augsburg, Germany July 30--August 3, 2001. Boca Raton, FL: CRC Press. 299--308 (2004; Zbl 1065.39032) OpenURL
Einbeck, Jochen A simple unifying formula for Taylor’s theorem and Cauchy’s mean value theorem. (English) Zbl 1065.26001 Int. J. Pure Appl. Math. 14, No. 1, 69-74 (2004). MSC: 26A06 PDF BibTeX XML Cite \textit{J. Einbeck}, Int. J. Pure Appl. Math. 14, No. 1, 69--74 (2004; Zbl 1065.26001) OpenURL
Sesma, Javier The Temme’s sum rule for confluent hypergeometric functions revisited. (English) Zbl 1045.33006 J. Comput. Appl. Math. 163, No. 2, 429-431 (2004). Reviewer: Per W. Karlsson (Lyngby) MSC: 33C15 33C20 PDF BibTeX XML Cite \textit{J. Sesma}, J. Comput. Appl. Math. 163, No. 2, 429--431 (2004; Zbl 1045.33006) Full Text: DOI OpenURL
Guo, Bai-Ni; Qi, Feng Some estimates of an integral in terms of the \(L^p\)-norm of the \((n+1)\)st derivative of its integrand. (English) Zbl 1026.26020 Anal. Math. 29, No. 1, 1-6 (2003). MSC: 26D20 PDF BibTeX XML Cite \textit{B.-N. Guo} and \textit{F. Qi}, Anal. Math. 29, No. 1, 1--6 (2003; Zbl 1026.26020) Full Text: DOI OpenURL
Johnson, Warren P. The curious history of Faà di Bruno’s formula. (English) Zbl 1024.01010 Am. Math. Mon. 109, No. 3, 217-234 (2002). Reviewer: W.H.Schmidt (Greifswald) MSC: 01A55 26-03 26A24 05A18 PDF BibTeX XML Cite \textit{W. P. Johnson}, Am. Math. Mon. 109, No. 3, 217--234 (2002; Zbl 1024.01010) Full Text: DOI OpenURL
Barnett, N. S.; Cerone, P.; Dragomir, S. S.; Sofo, A. Approximating Csiszár \(f\)-divergence by the use of Taylor’s formula with integral remainder. (English) Zbl 1011.26014 Math. Inequal. Appl. 5, No. 3, 417-434 (2002). Reviewer: J.E.Pečarić (Zagreb) MSC: 26D15 94A15 PDF BibTeX XML Cite \textit{N. S. Barnett} et al., Math. Inequal. Appl. 5, No. 3, 417--434 (2002; Zbl 1011.26014) Full Text: DOI OpenURL
Moskowitz, Martin A. A course in complex analysis in one variable. (English) Zbl 0994.30001 Singapore: World Scientific. ix, 149 p. (2002). Reviewer: Eleonora Storozhenko (Odessa) MSC: 30-01 PDF BibTeX XML Cite \textit{M. A. Moskowitz}, A course in complex analysis in one variable. Singapore: World Scientific (2002; Zbl 0994.30001) OpenURL
Müller, V. On the Taylor functional calculus. (English) Zbl 1005.47017 Stud. Math. 150, No. 1, 79-97 (2002). Reviewer: Mikhail Yu.Kokurin (Yoshkar-Ola) MSC: 47A60 47A13 PDF BibTeX XML Cite \textit{V. Müller}, Stud. Math. 150, No. 1, 79--97 (2002; Zbl 1005.47017) Full Text: DOI OpenURL
Chalice, Donald R. How to differentiate and integrate sequences. (English) Zbl 1022.39017 Am. Math. Mon. 108, No. 10, 911-921 (2001). MSC: 39A12 26A24 34A30 PDF BibTeX XML Cite \textit{D. R. Chalice}, Am. Math. Mon. 108, No. 10, 911--921 (2001; Zbl 1022.39017) Full Text: DOI OpenURL
Sandberg, Sebastian Functional calculus and Bishop’s property \((\beta)\) for several commuting operators. (English) Zbl 1004.47007 Göteborg: Chalmers University of Technology and Göteborg University, Department of Mathematics. not consec. pag. (2001). MSC: 47A60 47A13 47A11 46J15 32A26 32A35 PDF BibTeX XML Cite \textit{S. Sandberg}, Functional calculus and Bishop's property \((\beta)\) for several commuting operators. Göteborg: Chalmers University of Technology and Göteborg University, Department of Mathematics (2001; Zbl 1004.47007) OpenURL
Gyllenberg, Mats; Yan, Ping On a conjecture by Yang. (English) Zbl 1028.26014 J. Math. Anal. Appl. 264, No. 2, 687-690 (2001). Reviewer: Bohumír Opic (Praha) MSC: 26D15 41A58 PDF BibTeX XML Cite \textit{M. Gyllenberg} and \textit{P. Yan}, J. Math. Anal. Appl. 264, No. 2, 687--690 (2001; Zbl 1028.26014) Full Text: DOI OpenURL
Dragomir, S. S.; Sofo, A.; Cerone, P. A perturbation of Taylor’s formula with integral remainder. (English) Zbl 1031.26018 Tamsui Oxf. J. Math. Sci. 17, No. 1, 1-21 (2001). Reviewer: Patricia J.Y.Wong (Singapore) MSC: 26D15 65D32 41A55 PDF BibTeX XML Cite \textit{S. S. Dragomir} et al., Tamsui Oxf. J. Math. Sci. 17, No. 1, 1--21 (2001; Zbl 1031.26018) OpenURL
Anastassiou, G. A.; Dragomir, S. S. On some estimates of the remainder in Taylor’s formula. (English) Zbl 1006.26017 J. Math. Anal. Appl. 263, No. 1, 246-263 (2001). Reviewer: József Sándor (Cluj-Napoca) MSC: 26D15 41A58 PDF BibTeX XML Cite \textit{G. A. Anastassiou} and \textit{S. S. Dragomir}, J. Math. Anal. Appl. 263, No. 1, 246--263 (2001; Zbl 1006.26017) Full Text: DOI OpenURL
Qi, Feng Inequalities for a weighted multiple integral. (English) Zbl 0966.26013 J. Math. Anal. Appl. 253, No. 2, 381-388 (2001). MSC: 26D15 26B15 PDF BibTeX XML Cite \textit{F. Qi}, J. Math. Anal. Appl. 253, No. 2, 381--388 (2001; Zbl 0966.26013) Full Text: DOI Link OpenURL
La Torre, Davide; Rocca, Matteo \(C^{k,1}\) functions and Riemann derivatives. (English) Zbl 1016.26007 Real Anal. Exch. 25(1999-2000), No. 2, 743-752 (2000). MSC: 26A24 26A16 PDF BibTeX XML Cite \textit{D. La Torre} and \textit{M. Rocca}, Real Anal. Exch. 25, No. 2, 743--752 (2000; Zbl 1016.26007) OpenURL
Romik, Dan Stirling’s approximation for \(n!\): The ultimate short proof? (English) Zbl 0983.11078 Am. Math. Mon. 107, No. 6, 556-557 (2000). Reviewer: H.J.Godwin (Egham) MSC: 11Y60 41A58 65B15 PDF BibTeX XML Cite \textit{D. Romik}, Am. Math. Mon. 107, No. 6, 556--557 (2000; Zbl 0983.11078) Full Text: DOI OpenURL
Liu, Taowen The estimate of the remainder in the generalized Taylor’s formula on delta operator with order \(n\). (Chinese. English summary) Zbl 0982.44004 J. Hunan Univ., Nat. Sci. 27, No. 6, 12-16 (2000). Reviewer: Kun Soo Chang (Seoul) MSC: 44A40 PDF BibTeX XML Cite \textit{T. Liu}, J. Hunan Univ., Nat. Sci. 27, No. 6, 12--16 (2000; Zbl 0982.44004) OpenURL
Adell, José A.; Lekuona, Alberto Taylor’s formula and preservation of generalized convexity for positive linear operators. (English) Zbl 0966.60014 J. Appl. Probab. 37, No. 3, 765-777 (2000). MSC: 60E15 41A36 PDF BibTeX XML Cite \textit{J. A. Adell} and \textit{A. Lekuona}, J. Appl. Probab. 37, No. 3, 765--777 (2000; Zbl 0966.60014) Full Text: DOI OpenURL
Hikida, Masato A note on Taylor’s formula. II. (English) Zbl 0972.46028 Math. Jap. 52, No. 1, 89-94 (2000). Reviewer: Hans-Andreas Braunß (Potsdam) MSC: 46G05 46A19 58C20 PDF BibTeX XML Cite \textit{M. Hikida}, Math. Japon. 52, No. 1, 89--94 (2000; Zbl 0972.46028) OpenURL
Gu, Guoqing; Yu, Kinwah A theoretical research into effective viscosity of colloidal dispersions. (English) Zbl 0986.76093 Appl. Math. Mech., Engl. Ed. 21, No. 3, 275-282 (2000). MSC: 76T20 PDF BibTeX XML Cite \textit{G. Gu} and \textit{K. Yu}, Appl. Math. Mech., Engl. Ed. 21, No. 3, 275--282 (2000; Zbl 0986.76093) Full Text: DOI OpenURL
Agarwal, Ravi P. Difference equations and inequalities: theory, methods, and applications. 2nd, revised and expanded ed. (English) Zbl 0952.39001 Pure and Applied Mathematics, Marcel Dekker. 228. New York, NY: Marcel Dekker. xiii, 971 p. (2000). Reviewer: B.G.Pachpatte (Aurangabad) MSC: 39A10 39-01 26D15 93C65 PDF BibTeX XML Cite \textit{R. P. Agarwal}, Difference equations and inequalities: theory, methods, and applications. 2nd, revised and expanded ed. New York, NY: Marcel Dekker (2000; Zbl 0952.39001) OpenURL
Agarwal, Ravi P.; Bohner, Martin Basic calculus on time scales and some of its applications. (English) Zbl 0927.39003 Result. Math. 35, No. 1-2, 3-22 (1999). Reviewer: P.Talpalaru (Iaşi) MSC: 39A10 39A11 26A24 28A25 PDF BibTeX XML Cite \textit{R. P. Agarwal} and \textit{M. Bohner}, Result. Math. 35, No. 1--2, 3--22 (1999; Zbl 0927.39003) Full Text: DOI OpenURL
Trujillo, J. J.; Rivero, M.; Bonilla, B. On a Riemann-Liouville generalized Taylor’s formula. (English) Zbl 0931.26004 J. Math. Anal. Appl. 231, No. 1, 255-265 (1999). Reviewer: Stefan G.Samko (Faro) MSC: 26A33 41A58 PDF BibTeX XML Cite \textit{J. J. Trujillo} et al., J. Math. Anal. Appl. 231, No. 1, 255--265 (1999; Zbl 0931.26004) Full Text: DOI OpenURL
Cubeddu, C.; Targhetta, M. L. A quadratic approximation for jackknife estimators of the variance of sample mean functions. (English) Zbl 0912.62036 Stat. Pap. 40, No. 1, 1-12 (1999). MSC: 62F12 PDF BibTeX XML Cite \textit{C. Cubeddu} and \textit{M. L. Targhetta}, Stat. Pap. 40, No. 1, 1--12 (1999; Zbl 0912.62036) Full Text: DOI OpenURL
Yang, Shih-An; Luh, Pan-An A numerical simulation of hydrodynamic forces of ground-effect problem using Lagrange’s equation of motion. (English) Zbl 0915.76069 Int. J. Numer. Methods Fluids 26, No. 6, 725-747 (1998). MSC: 76M25 76B10 PDF BibTeX XML Cite \textit{S.-A. Yang} and \textit{P.-A. Luh}, Int. J. Numer. Methods Fluids 26, No. 6, 725--747 (1998; Zbl 0915.76069) Full Text: DOI OpenURL
Brodersen, Hans Sufficiency of jets with respect to \(\mathcal L\)-equivalence. (English) Zbl 0896.58009 Fukuda, T. (ed.) et al., Real analytic and algebraic singularities. Harlow: Longman. Pitman Res. Notes Math. Ser. 381, 78-83 (1998). Reviewer: A.G.Aleksandrov (Moskva) MSC: 58C25 58K99 58A20 32S15 PDF BibTeX XML Cite \textit{H. Brodersen}, in: Real analytic and algebraic singularities. Harlow: Longman. 78--83 (1998; Zbl 0896.58009) OpenURL
Langevin, Michel Quelques remarques sur les familles canoniques de polynômes générateurs pour l’exponentielle. (Remarks about the canonical families of polynomials that generate the exponential.). (French) Zbl 0865.39006 Ann. Inst. Fourier 47, No. 1, 1-48 (1997). MSC: 39B52 13F25 11J99 13F20 PDF BibTeX XML Cite \textit{M. Langevin}, Ann. Inst. Fourier 47, No. 1, 1--48 (1997; Zbl 0865.39006) Full Text: DOI Numdam EuDML OpenURL
Dinh The Luc Taylor’s formula for \(C^{k,1}\) functions. (English) Zbl 0852.49012 SIAM J. Optim. 5, No. 3, 659-669 (1995). Reviewer: M.Studniarski (Łódź) MSC: 49J52 26B25 26B10 PDF BibTeX XML Cite \textit{Dinh The Luc}, SIAM J. Optim. 5, No. 3, 659--669 (1995; Zbl 0852.49012) Full Text: DOI OpenURL