Matsuda, Yoshifumi; Matsumoto, Shigenori Invariable generation of certain groups of piecewise linear homeomorphisms of the interval. (English) Zbl 07301312 Proc. Am. Math. Soc. 149, No. 1, 1-11 (2021). MSC: 20F65 20F05 PDF BibTeX XML Cite \textit{Y. Matsuda} and \textit{S. Matsumoto}, Proc. Am. Math. Soc. 149, No. 1, 1--11 (2021; Zbl 07301312) Full Text: DOI
Aiello, Valeriano; Jones, Vaughan F. R. On spectral measures for certain unitary representations of R. Thompson’s group F. (English) Zbl 1451.81384 J. Funct. Anal. 280, No. 1, Article ID 108777, 27 p. (2021). MSC: 81V27 82B20 20C35 47B15 PDF BibTeX XML Cite \textit{V. Aiello} and \textit{V. F. R. Jones}, J. Funct. Anal. 280, No. 1, Article ID 108777, 27 p. (2021; Zbl 1451.81384) Full Text: DOI
Ammar, par Hajer Hmili Ben; Liousse, Isabelle Number of conjugacy classes of torsion elements in Brown-Thompson groups. (Nombre de classes de conjugaison d’éléments d’ordre fini dans les groupes de Brown-Thompson.) (English) Zbl 07290298 Bull. Soc. Math. Fr. 148, No. 3, 399-409 (2020). MSC: 20E45 37E10 37E15 PDF BibTeX XML Cite \textit{p. H. H. B. Ammar} and \textit{I. Liousse}, Bull. Soc. Math. Fr. 148, No. 3, 399--409 (2020; Zbl 07290298) Full Text: DOI
Donoven, Casey; Olukoya, Feyishayo Conjugate subgroups and overgroups of \(V_n\). (English) Zbl 07261082 Int. J. Algebra Comput. 30, No. 6, 1129-1160 (2020). MSC: 20E07 20F10 20E08 PDF BibTeX XML Cite \textit{C. Donoven} and \textit{F. Olukoya}, Int. J. Algebra Comput. 30, No. 6, 1129--1160 (2020; Zbl 07261082) Full Text: DOI
Abedei, Mahdi; Iranmanesh, Ali; Shirjian, Farrokh A variation of Thompson’s conjecture for the symmetric groups. (English) Zbl 07250686 Czech. Math. J. 70, No. 3, 743-755 (2020). MSC: 20D08 20D60 PDF BibTeX XML Cite \textit{M. Abedei} et al., Czech. Math. J. 70, No. 3, 743--755 (2020; Zbl 07250686) Full Text: DOI
Birget, J. C. New embeddings between the Higman-Thompson groups. (English) Zbl 07243469 Commun. Algebra 48, No. 8, 3429-3438 (2020). MSC: 20E07 68R15 05E15 PDF BibTeX XML Cite \textit{J. C. Birget}, Commun. Algebra 48, No. 8, 3429--3438 (2020; Zbl 07243469) Full Text: DOI
Kim, Jin Hong On the actions of Higman-Thompson groups by homeomorphisms. (English) Zbl 07233000 Bull. Korean Math. Soc. 57, No. 2, 449-457 (2020). MSC: 20F65 20F28 57S25 PDF BibTeX XML Cite \textit{J. H. Kim}, Bull. Korean Math. Soc. 57, No. 2, 449--457 (2020; Zbl 07233000) Full Text: DOI
Koberda, Thomas; Lodha, Yash 2-chains and square roots of Thompson’s group \(F\). (English) Zbl 1448.57029 Ergodic Theory Dyn. Syst. 40, No. 9, 2515-2532 (2020). Reviewer: Valeriano Aiello (Genève) MSC: 57M60 37E05 57Q99 57S25 20F60 20F14 PDF BibTeX XML Cite \textit{T. Koberda} and \textit{Y. Lodha}, Ergodic Theory Dyn. Syst. 40, No. 9, 2515--2532 (2020; Zbl 1448.57029) Full Text: DOI
Lawson, Mark V.; Vdovina, Alina Higher dimensional generalizations of the Thompson groups. (English) Zbl 07203004 Adv. Math. 369, Article ID 107191, 55 p. (2020). MSC: 20 22 PDF BibTeX XML Cite \textit{M. V. Lawson} and \textit{A. Vdovina}, Adv. Math. 369, Article ID 107191, 55 p. (2020; Zbl 07203004) Full Text: DOI
Jones, Gareth A. (ed.); Ponomarenko, Ilia (ed.); Širáň, Jozef (ed.) Isomorphisms, symmetry and computations in algebraic graph theory. Selected papers based on the presentations at the workshop on algebraic graph theory, Pilsen, Czech Republic, October 3–7, 2016. (English) Zbl 1443.05003 Springer Proceedings in Mathematics & Statistics 305. Cham: Springer (ISBN 978-3-030-32807-8/hbk; 978-3-030-32808-5/ebook). ix, 234 p. (2020). MSC: 05-06 05C30 05E30 00B25 PDF BibTeX XML Cite \textit{G. A. Jones} (ed.) et al., Isomorphisms, symmetry and computations in algebraic graph theory. Selected papers based on the presentations at the workshop on algebraic graph theory, Pilsen, Czech Republic, October 3--7, 2016. Cham: Springer (2020; Zbl 1443.05003) Full Text: DOI
Alavi, Seyed Hassan; Daneshkhah, Ashraf; Parvizi, Mosaed Hosein Finite groups of the same type as Suzuki groups. (English) Zbl 1443.20013 Int. J. Group Theory 8, No. 1, 35-42 (2019). MSC: 20D06 20D60 PDF BibTeX XML Cite \textit{S. H. Alavi} et al., Int. J. Group Theory 8, No. 1, 35--42 (2019; Zbl 1443.20013) Full Text: DOI
Genevois, Anthony Embeddings into Thompson’s groups from quasi-median geometry. (English) Zbl 07154983 Groups Geom. Dyn. 13, No. 4, 1457-1510 (2019). MSC: 20F65 05C25 PDF BibTeX XML Cite \textit{A. Genevois}, Groups Geom. Dyn. 13, No. 4, 1457--1510 (2019; Zbl 07154983) Full Text: DOI arXiv
Kim, Sang-Hyun; Koberda, Thomas; Lodha, Yash Chain groups of homeomorphisms of the interval. (English. French summary) Zbl 07144472 Ann. Sci. Éc. Norm. Supér. (4) 52, No. 4, 797-820 (2019). MSC: 20F60 57M60 20F65 PDF BibTeX XML Cite \textit{S.-H. Kim} et al., Ann. Sci. Éc. Norm. Supér. (4) 52, No. 4, 797--820 (2019; Zbl 07144472) Full Text: DOI arXiv
Witzel, Stefan Classifying spaces from Ore categories with Garside families. (English) Zbl 1444.57016 Algebr. Geom. Topol. 19, No. 3, 1477-1524 (2019). Reviewer: Loreno Heer (Zürich) MSC: 57M07 20F36 20F65 PDF BibTeX XML Cite \textit{S. Witzel}, Algebr. Geom. Topol. 19, No. 3, 1477--1524 (2019; Zbl 1444.57016) Full Text: DOI
Aiello, Valeriano; Conti, Roberto The Jones polynomial and functions of positive type on the oriented Jones-Thompson groups \(\vec{F}\) and \(\vec{T} \). (English) Zbl 1428.43005 Complex Anal. Oper. Theory 13, No. 7, 3127-3149 (2019). Reviewer: Bruno Zimmermann (Trieste) MSC: 43A35 57K14 05C31 PDF BibTeX XML Cite \textit{V. Aiello} and \textit{R. Conti}, Complex Anal. Oper. Theory 13, No. 7, 3127--3149 (2019; Zbl 1428.43005) Full Text: DOI
Tatch Moore, Justin Nonexistence of idempotent means on free binary systems. (English) Zbl 1427.43001 Can. Math. Bull. 62, No. 3, 577-581 (2019). Reviewer: Amir Sahami (Tehran) MSC: 43A07 05C55 PDF BibTeX XML Cite \textit{J. Tatch Moore}, Can. Math. Bull. 62, No. 3, 577--581 (2019; Zbl 1427.43001) Full Text: DOI
Gorshkov, I. B. On Thompson’s conjecture for finite simple groups. (English) Zbl 1444.20007 Commun. Algebra 47, No. 12, 5192-5206 (2019). Reviewer: Mohammad-Reza Darafsheh (Tehran) MSC: 20D05 20D06 20E45 PDF BibTeX XML Cite \textit{I. B. Gorshkov}, Commun. Algebra 47, No. 12, 5192--5206 (2019; Zbl 1444.20007) Full Text: DOI
Jones, Vaughan F. R. On the construction of knots and links from Thompson’s groups. (English) Zbl 1423.57013 Adams, Colin C. (ed.) et al., Knots, low-dimensional topology and applications. Knots in Hellas, International Olympic Academy, Greece, July 2016. Papers of the international conference, Ancient Olympia, Greece, July 17–23, 2016. Cham: Springer. Springer Proc. Math. Stat. 284, 43-66 (2019). MSC: 57M25 57-02 57M27 20F36 20F38 22D10 PDF BibTeX XML Cite \textit{V. F. R. Jones}, Springer Proc. Math. Stat. 284, 43--66 (2019; Zbl 1423.57013) Full Text: DOI arXiv
Gonçalves, Daciberg Lima; Sankaran, Parameswaran Twisted conjugacy in PL-homeomorphism groups of the circle. (English) Zbl 1443.20056 Geom. Dedicata 202, 311-320 (2019). Reviewer: Marek Golasiński (Olsztyn) MSC: 20E45 20E36 20F65 PDF BibTeX XML Cite \textit{D. L. Gonçalves} and \textit{P. Sankaran}, Geom. Dedicata 202, 311--320 (2019; Zbl 1443.20056) Full Text: DOI
Dehornoy, Patrick; Tesson, Emilie Garside combinatorics for Thompson’s monoid \(F^+\) and a hybrid with the braid monoid \(B_{\infty }^{+}\). (English) Zbl 1422.05106 Algebr. Comb. 2, No. 4, 683-709 (2019). Reviewer: Laura Colmenarejo Hernando (Leipzig) MSC: 05E15 20M05 20E22 20F36 68Q42 PDF BibTeX XML Cite \textit{P. Dehornoy} and \textit{E. Tesson}, Algebr. Comb. 2, No. 4, 683--709 (2019; Zbl 1422.05106) Full Text: DOI
Donnelly, John The group ring \(\mathbb{K}F\) of Richard Thompson’s group \(F\) has no minimal non-zero ideals. (English) Zbl 07088755 Arch. Math., Brno 55, No. 1, 23-30 (2019). Reviewer: Andrzej Szczepański (Gdańsk) MSC: 20N99 PDF BibTeX XML Cite \textit{J. Donnelly}, Arch. Math., Brno 55, No. 1, 23--30 (2019; Zbl 07088755) Full Text: DOI
Barata, Miguel; Pinto, Paulo R. Representations of Thompson groups from Cuntz algebras. (English) Zbl 1433.46031 J. Math. Anal. Appl. 478, No. 1, 212-228 (2019). MSC: 46K10 46L05 20C99 PDF BibTeX XML Cite \textit{M. Barata} and \textit{P. R. Pinto}, J. Math. Anal. Appl. 478, No. 1, 212--228 (2019; Zbl 1433.46031) Full Text: DOI
Connes, Alain Iteration of the exterior power on representation rings. (English) Zbl 07068129 J. Geom. Phys. 141, 1-10 (2019). MSC: 53 PDF BibTeX XML Cite \textit{A. Connes}, J. Geom. Phys. 141, 1--10 (2019; Zbl 07068129) Full Text: DOI
Hurtado, Sebastian; Militon, Emmanuel Distortion and Tits alternative in smooth mapping class groups. (English) Zbl 1429.57036 Trans. Am. Math. Soc. 371, No. 12, 8587-8623 (2019). Reviewer: Loreno Heer (Zürich) MSC: 57S25 37C85 57K20 PDF BibTeX XML Cite \textit{S. Hurtado} and \textit{E. Militon}, Trans. Am. Math. Soc. 371, No. 12, 8587--8623 (2019; Zbl 1429.57036) Full Text: DOI
Szymik, Markus; Wahl, Nathalie The homology of the Higman-Thompson groups. (English) Zbl 1420.19004 Invent. Math. 216, No. 2, 445-518 (2019). Reviewer: Daniel Juan Pineda (Michoacan) MSC: 19D23 20J05 PDF BibTeX XML Cite \textit{M. Szymik} and \textit{N. Wahl}, Invent. Math. 216, No. 2, 445--518 (2019; Zbl 1420.19004) Full Text: DOI
Elder, Murray; Rogers, Cameron Sub-dominant cogrowth behavior and the viability of deciding amenability numerically. (English) Zbl 07052491 Exp. Math. 28, No. 1, 67-80 (2019). MSC: 20F69 20F65 05A15 60J20 PDF BibTeX XML Cite \textit{M. Elder} and \textit{C. Rogers}, Exp. Math. 28, No. 1, 67--80 (2019; Zbl 07052491) Full Text: DOI
Price, Andrew Elvey; Guttmann, Anthony J. Numerical studies of Thompson’s group \(F\) and related groups. (English) Zbl 07052089 Int. J. Algebra Comput. 29, No. 2, 179-243 (2019). MSC: 20Fxx 05Axx PDF BibTeX XML Cite \textit{A. E. Price} and \textit{A. J. Guttmann}, Int. J. Algebra Comput. 29, No. 2, 179--243 (2019; Zbl 07052089) Full Text: DOI arXiv
Gorshkov, I. B. Thompson’s conjecture for alternating groups. (English) Zbl 1417.20002 Commun. Algebra 47, No. 1, 30-36 (2019). MSC: 20D06 20D60 20E45 PDF BibTeX XML Cite \textit{I. B. Gorshkov}, Commun. Algebra 47, No. 1, 30--36 (2019; Zbl 1417.20002) Full Text: DOI
Bleak, Collin; Brin, Matthew G.; Kassabov, Martin; Moore, Justin Tatch; Zaremsky, Matthew C. B. Groups of fast homeomorphisms of the interval and the ping-pong argument. (English) Zbl 07047429 J. Comb. Algebra 3, No. 1, 1-40 (2019). MSC: 20B07 20B10 20E07 20E34 20F65 PDF BibTeX XML Cite \textit{C. Bleak} et al., J. Comb. Algebra 3, No. 1, 1--40 (2019; Zbl 07047429) Full Text: DOI arXiv
Aiello, Valeriano; Conti, Roberto Graph polynomials and link invariants as positive type functions on Thompson’s group \(F\). (English) Zbl 1412.43007 J. Knot Theory Ramifications 28, No. 2, Article ID 1950006, 17 p. (2019). Reviewer: Ioan Pop (Iaşi) MSC: 43A35 57M27 05C31 PDF BibTeX XML Cite \textit{V. Aiello} and \textit{R. Conti}, J. Knot Theory Ramifications 28, No. 2, Article ID 1950006, 17 p. (2019; Zbl 1412.43007) Full Text: DOI arXiv
Le Boudec, Adrien; Wesolek, Phillip Commensurated subgroups in tree almost automorphism groups. (English) Zbl 07039915 Groups Geom. Dyn. 13, No. 1, 1-30 (2019). MSC: 20E08 20E32 22D05 PDF BibTeX XML Cite \textit{A. Le Boudec} and \textit{P. Wesolek}, Groups Geom. Dyn. 13, No. 1, 1--30 (2019; Zbl 07039915) Full Text: DOI arXiv
Genevois, Anthony Hyperbolic and cubical rigidities of Thompson’s group \(V\). (English) Zbl 1450.20009 J. Group Theory 22, No. 2, 313-345 (2019). Reviewer: Dimitrios Varsos (Athína) MSC: 20F65 20E32 20F67 57M07 PDF BibTeX XML Cite \textit{A. Genevois}, J. Group Theory 22, No. 2, 313--345 (2019; Zbl 1450.20009) Full Text: DOI arXiv
Hartman, Yair; Juschenko, Kate; Tamuz, Omer; Vahidi Ferdowsi, Pooya Thompson’s group \(F\) is not strongly amenable. (English) Zbl 1421.22006 Ergodic Theory Dyn. Syst. 39, No. 4, 925-929 (2019). Reviewer: Ioan Bucataru (Iaşi) MSC: 22D40 PDF BibTeX XML Cite \textit{Y. Hartman} et al., Ergodic Theory Dyn. Syst. 39, No. 4, 925--929 (2019; Zbl 1421.22006) Full Text: DOI arXiv
Conner, Gregory R.; Corson, Samuel M. A note on automatic continuity. (English) Zbl 06998156 Proc. Am. Math. Soc. 147, No. 3, 1255-1268 (2019). MSC: 20E06 03E75 54H11 PDF BibTeX XML Cite \textit{G. R. Conner} and \textit{S. M. Corson}, Proc. Am. Math. Soc. 147, No. 3, 1255--1268 (2019; Zbl 06998156) Full Text: DOI arXiv
Dudko, Artem On irreducibility of Koopman representations corresponding to measure contracting actions. (English) Zbl 07060397 Groups Geom. Dyn. 12, No. 4, 1417-1427 (2018). MSC: 20C15 37A15 PDF BibTeX XML Cite \textit{A. Dudko}, Groups Geom. Dyn. 12, No. 4, 1417--1427 (2018; Zbl 07060397) Full Text: DOI
Rolland, Jeffrey J. A geometric reverse to the plus construction and some examples of pseudocollars on high-dimensional manifolds. (English) Zbl 1448.57035 Mich. Math. J. 67, No. 3, 485-509 (2018). Reviewer: Jonathan Hodgson (Swarthmore) MSC: 57R80 57R65 57R19 57S30 57M07 PDF BibTeX XML Cite \textit{J. J. Rolland}, Mich. Math. J. 67, No. 3, 485--509 (2018; Zbl 1448.57035) Full Text: DOI Euclid
Nikkel, Jordan; Ren, Yunxiang On Jones’ subgroup of R. Thompson’s group \(T\). (English) Zbl 06950328 Int. J. Algebra Comput. 28, No. 5, 877-903 (2018). MSC: 20F65 PDF BibTeX XML Cite \textit{J. Nikkel} and \textit{Y. Ren}, Int. J. Algebra Comput. 28, No. 5, 877--903 (2018; Zbl 06950328) Full Text: DOI arXiv
Juschenko, Kate; Zheng, Tianyi Infinitely supported Liouville measures of Schreier graphs. (English) Zbl 1409.60020 Groups Geom. Dyn. 12, No. 3, 911-918 (2018). MSC: 60B15 20F65 43A07 PDF BibTeX XML Cite \textit{K. Juschenko} and \textit{T. Zheng}, Groups Geom. Dyn. 12, No. 3, 911--918 (2018; Zbl 1409.60020) Full Text: DOI arXiv
Asboei, Alireza K.; Amiri, Seyed S. S. The small Ree group \(^2G_2(3^{2n+1})\) and related graph. (English) Zbl 06940869 Commentat. Math. Univ. Carol. 59, No. 3, 271-276 (2018). MSC: 20D08 05C25 PDF BibTeX XML Cite \textit{A. K. Asboei} and \textit{S. S. S. Amiri}, Commentat. Math. Univ. Carol. 59, No. 3, 271--276 (2018; Zbl 06940869) Full Text: DOI
Aiello, Valeriano; Conti, Roberto; Jones, Vaughan F. R. The Homflypt polynomial and the oriented Thompson group. (English) Zbl 1397.57022 Quantum Topol. 9, No. 3, 461-472 (2018). MSC: 57M27 20F65 43A35 PDF BibTeX XML Cite \textit{V. Aiello} et al., Quantum Topol. 9, No. 3, 461--472 (2018; Zbl 1397.57022) Full Text: DOI arXiv
Kato, Motoko Embeddings of right-angled Artin groups into higher-dimensional Thompson groups. (English) Zbl 1398.20053 J. Algebra Appl. 17, No. 8, Article ID 1850159, 5 p. (2018). MSC: 20F65 20F36 05C25 PDF BibTeX XML Cite \textit{M. Kato}, J. Algebra Appl. 17, No. 8, Article ID 1850159, 5 p. (2018; Zbl 1398.20053) Full Text: DOI arXiv
Martínez-Pérez, Conchita; Matucci, Francesco; Nucinkis, Brita Presentations of generalisations of Thompson’s group V. (English) Zbl 06909765 Pac. J. Math. 296, No. 2, 371-403 (2018). MSC: 20J05 PDF BibTeX XML Cite \textit{C. Martínez-Pérez} et al., Pac. J. Math. 296, No. 2, 371--403 (2018; Zbl 06909765) Full Text: DOI
Funar, Louis; Neretin, Yurii Diffeomorphism groups of tame Cantor sets and Thompson-like groups. (English) Zbl 06908315 Compos. Math. 154, No. 5, 1066-1110 (2018). MSC: 20F36 37C85 57S05 57M50 54H15 PDF BibTeX XML Cite \textit{L. Funar} and \textit{Y. Neretin}, Compos. Math. 154, No. 5, 1066--1110 (2018; Zbl 06908315) Full Text: DOI
Ishida, Tomohiko Orderings of Witzel-Zaremsky-Thompson groups. (English) Zbl 1392.20034 Commun. Algebra 46, No. 9, 3806-3809 (2018). MSC: 20F60 20F36 20F65 06F15 PDF BibTeX XML Cite \textit{T. Ishida}, Commun. Algebra 46, No. 9, 3806--3809 (2018; Zbl 1392.20034) Full Text: DOI arXiv
Xu, Xingzhong A note on Oliver’s \(p\)-group conjecture. (English) Zbl 1436.20025 J. Algebra 507, 421-427 (2018). Reviewer: Igor Subbotin (Los Angeles) MSC: 20D15 20C20 PDF BibTeX XML Cite \textit{X. Xu}, J. Algebra 507, 421--427 (2018; Zbl 1436.20025) Full Text: DOI arXiv
Audino, Samuel; Aydel, Delaney R.; Farley, Daniel S. Quasiautomorphism groups of type \(F_\infty\). (English) Zbl 06867660 Algebr. Geom. Topol. 18, No. 4, 2339-2369 (2018). MSC: 20F65 57M07 PDF BibTeX XML Cite \textit{S. Audino} et al., Algebr. Geom. Topol. 18, No. 4, 2339--2369 (2018; Zbl 06867660) Full Text: DOI
Witzel, Stefan; Zaremsky, Matthew C. B. Thompson groups for systems of groups, and their finiteness properties. (English) Zbl 06865187 Groups Geom. Dyn. 12, No. 1, 289-358 (2018). MSC: 20F65 57M07 20G30 PDF BibTeX XML Cite \textit{S. Witzel} and \textit{M. C. B. Zaremsky}, Groups Geom. Dyn. 12, No. 1, 289--358 (2018; Zbl 06865187) Full Text: DOI arXiv
Zaremsky, Matthew C. B. On normal subgroups of the braided Thompson groups. (English) Zbl 06865180 Groups Geom. Dyn. 12, No. 1, 65-92 (2018). MSC: 20F65 20F36 20E07 PDF BibTeX XML Cite \textit{M. C. B. Zaremsky}, Groups Geom. Dyn. 12, No. 1, 65--92 (2018; Zbl 06865180) Full Text: DOI arXiv
Asboei, Alireza Khalili; Darafsheh, Mohammad Reza; Mohammadyari, Reza The influence of order and conjugacy class length on the structure of finite groups. (English) Zbl 1425.20009 Hokkaido Math. J. 47, No. 1, 25-32 (2018). Reviewer: Gernot Stroth (Halle) MSC: 20D06 20D60 PDF BibTeX XML Cite \textit{A. K. Asboei} et al., Hokkaido Math. J. 47, No. 1, 25--32 (2018; Zbl 1425.20009) Full Text: DOI Euclid
Ren, Yunxiang From skein theory to presentations for Thompson group. (English) Zbl 06834827 J. Algebra 498, 178-196 (2018). MSC: 46L37 20F05 20F65 PDF BibTeX XML Cite \textit{Y. Ren}, J. Algebra 498, 178--196 (2018; Zbl 06834827) Full Text: DOI arXiv
Golan, G.; Sapir, M. On the stabilizers of finite sets of numbers in the R. Thompson group \(F\). (English) Zbl 1400.20036 St. Petersbg. Math. J. 29, No. 1, 51-79 (2018) and Algebra Anal. 29, No. 1, 70-110 (2017). MSC: 20F65 20G07 20E07 57M07 PDF BibTeX XML Cite \textit{G. Golan} and \textit{M. Sapir}, St. Petersbg. Math. J. 29, No. 1, 51--79 (2018; Zbl 1400.20036) Full Text: DOI
Dong, Chongying; Ren, Li Congruence property in orbifold theory. (English) Zbl 1432.17030 Proc. Am. Math. Soc. 146, No. 2, 497-506 (2018). MSC: 17B69 11F22 20D08 PDF BibTeX XML Cite \textit{C. Dong} and \textit{L. Ren}, Proc. Am. Math. Soc. 146, No. 2, 497--506 (2018; Zbl 1432.17030) Full Text: DOI arXiv
Meierfrankenfeld, U.; Parmeggiani, G.; Stellmacher, B. General offender theory. (English) Zbl 1421.20009 J. Algebra 495, 264-288 (2018). MSC: 20D25 20D20 20D60 PDF BibTeX XML Cite \textit{U. Meierfrankenfeld} et al., J. Algebra 495, 264--288 (2018; Zbl 1421.20009) Full Text: DOI
Willis, George A. Computing the scale of an endomorphism of a totally disconnected locally compact group. (English) Zbl 1422.22011 Axioms 6, No. 4, Paper No. 27, 17 p. (2017). MSC: 22D05 PDF BibTeX XML Cite \textit{G. A. Willis}, Axioms 6, No. 4, Paper No. 27, 17 p. (2017; Zbl 1422.22011) Full Text: DOI
Khalili Asboei, Alireza A new characterization of \(\mathrm{PSL}(3,q)\). (English) Zbl 1381.20014 Jordan J. Math. Stat. 10, No. 4, 307-317 (2017). MSC: 20D08 20D60 20E45 PDF BibTeX XML Cite \textit{A. Khalili Asboei}, Jordan J. Math. Stat. 10, No. 4, 307--317 (2017; Zbl 1381.20014) Full Text: Link
Bleak, Collin; Quick, Martyn The infinite simple group \(V\) of Richard J. Thompson: presentations by permutations. (English) Zbl 1423.20026 Groups Geom. Dyn. 11, No. 4, 1401-1436 (2017). MSC: 20F05 20E32 20F65 PDF BibTeX XML Cite \textit{C. Bleak} and \textit{M. Quick}, Groups Geom. Dyn. 11, No. 4, 1401--1436 (2017; Zbl 1423.20026) Full Text: DOI arXiv
Han, Zhangjia; Zhang, Longhui Finite groups having exactly 42 elements of maximal order. (English) Zbl 1378.20037 Ital. J. Pure Appl. Math. 37, 351-354 (2017). MSC: 20D60 PDF BibTeX XML Cite \textit{Z. Han} and \textit{L. Zhang}, Ital. J. Pure Appl. Math. 37, 351--354 (2017; Zbl 1378.20037) Full Text: Link
Bleak, Collin; Donoven, Casey; Jonušas, Julius Some isomorphism results for Thompson-like groups \(V_n(G)\). (English) Zbl 1401.20026 Isr. J. Math. 222, No. 1, 1-19 (2017). Reviewer: Enrico Jabara (Venezia) MSC: 20E08 20B22 20E32 20F10 20F65 PDF BibTeX XML Cite \textit{C. Bleak} et al., Isr. J. Math. 222, No. 1, 1--19 (2017; Zbl 1401.20026) Full Text: DOI arXiv
Alavi, Seyed Hassan; Daneshkhah, Ashraf; Mosaed, Hosein Parvizi On quantitative structure of small Ree groups. (English) Zbl 1378.20032 Commun. Algebra 45, No. 9, 4099-4108 (2017). Reviewer: Marian Deaconescu (Safat) MSC: 20D60 20D06 PDF BibTeX XML Cite \textit{S. H. Alavi} et al., Commun. Algebra 45, No. 9, 4099--4108 (2017; Zbl 1378.20032) Full Text: DOI arXiv
Matsumoto, Kengo; Matui, Hiroki Full groups of Cuntz-Krieger algebras and Higman-Thompson groups. (English) Zbl 1423.20035 Groups Geom. Dyn. 11, No. 2, 499-531 (2017). MSC: 20F38 20F65 37A55 37B10 46L35 PDF BibTeX XML Cite \textit{K. Matsumoto} and \textit{H. Matui}, Groups Geom. Dyn. 11, No. 2, 499--531 (2017; Zbl 1423.20035) Full Text: DOI arXiv
Tanushevski, Slobodan Presentations for a class of generalized Thompson’s groups. (English) Zbl 1387.20024 Commun. Algebra 45, No. 5, 2074-2090 (2017). MSC: 20F05 20F65 20F34 18B40 PDF BibTeX XML Cite \textit{S. Tanushevski}, Commun. Algebra 45, No. 5, 2074--2090 (2017; Zbl 1387.20024) Full Text: DOI
Gorshkov, Ilya B. On Thompson’s conjecture for alternating groups of large degree. (English) Zbl 1387.20008 J. Group Theory 20, No. 4, 719-728 (2017). Reviewer: Andrea Lucchini (Padova) MSC: 20D06 20E45 PDF BibTeX XML Cite \textit{I. B. Gorshkov}, J. Group Theory 20, No. 4, 719--728 (2017; Zbl 1387.20008) Full Text: DOI
Haagerup, Uffe; Olesen, Kristian Knudsen Non-inner amenability of the Thompson groups \(T\) and \(V\). (English) Zbl 1381.46048 J. Funct. Anal. 272, No. 11, 4838-4852 (2017). Reviewer: Takahiro Sudo (Nishihara) MSC: 46L05 43A07 46L35 46L55 22D25 22D15 PDF BibTeX XML Cite \textit{U. Haagerup} and \textit{K. K. Olesen}, J. Funct. Anal. 272, No. 11, 4838--4852 (2017; Zbl 1381.46048) Full Text: DOI arXiv
Liu, Xuhua Generalization of some inequalities for matrix exponentials to Lie groups. (English) Zbl 1390.15067 J. Lie Theory 27, No. 1, 185-192 (2017). Reviewer: Drahoslava Janovská (Praha) MSC: 15A45 15A42 22E46 PDF BibTeX XML Cite \textit{X. Liu}, J. Lie Theory 27, No. 1, 185--192 (2017; Zbl 1390.15067) Full Text: Link
Hung, Nguyen Ngoc Characters of \(p^\prime\)-degree and Thompson’s character degree theorem. (English) Zbl 1368.20004 Rev. Mat. Iberoam. 33, No. 1, 117-138 (2017). Reviewer: Yakov Berkovich (Afula) MSC: 20C15 20D60 20D15 20D10 20D05 PDF BibTeX XML Cite \textit{N. N. Hung}, Rev. Mat. Iberoam. 33, No. 1, 117--138 (2017; Zbl 1368.20004) Full Text: DOI
Burillo, José; Guba, Victor Growth of positive words and lower bounds of the growth rate for Thompson’s groups \(F(p)\). (English) Zbl 1404.20031 Int. J. Algebra Comput. 27, No. 1, 1-21 (2017). MSC: 20F65 20F05 20F10 20F69 05C25 PDF BibTeX XML Cite \textit{J. Burillo} and \textit{V. Guba}, Int. J. Algebra Comput. 27, No. 1, 1--21 (2017; Zbl 1404.20031) Full Text: DOI arXiv
Gelander, Tsachik; Golan, Gili; Juschenko, Kate Invariable generation of Thompson groups. (English) Zbl 1390.20035 J. Algebra 478, 261-270 (2017). Reviewer: Dimitrios Varsos (Athína) MSC: 20F05 20F65 20E08 PDF BibTeX XML Cite \textit{T. Gelander} et al., J. Algebra 478, 261--270 (2017; Zbl 1390.20035) Full Text: DOI arXiv
Jones, Vaughan F. R. Some unitary representations of Thompson’s groups \(F\) and \(T\). (English) Zbl 06684911 J. Comb. Algebra 1, No. 1, 1-44 (2017). MSC: 20F38 46L37 57M25 81T40 PDF BibTeX XML Cite \textit{V. F. R. Jones}, J. Comb. Algebra 1, No. 1, 1--44 (2017; Zbl 06684911) Full Text: DOI arXiv
Belk, James; Bleak, Collin Some undecidability results for asynchronous transducers and the Brin-Thompson group \(2V\). (English) Zbl 1364.20015 Trans. Am. Math. Soc. 369, No. 5, 3157-3172 (2017). Reviewer: Enrico Jabara (Venezia) MSC: 20F10 20B27 03D40 20E32 68Q45 37B05 PDF BibTeX XML Cite \textit{J. Belk} and \textit{C. Bleak}, Trans. Am. Math. Soc. 369, No. 5, 3157--3172 (2017; Zbl 1364.20015) Full Text: DOI
Thumann, Werner Operad groups and their finiteness properties. (English) Zbl 1401.20046 Adv. Math. 307, 417-487 (2017). MSC: 20F65 57M07 20F05 18D50 PDF BibTeX XML Cite \textit{W. Thumann}, Adv. Math. 307, 417--487 (2017; Zbl 1401.20046) Full Text: DOI arXiv
Golan, Gili; Sapir, Mark On Jones’ subgroup of R. Thompson group \(F\). (English) Zbl 1375.20043 J. Algebra 470, 122-159 (2017). Reviewer: Dimitrios Varsos (Athína) MSC: 20F65 20F05 20E07 57M25 PDF BibTeX XML Cite \textit{G. Golan} and \textit{M. Sapir}, J. Algebra 470, 122--159 (2017; Zbl 1375.20043) Full Text: DOI arXiv
Mousavi, Leila; Taeri, Bijan A characterization of \(L_2(81)\) by NSE. (English) Zbl 07249003 Int. J. Group Theory 5, No. 1, 29-35 (2016). MSC: 20D60 20D06 PDF BibTeX XML Cite \textit{L. Mousavi} and \textit{B. Taeri}, Int. J. Group Theory 5, No. 1, 29--35 (2016; Zbl 07249003) Full Text: DOI
Yang, Yong; Liu, Shitian A characterization of some linear groups by nse. (English) Zbl 1389.20047 An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 62, No. 2, Part 2, 647-659 (2016). MSC: 20D60 20D06 20D20 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{S. Liu}, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 62, No. 2, Part 2, 647--659 (2016; Zbl 1389.20047)
Asadian, Bahareh; Ahanjideh, Neda Structure of the finite groups with \(4p\) elements of maximal order. (English) Zbl 1359.20011 Quasigroups Relat. Syst. 24, No. 2, 157-168 (2016). MSC: 20D05 20D60 PDF BibTeX XML Cite \textit{B. Asadian} and \textit{N. Ahanjideh}, Quasigroups Relat. Syst. 24, No. 2, 157--168 (2016; Zbl 1359.20011)
Corwin, Nathan; Haymaker, Kathryn The graph structure of graph groups that are subgroups of Thompson’s group \(V\). (English) Zbl 1357.20016 Int. J. Algebra Comput. 26, No. 8, 1497-1501 (2016). MSC: 20F36 20F65 05C25 20E07 PDF BibTeX XML Cite \textit{N. Corwin} and \textit{K. Haymaker}, Int. J. Algebra Comput. 26, No. 8, 1497--1501 (2016; Zbl 1357.20016) Full Text: DOI arXiv
Griffin, Michael J.; Mertens, Michael H. A proof of the Thompson moonshine conjecture. (English) Zbl 1417.11040 Res. Math. Sci. 3, Paper No. 36, 32 p. (2016). MSC: 11F22 11F37 PDF BibTeX XML Cite \textit{M. J. Griffin} and \textit{M. H. Mertens}, Res. Math. Sci. 3, Paper No. 36, 32 p. (2016; Zbl 1417.11040) Full Text: DOI arXiv
Burillo, José; Matucci, Francesco; Ventura, Enric The conjugacy problem in extensions of Thompson’s group \(F\). (English) Zbl 1400.20024 Isr. J. Math. 216, No. 1, 15-59 (2016). MSC: 20F10 20F28 20F65 PDF BibTeX XML Cite \textit{J. Burillo} et al., Isr. J. Math. 216, No. 1, 15--59 (2016; Zbl 1400.20024) Full Text: DOI arXiv
Curtis, Robert T. The Thompson chain of subgroups of the Conway group \(\mathrm{Co}_1\) and complete graphs on \(n\) vertices. (English) Zbl 1369.20014 J. Group Theory 19, No. 6, 959-982 (2016). Reviewer: Anatoli Kondrat’ev (Ekaterinburg) MSC: 20D08 20D05 20D30 20F05 05C25 PDF BibTeX XML Cite \textit{R. T. Curtis}, J. Group Theory 19, No. 6, 959--982 (2016; Zbl 1369.20014) Full Text: DOI
Gorshkov, I. B. On Thompson’s conjecture for alternating and symmetric groups of degree greater than 1361. (English. Russian original) Zbl 1352.20020 Proc. Steklov Inst. Math. 293, Suppl. 1, S58-S65 (2016); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22, No. 1, 44-51 (2015). MSC: 20D60 20E45 20D06 20B30 20B35 20D20 PDF BibTeX XML Cite \textit{I. B. Gorshkov}, Proc. Steklov Inst. Math. 293, S58--S65 (2016; Zbl 1352.20020); translation from Tr. Inst. Mat. Mekh. (Ekaterinburg) 22, No. 1, 44--51 (2015) Full Text: DOI
Zaremsky, Matthew C. B. HNN decompositions of the Lodha-Moore groups, and topological applications. (English) Zbl 1392.20037 J. Topol. Anal. 8, No. 4, 627-653 (2016). MSC: 20F65 57M07 20E06 20F69 PDF BibTeX XML Cite \textit{M. C. B. Zaremsky}, J. Topol. Anal. 8, No. 4, 627--653 (2016; Zbl 1392.20037) Full Text: DOI arXiv
Matui, Hiroki Étale groupoids arising from products of shifts of finite type. (English) Zbl 1352.19003 Adv. Math. 303, 502-548 (2016). Reviewer: Peeter Normak (Tallinn) MSC: 19D55 18B40 20L05 22A22 37B10 55N15 PDF BibTeX XML Cite \textit{H. Matui}, Adv. Math. 303, 502--548 (2016; Zbl 1352.19003) Full Text: DOI arXiv
Han, Zhangjia; Song, Ren Finite groups having exactly 44 elements of maximal order. (English) Zbl 1363.20029 Adv. Math., Beijing 45, No. 1, 61-66 (2016). MSC: 20D60 PDF BibTeX XML Cite \textit{Z. Han} and \textit{R. Song}, Adv. Math., Beijing 45, No. 1, 61--66 (2016; Zbl 1363.20029) Full Text: DOI
Friedl, Stefan; Vidussi, Stefano Rank gradients of infinite cyclic covers of Kähler manifolds. (English) Zbl 1349.20041 J. Group Theory 19, No. 5, 941-957 (2016). Reviewer: Cenap Özel (Bolu) MSC: 20J06 20J05 20E06 20E26 53C55 PDF BibTeX XML Cite \textit{S. Friedl} and \textit{S. Vidussi}, J. Group Theory 19, No. 5, 941--957 (2016; Zbl 1349.20041) Full Text: DOI
Thumann, Werner \(L^2\)-invisibility of symmetric operad groups. (English) Zbl 1387.20042 Algebr. Geom. Topol. 16, No. 4, 2229-2255 (2016). MSC: 20J05 22D10 18D50 PDF BibTeX XML Cite \textit{W. Thumann}, Algebr. Geom. Topol. 16, No. 4, 2229--2255 (2016; Zbl 1387.20042) Full Text: DOI arXiv
Martínez-Pérez, Conchita; Matucci, Francesco; Nucinkis, Brita E. A. Cohomological finiteness conditions and centralisers in generalisations of Thompson’s group \(V\). (English) Zbl 1388.20070 Forum Math. 28, No. 5, 909-921 (2016). MSC: 20J05 20F65 20E32 20B27 57M07 PDF BibTeX XML Cite \textit{C. Martínez-Pérez} et al., Forum Math. 28, No. 5, 909--921 (2016; Zbl 1388.20070) Full Text: DOI arXiv
Tanushevski, Slobodan A new class of generalized Thompson’s groups and their normal subgroups. (English) Zbl 1383.20030 Commun. Algebra 44, No. 10, 4378-4410 (2016). MSC: 20F65 20E07 20F05 20F14 PDF BibTeX XML Cite \textit{S. Tanushevski}, Commun. Algebra 44, No. 10, 4378--4410 (2016; Zbl 1383.20030) Full Text: DOI
Akhlaghi, Zeinab; Khatami, Maryam Improving Thompson’s conjecture for Suzuki groups. (English) Zbl 1351.20006 Commun. Algebra 44, No. 9, 3927-3932 (2016). MSC: 20D06 20D60 20E45 PDF BibTeX XML Cite \textit{Z. Akhlaghi} and \textit{M. Khatami}, Commun. Algebra 44, No. 9, 3927--3932 (2016; Zbl 1351.20006) Full Text: DOI
Larson, Hannah Coefficients of McKay-Thompson series and distributions of the moonshine module. (English) Zbl 1350.11053 Proc. Am. Math. Soc. 144, No. 10, 4183-4197 (2016). Reviewer: Matthew Krauel (Sacramento) MSC: 11F03 11F22 20C34 PDF BibTeX XML Cite \textit{H. Larson}, Proc. Am. Math. Soc. 144, No. 10, 4183--4197 (2016; Zbl 1350.11053) Full Text: DOI arXiv
Funar, Louis; Nguyen, Maxime On the automorphism group of the asymptotic pants complex of an infinite surface of genus zero. (English) Zbl 1405.57005 Math. Nachr. 289, No. 10, 1189-1207 (2016). MSC: 57M07 57N05 20F34 20F38 PDF BibTeX XML Cite \textit{L. Funar} and \textit{M. Nguyen}, Math. Nachr. 289, No. 10, 1189--1207 (2016; Zbl 1405.57005) Full Text: DOI
Harvey, Jeffrey A.; Rayhaun, Brandon C. Traces of singular moduli and moonshine for the Thompson group. (English) Zbl 1365.11045 Commun. Number Theory Phys. 10, No. 1, 23-62 (2016). Reviewer: Hiromichi Yamada (Tokyo) MSC: 11F22 20C34 11F27 PDF BibTeX XML Cite \textit{J. A. Harvey} and \textit{B. C. Rayhaun}, Commun. Number Theory Phys. 10, No. 1, 23--62 (2016; Zbl 1365.11045) Full Text: DOI arXiv
Belk, James; Matucci, Francesco Röver’s simple group is of type \(F_\infty\). (English) Zbl 1376.20043 Publ. Mat., Barc. 60, No. 2, 501-524 (2016). MSC: 20F65 20E32 20J05 20E08 PDF BibTeX XML Cite \textit{J. Belk} and \textit{F. Matucci}, Publ. Mat., Barc. 60, No. 2, 501--524 (2016; Zbl 1376.20043) Full Text: DOI Euclid arXiv
Amiri, S. S. S.; Asboei, A. Kh. Characterization of some finite groups by order and length of one conjugacy class. (English. Russian original) Zbl 1344.20035 Sib. Math. J. 57, No. 2, 185-189 (2016); translation from Sib. Mat. Zh. 57, No. 2, 241-246 (2016). MSC: 20D60 20D06 20E45 PDF BibTeX XML Cite \textit{S. S. S. Amiri} and \textit{A. Kh. Asboei}, Sib. Math. J. 57, No. 2, 185--189 (2016; Zbl 1344.20035); translation from Sib. Mat. Zh. 57, No. 2, 241--246 (2016) Full Text: DOI
Lawson, Mark V. Subgroups of the group of homeomorphisms of the Cantor space and a duality between a class of inverse monoids and a class of Hausdorff étale groupoids. (English) Zbl 1385.20020 J. Algebra 462, 77-114 (2016). MSC: 20M18 18B40 06E15 22A22 20F38 20M30 PDF BibTeX XML Cite \textit{M. V. Lawson}, J. Algebra 462, 77--114 (2016; Zbl 1385.20020) Full Text: DOI
Ahanjideh, Neda Thompson’s conjecture for finite simple groups of Lie type \(B_n\) and \(C_n\). (English) Zbl 1348.20018 J. Group Theory 19, No. 4, 713-733 (2016). Reviewer: Mohammad-Reza Darafsheh (Tehran) MSC: 20D06 20D60 20E45 PDF BibTeX XML Cite \textit{N. Ahanjideh}, J. Group Theory 19, No. 4, 713--733 (2016; Zbl 1348.20018) Full Text: DOI
Rowley, Peter; Taylor, Paul An algorithm for the Thompson subgroup of a \(p\)-group. (English) Zbl 1342.20015 J. Algebra 461, 375-389 (2016). MSC: 20D15 20D25 20-04 68W30 PDF BibTeX XML Cite \textit{P. Rowley} and \textit{P. Taylor}, J. Algebra 461, 375--389 (2016; Zbl 1342.20015) Full Text: DOI
Khalili Asboei, Alireza; Mohammadyari, Reza Characterization of the alternating groups by their order and one conjugacy class length. (English) Zbl 1374.20008 Czech. Math. J. 66, No. 1, 63-70 (2016). MSC: 20D06 20D60 20E45 PDF BibTeX XML Cite \textit{A. Khalili Asboei} and \textit{R. Mohammadyari}, Czech. Math. J. 66, No. 1, 63--70 (2016; Zbl 1374.20008) Full Text: DOI Link
Donnelly, John; Hicks, Ryan; Virgin, Kurt Generators and normal forms of Richard Thompson’s group \(F\) and the four-color theorem. (English) Zbl 1337.05038 J. Algebr. Comb. 43, No. 3, 485-493 (2016). MSC: 05C15 20F10 20F05 PDF BibTeX XML Cite \textit{J. Donnelly} et al., J. Algebr. Comb. 43, No. 3, 485--493 (2016; Zbl 1337.05038) Full Text: DOI
Elder, Murray; Taback, Jennifer Thompson’s group \(F\) is 1-counter graph automatic. (English) Zbl 1344.20043 Groups Complex. Cryptol. 8, No. 1, 21-33 (2016). MSC: 20F10 20F65 68Q45 20F05 PDF BibTeX XML Cite \textit{M. Elder} and \textit{J. Taback}, Groups Complex. Cryptol. 8, No. 1, 21--33 (2016; Zbl 1344.20043) Full Text: DOI arXiv
Herfort, Wolfgang; Levy, Dan Prosolvability criteria and properties of the prosolvable radical via Sylow sequences. (English) Zbl 1348.20032 J. Group Theory 19, No. 3, 435-453 (2016). Reviewer: Pavel Zalesskij (Brasília) MSC: 20E18 20F19 20E07 20D20 PDF BibTeX XML Cite \textit{W. Herfort} and \textit{D. Levy}, J. Group Theory 19, No. 3, 435--453 (2016; Zbl 1348.20032) Full Text: DOI
Grammaticos, B.; Ramani, A.; Tamizhmani, K. M.; Tamizhmani, T.; Satsuma, J. Strongly asymmetric discrete Painlevé equations: the multiplicative case. (English) Zbl 1383.39019 J. Math. Phys. 57, No. 4, 043506, 30 p. (2016). MSC: 39A60 34M55 34B20 39A20 39A23 PDF BibTeX XML Cite \textit{B. Grammaticos} et al., J. Math. Phys. 57, No. 4, 043506, 30 p. (2016; Zbl 1383.39019) Full Text: DOI