Le, Giang An effective Schmidt’s subspace theorem for arbitrary hypersurfaces over function fields. (English) Zbl 07654399 Int. J. Number Theory 19, No. 2, 331-346 (2023). Reviewer: István Gaál (Debrecen) MSC: 11J97 11J68 PDF BibTeX XML Cite \textit{G. Le}, Int. J. Number Theory 19, No. 2, 331--346 (2023; Zbl 07654399) Full Text: DOI OpenURL
Bennett, Michael A.; Siksek, Samir Differences between perfect powers: the Lebesgue-Nagell equation. (English) Zbl 07618833 Trans. Am. Math. Soc. 376, No. 1, 335-370 (2023). MSC: 11D61 11D41 11F80 11F03 PDF BibTeX XML Cite \textit{M. A. Bennett} and \textit{S. Siksek}, Trans. Am. Math. Soc. 376, No. 1, 335--370 (2023; Zbl 07618833) Full Text: DOI arXiv OpenURL
Lombardo, Davide A family of quintic Thue equations via Skolem’s \(p\)-adic method. (English) Zbl 1498.11100 Riv. Mat. Univ. Parma (N.S.) 13, No. 1, 161-173 (2022). MSC: 11D59 11D88 11D41 PDF BibTeX XML Cite \textit{D. Lombardo}, Riv. Mat. Univ. Parma (N.S.) 13, No. 1, 161--173 (2022; Zbl 1498.11100) Full Text: arXiv Link OpenURL
Mosunov, Anton On the automorphism group of a binary form associated with algebraic trigonometric quantities. (English) Zbl 1502.11043 J. Number Theory 240, 325-356 (2022). Reviewer: Andrew G. Earnest (Carbondale) MSC: 11E76 08A35 11D45 11D59 PDF BibTeX XML Cite \textit{A. Mosunov}, J. Number Theory 240, 325--356 (2022; Zbl 1502.11043) Full Text: DOI arXiv OpenURL
Hilgart, Tobias; Vukusic, Ingrid; Ziegler, Volker On a family of cubic Thue equations involving Fibonacci and Lucas numbers. (English) Zbl 1501.11049 Integers 22, Paper A31, 20 p. (2022). Reviewer: István Gaál (Debrecen) MSC: 11D59 11D25 11B39 PDF BibTeX XML Cite \textit{T. Hilgart} et al., Integers 22, Paper A31, 20 p. (2022; Zbl 1501.11049) Full Text: arXiv Link OpenURL
Bhargava, Manjul On the number of monogenizations of a quartic order (with an appendix by Shabnam Akhtari). (English) Zbl 1499.11328 Publ. Math. Debr. 100, No. 3-4, 513-531 (2022). Reviewer: István Gaál (Debrecen) MSC: 11R16 11D09 PDF BibTeX XML Cite \textit{M. Bhargava}, Publ. Math. Debr. 100, No. 3--4, 513--531 (2022; Zbl 1499.11328) Full Text: DOI OpenURL
Balakrishnan, Jennifer S.; Craig, William; Ono, Ken Variations of Lehmer’s conjecture for Ramanujan’s tau-function. (English) Zbl 1497.11080 J. Number Theory 237, 3-14 (2022). Reviewer: Gökhan Soydan (Bursa) MSC: 11D61 11B39 11D41 11J86 PDF BibTeX XML Cite \textit{J. S. Balakrishnan} et al., J. Number Theory 237, 3--14 (2022; Zbl 1497.11080) Full Text: DOI arXiv OpenURL
Baker, Alan [Masser, David] Transcendental number theory. With a new foreword by David Masser. Reprint of the 1990 paperback edition. (English) Zbl 1496.11001 Cambridge Mathematical Library. Cambridge: Cambridge University Press (ISBN 978-1-00-922994-4/pbk; 978-1-00-922993-7/ebook). xiv, 169 p. (2022). MSC: 11-01 01A75 11J81 11J86 11J85 11J89 11J83 11J68 11D41 11J91 11R29 11K60 11R11 PDF BibTeX XML Cite \textit{A. Baker}, Transcendental number theory. With a new foreword by David Masser. Reprint of the 1990 paperback edition. Cambridge: Cambridge University Press (2022; Zbl 1496.11001) Full Text: DOI OpenURL
Mosunov, Anton On the representation of integers by binary forms defined by means of the relation \((x + yi)^n= R_n(x,y) + J_n(x,y)i\). (English) Zbl 1491.11040 Mosc. J. Comb. Number Theory 11, No. 1, 71-78 (2022). Reviewer: István Gaál (Debrecen) MSC: 11E25 11E76 11D59 11D45 PDF BibTeX XML Cite \textit{A. Mosunov}, Mosc. J. Comb. Number Theory 11, No. 1, 71--78 (2022; Zbl 1491.11040) Full Text: DOI arXiv OpenURL
Togbé, A.; Walsh, P. G. A classical approach to a parametric family of simultaneous Pell equations with applications to a family of Thue equations. (English) Zbl 1486.11048 Bol. Soc. Mat. Mex., III. Ser. 28, No. 1, Paper No. 4, 7 p. (2022). Reviewer: Maciej Ulas (Kraków) MSC: 11D25 11D59 PDF BibTeX XML Cite \textit{A. Togbé} and \textit{P. G. Walsh}, Bol. Soc. Mat. Mex., III. Ser. 28, No. 1, Paper No. 4, 7 p. (2022; Zbl 1486.11048) Full Text: DOI OpenURL
Gaál, István Calculating “small” solutions of inhomogeneous relative Thue inequalities. (English) Zbl 1491.11111 Funct. Approximatio, Comment. Math. 65, No. 2, 141-156 (2021). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11Y50 11D41 11D57 11D59 11D75 PDF BibTeX XML Cite \textit{I. Gaál}, Funct. Approximatio, Comment. Math. 65, No. 2, 141--156 (2021; Zbl 1491.11111) Full Text: DOI arXiv OpenURL
Bouroubi, Sadek; Debbache, Ali Thue’s equation as a tool to solve two different problems. (English) Zbl 1481.11034 Acta Comment. Univ. Tartu. Math. 25, No. 1, 153-156 (2021). Reviewer: István Gaál (Debrecen) MSC: 11D45 11D09 PDF BibTeX XML Cite \textit{S. Bouroubi} and \textit{A. Debbache}, Acta Comment. Univ. Tartu. Math. 25, No. 1, 153--156 (2021; Zbl 1481.11034) Full Text: DOI OpenURL
Patel, Vandita A Lucas-Lehmer approach to generalised Lebesgue-Ramanujan-Nagell equations. (English) Zbl 1484.11102 Ramanujan J. 56, No. 2, 585-596 (2021). Reviewer: Florian Luca (Johannesburg) MSC: 11D61 11D41 11D59 PDF BibTeX XML Cite \textit{V. Patel}, Ramanujan J. 56, No. 2, 585--596 (2021; Zbl 1484.11102) Full Text: DOI arXiv OpenURL
Kundu, Debanjana; Patel, Vandita Perfect powers that are sums of squares of an arithmetic progression. (English) Zbl 07393811 Rocky Mt. J. Math. 51, No. 3, 933-949 (2021). Reviewer: Gökhan Soydan (Bursa) MSC: 11D61 PDF BibTeX XML Cite \textit{D. Kundu} and \textit{V. Patel}, Rocky Mt. J. Math. 51, No. 3, 933--949 (2021; Zbl 07393811) Full Text: DOI arXiv OpenURL
Bennett, Michael A.; Gherga, Adela; Kreso, Dijana An old and new approach to Goormaghtigh’s equation. (English) Zbl 1482.11047 Trans. Am. Math. Soc. 373, No. 8, 5707-5745 (2020). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11D41 11D61 11J68 11Y50 PDF BibTeX XML Cite \textit{M. A. Bennett} et al., Trans. Am. Math. Soc. 373, No. 8, 5707--5745 (2020; Zbl 1482.11047) Full Text: DOI OpenURL
Waldschmidt, Michel Thue Diophantine equations. (English) Zbl 1456.11034 Chakraborty, Kalyan (ed.) et al., Class groups of number fields and related topics. Collected papers presented at the first international conference, ICCGNFRT, Harish-Chandra Research Institute, Allahabad, India, September 4–7, 2017. Singapore: Springer. 25-41 (2020). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11D59 11J68 11J86 PDF BibTeX XML Cite \textit{M. Waldschmidt}, in: Class groups of number fields and related topics. Collected papers presented at the first international conference, ICCGNFRT, Harish-Chandra Research Institute, Allahabad, India, September 4--7, 2017. Singapore: Springer. 25--41 (2020; Zbl 1456.11034) Full Text: DOI OpenURL
Argáez-García, Alejandro; Patel, Vandita On perfect powers that are sums of cubes of a seven term arithmetic progression. (English) Zbl 1459.11090 J. Number Theory 214, 440-451 (2020). MSC: 11D61 11D41 11D59 11J86 PDF BibTeX XML Cite \textit{A. Argáez-García} and \textit{V. Patel}, J. Number Theory 214, 440--451 (2020; Zbl 1459.11090) Full Text: DOI arXiv OpenURL
Hajdu, L.; Sárközy, A. On multiplicative decompositions of polynomial sequences. III. (English) Zbl 1447.11099 Acta Arith. 193, No. 2, 193-216 (2020). Reviewer: Florian Luca (Johannesburg) MSC: 11N25 11N32 11D41 PDF BibTeX XML Cite \textit{L. Hajdu} and \textit{A. Sárközy}, Acta Arith. 193, No. 2, 193--216 (2020; Zbl 1447.11099) Full Text: DOI OpenURL
Gaál, István Calculating relative power integral bases in totally complex quartic extensions of totally real fields. (English) Zbl 1490.11121 JP J. Algebra Number Theory Appl. 44, No. 2, 129-157 (2019). MSC: 11Y50 11R04 11D57 11D59 PDF BibTeX XML Cite \textit{I. Gaál}, JP J. Algebra Number Theory Appl. 44, No. 2, 129--157 (2019; Zbl 1490.11121) Full Text: DOI arXiv OpenURL
Akhtari, Shabnam; Bhargava, Manjul A positive proportion of Thue equations fail the integral Hasse principle. (English) Zbl 1450.11026 Am. J. Math. 141, No. 2, 283-307 (2019). Reviewer: István Gaál (Debrecen) MSC: 11D59 PDF BibTeX XML Cite \textit{S. Akhtari} and \textit{M. Bhargava}, Am. J. Math. 141, No. 2, 283--307 (2019; Zbl 1450.11026) Full Text: DOI arXiv OpenURL
Murty, M. Ram; Séguin, François; Stewart, Cameron L. A lower bound for the two-variable Artin conjecture and prime divisors of recurrence sequences. (English) Zbl 1437.11141 J. Number Theory 194, 8-29 (2019). Reviewer: Florian Luca (Johannesburg) MSC: 11N69 11B37 11D59 PDF BibTeX XML Cite \textit{M. R. Murty} et al., J. Number Theory 194, 8--29 (2019; Zbl 1437.11141) Full Text: DOI arXiv Link OpenURL
Hajdu, L.; Sárközy, A. On multiplicative decompositions of polynomial sequences. II. (English) Zbl 1426.11097 Acta Arith. 186, No. 2, 191-200 (2018). Reviewer: Gennady Bachman (Las Vegas) MSC: 11N25 11N32 11D41 PDF BibTeX XML Cite \textit{L. Hajdu} and \textit{A. Sárközy}, Acta Arith. 186, No. 2, 191--200 (2018; Zbl 1426.11097) Full Text: DOI OpenURL
Hu, Jiayuan; Li, Xiaoxue On the quartic Thue equation \(a{x^4} - (2a + 1){x^2}{y^2} + a{y^4} = - 1\). (Chinese. English summary) Zbl 1413.11063 Basic Sci. J. Text. Univ. 31, No. 1, 35-37, 54 (2018). MSC: 11D25 PDF BibTeX XML Cite \textit{J. Hu} and \textit{X. Li}, Basic Sci. J. Text. Univ. 31, No. 1, 35--37, 54 (2018; Zbl 1413.11063) Full Text: DOI OpenURL
Zhang, Zhongfeng Erratum to the paper: “On the Diophantine equations \((x-1)^3+x^5 +(x+1)^3 = y^n\) and \((x-1)^5+x^3 +(x+1)^5 = y^n\)”. (English) Zbl 1413.11069 Publ. Math. Debr. 93, No. 1-2, 261-262 (2018). Reviewer: Le Maohua (Zhanjiang) MSC: 11D41 11D61 PDF BibTeX XML Cite \textit{Z. Zhang}, Publ. Math. Debr. 93, No. 1--2, 261--262 (2018; Zbl 1413.11069) Full Text: DOI OpenURL
Kim, Dohyeong Descent for the punctured universal elliptic curve, and the average number of integral points on elliptic curves. (English) Zbl 1441.11145 Acta Arith. 183, No. 3, 201-222 (2018). Reviewer: José María Tornero (Sevilla) MSC: 11G05 11D25 11D59 PDF BibTeX XML Cite \textit{D. Kim}, Acta Arith. 183, No. 3, 201--222 (2018; Zbl 1441.11145) Full Text: DOI arXiv OpenURL
Corvaja, Pietro; Zannier, Umberto Applications of Diophantine approximation to integral points and transcendence. (English) Zbl 1452.11004 Cambridge Tracts in Mathematics 212. Cambridge: Cambridge University Press (ISBN 978-1-108-42494-3/hbk; 978-1-108-34809-6/ebook). x, 198 p. (2018). Reviewer: Jean-Paul Allouche (Paris) MSC: 11-02 11Dxx 11J13 11J20 11J68 11J81 11J87 11B85 PDF BibTeX XML Cite \textit{P. Corvaja} and \textit{U. Zannier}, Applications of Diophantine approximation to integral points and transcendence. Cambridge: Cambridge University Press (2018; Zbl 1452.11004) Full Text: DOI Link OpenURL
Zhang, Zhongfeng On the Diophantine equations \((x-1)^3+x^5+(x+1)^3 = y^n\) and \((x-1)^5+x^3+(x+1)^5 = y^n\). (English) Zbl 1413.11070 Publ. Math. Debr. 91, No. 3-4, 383-390 (2017). MSC: 11D41 11D61 PDF BibTeX XML Cite \textit{Z. Zhang}, Publ. Math. Debr. 91, No. 3--4, 383--390 (2017; Zbl 1413.11070) Full Text: DOI OpenURL
Li, Zhigang; Chen, Shexi A note on a family of quartic Thue equations with three parameters. (Chinese. English summary) Zbl 1399.11092 J. Syst. Sci. Math. Sci. 37, No. 10, 2138-2145 (2017). MSC: 11D25 11D59 PDF BibTeX XML Cite \textit{Z. Li} and \textit{S. Chen}, J. Syst. Sci. Math. Sci. 37, No. 10, 2138--2145 (2017; Zbl 1399.11092) OpenURL
Levesque, Claude; Waldschmidt, Michel Families of Thue equations associated with a rank one subgroup of the unit group of a number field. (English) Zbl 1428.11060 Mathematika 63, No. 3, 1060-1080 (2017). MSC: 11D61 11D41 11D59 PDF BibTeX XML Cite \textit{C. Levesque} and \textit{M. Waldschmidt}, Mathematika 63, No. 3, 1060--1080 (2017; Zbl 1428.11060) Full Text: DOI arXiv OpenURL
Zhang, Zhongfeng On the Diophantine equation \((x - d)^4 + x^4 +(x + d)^4 = y^n\). (English) Zbl 1392.11018 Int. J. Number Theory 13, No. 9, 2229-2243 (2017). MSC: 11D41 11D61 PDF BibTeX XML Cite \textit{Z. Zhang}, Int. J. Number Theory 13, No. 9, 2229--2243 (2017; Zbl 1392.11018) Full Text: DOI OpenURL
Hoshi, Akinari Complete solutions to a family of Thue equations of degree 12. (English. French summary) Zbl 1410.11024 J. Théor. Nombres Bordx. 29, No. 2, 549-568 (2017). MSC: 11D41 11D59 11R21 PDF BibTeX XML Cite \textit{A. Hoshi}, J. Théor. Nombres Bordx. 29, No. 2, 549--568 (2017; Zbl 1410.11024) Full Text: DOI OpenURL
Bartolomé, B.; Mihăilescu, P. On equation \(X^n-1=BZ^n\). (English) Zbl 1416.11046 Int. J. Number Theory 13, No. 3, 549-570 (2017). MSC: 11D59 11D41 PDF BibTeX XML Cite \textit{B. Bartolomé} and \textit{P. Mihăilescu}, Int. J. Number Theory 13, No. 3, 549--570 (2017; Zbl 1416.11046) Full Text: DOI arXiv OpenURL
Dill, Gabriel A. Effective approximation and Diophantine applications. (English) Zbl 1420.11064 Acta Arith. 177, No. 2, 169-199 (2017). MSC: 11D41 11D45 11D57 11J68 PDF BibTeX XML Cite \textit{G. A. Dill}, Acta Arith. 177, No. 2, 169--199 (2017; Zbl 1420.11064) Full Text: DOI arXiv OpenURL
Soydan, G.; Tzanakis, N. Complete solution of the Diophantine equation \(x^2+5^a\cdot 11^b = y^n\). (English) Zbl 1425.11059 Bull. Hell. Math. Soc. 60, 125-151 (2016). MSC: 11D61 11D59 11D41 11J86 11Y40 PDF BibTeX XML Cite \textit{G. Soydan} and \textit{N. Tzanakis}, Bull. Hell. Math. Soc. 60, 125--151 (2016; Zbl 1425.11059) Full Text: arXiv Link OpenURL
Levesque, Claude; Waldschmidt, Michel Solving simultaneously Thue equations in the almost totally imaginary case. (English) Zbl 1418.11053 Murty, Vijaya Kumar (ed.) et al., Highly composite: papers in number theory. On the occasion of R. Balsubramanian’s 60th birth anniversary. Including papers from the international meeting on number theory, Harish-Chandra Research Institute, Allahabad, India, December 15–20, 2011. Mysore: Ramanujan Mathematical Society. Ramanujan Math. Soc. Lect. Notes Ser. 23, 137-156 (2016). MSC: 11D61 11D25 11D41 11D59 PDF BibTeX XML Cite \textit{C. Levesque} and \textit{M. Waldschmidt}, Ramanujan Math. Soc. Lect. Notes Ser. 23, 137--156 (2016; Zbl 1418.11053) Full Text: arXiv OpenURL
Fuchs, Clemens; Jurasić, Ana; Paulin, Roland Elementary resolution of a family of quartic Thue equations over function fields. (English) Zbl 1359.11030 Monatsh. Math. 180, No. 2, 205-211 (2016). MSC: 11D25 11D59 PDF BibTeX XML Cite \textit{C. Fuchs} et al., Monatsh. Math. 180, No. 2, 205--211 (2016; Zbl 1359.11030) Full Text: DOI arXiv OpenURL
Levesque, Claude; Waldschmidt, Michel Families of Thue equations associated with a rank 1 subgroup of totally real units of a number field. (Familles d’équations de Thue associées à un sous-groupe de rang 1 d’unités totalement réelles d’un corps de nombres.) (French. English summary) Zbl 1394.11030 Cojocaru, A. C. (ed.) et al., SCHOLAR – a scientific celebration highlighting open lines of arithmetic research. Conference in honour of M. Ram Murty’s mathematical legacy on his 60th birthday, Centre de Recherches Mathématiques, Université de Montréal, Canada, October 15–17, 2013. Providence, RI: American Mathematical Society (AMS); Montreal: Centre de Recherches Mathématiques (CRM) (ISBN 978-1-4704-1457-3/pbk; 978-1-4704-2843-3/ebook). Contemporary Mathematics 655. Centre de Recherches Mathématiques Proceedings, 117-134 (2015). MSC: 11D61 11D25 11D41 11D59 PDF BibTeX XML Cite \textit{C. Levesque} and \textit{M. Waldschmidt}, Contemp. Math. 655, 117--134 (2015; Zbl 1394.11030) Full Text: DOI OpenURL
Akhtari, Shabnam Representation of small integers by binary forms. (English) Zbl 1364.11088 Q. J. Math. 66, No. 4, 1009-1054 (2015). MSC: 11D75 11D59 11D45 11E76 PDF BibTeX XML Cite \textit{S. Akhtari}, Q. J. Math. 66, No. 4, 1009--1054 (2015; Zbl 1364.11088) Full Text: DOI arXiv OpenURL
Bennett, Michael A.; Ghadermarzi, Amir Mordell’s equation: a classical approach. (English) Zbl 1371.11077 LMS J. Comput. Math. 18, 633-646 (2015). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11D25 11G05 11Y50 PDF BibTeX XML Cite \textit{M. A. Bennett} and \textit{A. Ghadermarzi}, LMS J. Comput. Math. 18, 633--646 (2015; Zbl 1371.11077) Full Text: DOI arXiv OpenURL
Bazsó, András; Bérczes, Attila; Győry, Kálmán; Pintér, Ákos Erratum to the paper ”On the resolution of equations \(Ax^n - By^n = C\) in integers \(x, y\) and \(n \geq 3\). II”. (English) Zbl 1340.11037 Publ. Math. Debr. 86, No. 1-2, 251-253 (2015). MSC: 11D45 11D61 11D41 11J82 11J86 PDF BibTeX XML Cite \textit{A. Bazsó} et al., Publ. Math. Debr. 86, No. 1--2, 251--253 (2015; Zbl 1340.11037) Full Text: DOI OpenURL
Dietmann, Rainer; Marmon, Oscar Random Thue and Fermat equations. (English) Zbl 1364.11081 Acta Arith. 167, No. 2, 189-200 (2015). Reviewer: Günter Lettl (Graz) MSC: 11D41 11D45 11D59 PDF BibTeX XML Cite \textit{R. Dietmann} and \textit{O. Marmon}, Acta Arith. 167, No. 2, 189--200 (2015; Zbl 1364.11081) Full Text: DOI arXiv OpenURL
Andreescu, Titu; Andrica, Dorin [Mihăilescu, Preda] Quadratic Diophantine equations. With a foreword by Preda Mihăilescu. (English) Zbl 1376.11001 Developments in Mathematics 40. New York, NY: Springer (ISBN 978-0-387-35156-8/hbk; 978-0-387-54109-9/ebook). xviii, 211 p. (2015). Reviewer: Mowaffaq Hajja (Amman) MSC: 11-02 11D09 11J70 PDF BibTeX XML Cite \textit{T. Andreescu} and \textit{D. Andrica}, Quadratic Diophantine equations. With a foreword by Preda Mihăilescu. New York, NY: Springer (2015; Zbl 1376.11001) Full Text: DOI OpenURL
Zannier, Umberto (ed.) [Siegel, Carl Ludwig; Fuchs, Clemens] On some applications of Diophantine approximations. (A translation of Carl Ludwig Siegel’s “Über einige Anwendungen diophantischer Approximationen” by Clemens Fuchs). With a commentary and the article “Integral points on curves: Siegel’s theorem after Siegel’s proof” by Clemens Fuchs and Umberto Zannier. (English, German) Zbl 1311.11006 Quaderni. Scuola Normale Superiore di Pisa. Monographs 2. Pisa: Edizioni della Normale (ISBN 978-88-7642-519-6/pbk; 978-88-7642-520-2/ebook). ix, 161 p. (2014). Reviewer: Michel Waldschmidt (Paris) MSC: 11-02 01A75 11J81 11J91 11D41 PDF BibTeX XML Cite \textit{U. Zannier} (ed.), On some applications of Diophantine approximations. (A translation of Carl Ludwig Siegel's ``Über einige Anwendungen diophantischer Approximationen'' by Clemens Fuchs). With a commentary and the article ``Integral points on curves: Siegel's theorem after Siegel's proof'' by Clemens Fuchs and Umberto Zannier. Pisa: Edizioni della Normale (2014; Zbl 1311.11006) Full Text: DOI OpenURL
Zhang, Silan; Xia, Jingbo; Chen, Jianhua; Ai, Xiaochuan Solutions of parameterized sextic Thue equations. (English) Zbl 1313.11069 J. Math., Wuhan Univ. 34, No. 3, 478-486 (2014). MSC: 11D41 PDF BibTeX XML Cite \textit{S. Zhang} et al., J. Math., Wuhan Univ. 34, No. 3, 478--486 (2014; Zbl 1313.11069) OpenURL
Alekseyev, Max A.; Tengely, Szabolcs On integral points on biquadratic curves and near-multiples of squares in Lucas sequences. (English) Zbl 1358.11141 J. Integer Seq. 17, No. 6, Article 14.6.6, 15 p. (2014). MSC: 11Y50 11D25 11B39 14G05 PDF BibTeX XML Cite \textit{M. A. Alekseyev} and \textit{S. Tengely}, J. Integer Seq. 17, No. 6, Article 14.6.6, 15 p. (2014; Zbl 1358.11141) Full Text: arXiv EMIS OpenURL
Munthe-Kaas, H. Z.; Quispel, G. R. W.; Zanna, A. Symmetric spaces and Lie triple systems in numerical analysis of differential equations. (English) Zbl 1291.65254 BIT 54, No. 1, 257-282 (2014). Reviewer: Walter Freyn (Augsburg) MSC: 65L99 53C35 58J70 34A26 PDF BibTeX XML Cite \textit{H. Z. Munthe-Kaas} et al., BIT 54, No. 1, 257--282 (2014; Zbl 1291.65254) Full Text: DOI arXiv OpenURL
Bérczes, Attila; Evertse, Jan-Hendrik; Győry, Kálmán Effective results for Diophantine equations over finitely generated domains. (English) Zbl 1312.11019 Acta Arith. 163, No. 1, 71-100 (2014). Reviewer: Volker Ziegler (Salzburg) MSC: 11D41 11D59 11D61 PDF BibTeX XML Cite \textit{A. Bérczes} et al., Acta Arith. 163, No. 1, 71--100 (2014; Zbl 1312.11019) Full Text: DOI arXiv OpenURL
Levesque, Claude; Waldschmidt, Michel Solving effectively some families of Thue Diophantine equations. (English) Zbl 1352.11035 Mosc. J. Comb. Number Theory 3, No. 3-4, 118-144 (2013). MSC: 11D61 11D41 11D59 PDF BibTeX XML Cite \textit{C. Levesque} and \textit{M. Waldschmidt}, Mosc. J. Comb. Number Theory 3, No. 3--4, 118--144 (2013; Zbl 1352.11035) Full Text: arXiv Link OpenURL
Blomer, Valentin; Schöbel, Anita Twins of powerful numbers. (English) Zbl 1304.11104 Funct. Approximatio, Comment. Math. 49, No. 2, 349-356 (2013). Reviewer: Florian Luca (Morelia) MSC: 11N25 11D45 90C11 PDF BibTeX XML Cite \textit{V. Blomer} and \textit{A. Schöbel}, Funct. Approximatio, Comment. Math. 49, No. 2, 349--356 (2013; Zbl 1304.11104) Full Text: DOI Euclid OpenURL
Bennett, Michael A.; Pink, István; Rábai, Zsolt On the number of solutions of binomial Thue inequalities. (English) Zbl 1274.11084 Publ. Math. Debr. 83, No. 1-2, 241-256 (2013). MSC: 11D41 11D61 PDF BibTeX XML Cite \textit{M. A. Bennett} et al., Publ. Math. Debr. 83, No. 1--2, 241--256 (2013; Zbl 1274.11084) Full Text: DOI OpenURL
Zhang, Zhongfeng; Bai, Meng On the Diophantine equation \((x+1)^2+(x+2)^2+\ldots+(x+d)^2=y^n\). (English) Zbl 1335.11023 Funct. Approximatio, Comment. Math. 49, No. 1, 73-77 (2013). MSC: 11D41 11D61 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{M. Bai}, Funct. Approximatio, Comment. Math. 49, No. 1, 73--77 (2013; Zbl 1335.11023) Full Text: DOI Euclid OpenURL
Chan, Tsz Ho Twin cubefull numbers. (English) Zbl 1290.11129 Int. J. Number Theory 9, No. 1, 17-26 (2013). Reviewer: Olaf Ninnemann (Uffing am Staffelsee) MSC: 11N25 11D25 11D41 11D45 PDF BibTeX XML Cite \textit{T. H. Chan}, Int. J. Number Theory 9, No. 1, 17--26 (2013; Zbl 1290.11129) Full Text: DOI OpenURL
Chan, Tsz Ho Twin squareful numbers. (English) Zbl 1290.11011 J. Aust. Math. Soc. 93, No. 1-2, 43-51 (2012). Reviewer: Olaf Ninnemann (Uffing am Staffelsee) MSC: 11B05 11D09 11D25 PDF BibTeX XML Cite \textit{T. H. Chan}, J. Aust. Math. Soc. 93, No. 1--2, 43--51 (2012; Zbl 1290.11011) Full Text: DOI OpenURL
Xia, Jingbo; Chen, Jianhua; Zhang, Silan Simplifying method for algebraic approximation of certain algebraic numbers. (English. Russian original) Zbl 1319.11046 Math. Notes 92, No. 3, 383-395 (2012); translation from Mat. Zametki 92, No. 3, 426-439 (2012). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11J68 11D25 11D59 PDF BibTeX XML Cite \textit{J. Xia} et al., Math. Notes 92, No. 3, 383--395 (2012; Zbl 1319.11046); translation from Mat. Zametki 92, No. 3, 426--439 (2012) Full Text: DOI OpenURL
Bertazzon, Jean-François Resolution of an integral equation with the Thue-Morse sequence. (English) Zbl 1259.45002 Indag. Math., New Ser. 23, No. 3, 327-336 (2012). Reviewer: Stefan Balint (Timişoara) MSC: 45D05 PDF BibTeX XML Cite \textit{J.-F. Bertazzon}, Indag. Math., New Ser. 23, No. 3, 327--336 (2012; Zbl 1259.45002) Full Text: DOI arXiv OpenURL
Bérczes, Attila; Pink, István On the Diophantine equation \(x^2+d^{2l+1}=y^n\). (English) Zbl 1266.11059 Glasg. Math. J. 54, No. 2, 415-428 (2012). Reviewer: Mihai Cipu (Bucureşti) MSC: 11D41 11D61 PDF BibTeX XML Cite \textit{A. Bérczes} and \textit{I. Pink}, Glasg. Math. J. 54, No. 2, 415--428 (2012; Zbl 1266.11059) Full Text: DOI OpenURL
Rodrigo, Javier; López, Ma. Dolores Powers in the Lucas sequence when the index is divisible by three. (English) Zbl 1281.11014 J. Algebra Number Theory, Adv. Appl. 6, No. 1-2, 57-65 (2011). MSC: 11B39 11D61 11D59 PDF BibTeX XML Cite \textit{J. Rodrigo} and \textit{Ma. D. López}, J. Algebra Number Theory, Adv. Appl. 6, No. 1--2, 57--65 (2011; Zbl 1281.11014) OpenURL
Yang, Lingyi; Chen, Jianhua; Sun, Jinlong Solution to Diophantine equation \(x^2+a^2=2y^n\). (Chinese. English summary) Zbl 1240.11056 J. Math., Wuhan Univ. 31, No. 1, 147-151 (2011). MSC: 11D45 PDF BibTeX XML Cite \textit{L. Yang} et al., J. Math., Wuhan Univ. 31, No. 1, 147--151 (2011; Zbl 1240.11056) OpenURL
Lee, Paul D.; Spearman, Blair K. A Diophantine system and a problem on cubic fields. (English) Zbl 1235.11029 Int. Math. Forum 6, No. 1-4, 141-146 (2011). Reviewer: Dimitros Poulakis (Thessaloniki) MSC: 11D25 11R27 11R16 PDF BibTeX XML Cite \textit{P. D. Lee} and \textit{B. K. Spearman}, Int. Math. Forum 6, No. 1--4, 141--146 (2011; Zbl 1235.11029) Full Text: Link OpenURL
Hoshi, Akinari On correspondence between solutions of a family of cubic Thue equations and isomorphism classes of the simplest cubic fields. (English) Zbl 1258.11054 J. Number Theory 131, No. 11, 2135-2150 (2011). Reviewer: Günter Lettl (Graz) MSC: 11D59 11D25 11R16 PDF BibTeX XML Cite \textit{A. Hoshi}, J. Number Theory 131, No. 11, 2135--2150 (2011; Zbl 1258.11054) Full Text: DOI arXiv OpenURL
Bazsó, András On binomial Thue equations and ternary equations with \(S\)-unit coefficients. (English) Zbl 1259.11037 Publ. Math. Debr. 77, No. 3-4, 499-516 (2010). MSC: 11D45 11D61 11D41 11J82 11J86 PDF BibTeX XML Cite \textit{A. Bazsó}, Publ. Math. Debr. 77, No. 3--4, 499--516 (2010; Zbl 1259.11037) OpenURL
Bazsó, András; Bérczes, Attila; Győry, Kálmán; Pintér, Ákos On the resolution of equations \(Ax^n - By^n = C\) in integers \(x,y\) and \(n\geq 3\). II. (English) Zbl 1218.11036 Publ. Math. Debr. 76, No. 1-2, 227-250 (2010). Reviewer: Lajos Hajdu (Debrecen) MSC: 11D45 11D61 11D41 11J82 11J86 PDF BibTeX XML Cite \textit{A. Bazsó} et al., Publ. Math. Debr. 76, No. 1--2, 227--250 (2010; Zbl 1218.11036) OpenURL
Najman, Filip Smooth values of some quadratic polynomials. (English) Zbl 1222.11046 Glas. Mat., III. Ser. 45, No. 2, 347-355 (2010). Reviewer: Florian Luca (Morelia) MSC: 11D59 11Y50 PDF BibTeX XML Cite \textit{F. Najman}, Glas. Mat., III. Ser. 45, No. 2, 347--355 (2010; Zbl 1222.11046) Full Text: DOI arXiv Link OpenURL
Demirci, Musa; Cangül, İsmail Naci; Soydan, Gökhan; Tzanakis, Nikos On the Diophantine equation \(x^2+5^a\cdot 11^b=y^n\). (English) Zbl 1237.11019 Funct. Approximatio, Comment. Math. 43, No. 2, 209-225 (2010). Reviewer: Florian Luca (Morelia) MSC: 11D61 11Y50 11J86 11D25 11D59 PDF BibTeX XML Cite \textit{M. Demirci} et al., Funct. Approximatio, Comment. Math. 43, No. 2, 209--225 (2010; Zbl 1237.11019) Full Text: DOI arXiv Euclid OpenURL
He, Bo; Togbé, Alain; Yuan, Pingzhi On the Diophantine equation \(X^2-(p^{2m}+1)Y^6=-p^{2m}\). (English) Zbl 1213.11077 Funct. Approximatio, Comment. Math. 43, No. 1, 31-44 (2010). Reviewer: Olaf Ninnemann (Uffing am Staffelsee) MSC: 11D41 11B39 PDF BibTeX XML Cite \textit{B. He} et al., Funct. Approximatio, Comment. Math. 43, No. 1, 31--44 (2010; Zbl 1213.11077) Full Text: DOI Euclid OpenURL
Ziegler, Volker On a family of Thue equations of degree \(16\). (English) Zbl 1223.11038 Math. Comput. 79, No. 272, 2407-2429 (2010). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11D59 11Y50 PDF BibTeX XML Cite \textit{V. Ziegler}, Math. Comput. 79, No. 272, 2407--2429 (2010; Zbl 1223.11038) Full Text: DOI OpenURL
Billerey, Nicolas; Dieulefait, Luis V. Solving Fermat-type equations \(x^5+y^5=dz^p\). (English) Zbl 1227.11053 Math. Comput. 79, No. 269, 535-544 (2010). Reviewer: Florin Nicolae (Berlin) MSC: 11D41 11F11 11D59 11G05 PDF BibTeX XML Cite \textit{N. Billerey} and \textit{L. V. Dieulefait}, Math. Comput. 79, No. 269, 535--544 (2010; Zbl 1227.11053) Full Text: DOI arXiv OpenURL
Grytczuk, Aleksander; Wójtowicz, Marek The algebraic structure of the set of solutions to the Thue equation. (English) Zbl 1205.11040 J. Number Theory 130, No. 7, 1480-1487 (2010). Reviewer: Alain S. Togbe (Westville) MSC: 11D59 PDF BibTeX XML Cite \textit{A. Grytczuk} and \textit{M. Wójtowicz}, J. Number Theory 130, No. 7, 1480--1487 (2010; Zbl 1205.11040) Full Text: DOI OpenURL
Hoshi, Akinari; Miyake, Katsuya Some diophantine problems arising from the isomorphism problem of generic polynomials. (English) Zbl 1213.12007 Aoki, Takashi (ed.) et al., Number theory. Dreaming in dreams. Proceedings of the 5th China-Japan seminar, Higashi-Osaka, Japan, August 27–31, 2008. Hackensack, NJ: World Scientific (ISBN 978-981-4289-84-9/hbk; 978-981-4289-92-4/ebook). Series on Number Theory and Its Applications 6, 87-105 (2010). Reviewer: Günter Lettl (Graz) MSC: 12F10 11D59 12F12 PDF BibTeX XML Cite \textit{A. Hoshi} and \textit{K. Miyake}, Ser. Number Theory Appl. 6, 87--105 (2010; Zbl 1213.12007) Full Text: DOI OpenURL
Ziegler, Volker On Thue equations of splitting type over function fields. (English) Zbl 1211.11043 Rocky Mt. J. Math. 40, No. 2, 723-747 (2010). Reviewer: Clemens Heuberger (Graz) MSC: 11D59 PDF BibTeX XML Cite \textit{V. Ziegler}, Rocky Mt. J. Math. 40, No. 2, 723--747 (2010; Zbl 1211.11043) Full Text: DOI OpenURL
Hoshi, Akinari; Miyake, Katsuya A note on the field isomorphism problem of \(X^{3}+sX+s\) and related cubic Thue equations. (English) Zbl 1243.11047 Interdiscip. Inf. Sci. 16, No. 1, 45-54 (2010). Reviewer: Günter Lettl (Graz) MSC: 11D59 11R16 PDF BibTeX XML Cite \textit{A. Hoshi} and \textit{K. Miyake}, Interdiscip. Inf. Sci. 16, No. 1, 45--54 (2010; Zbl 1243.11047) Full Text: DOI arXiv OpenURL
Akhtari, Shabnam The method of Thue–Siegel for binary quartic forms. (English) Zbl 1219.11053 Acta Arith. 141, No. 1, 1-31 (2010). Reviewer: Florin Nicolae (Berlin) MSC: 11D25 11D59 11D45 PDF BibTeX XML Cite \textit{S. Akhtari}, Acta Arith. 141, No. 1, 1--31 (2010; Zbl 1219.11053) Full Text: DOI arXiv OpenURL
Akhtari, Shabnam; Okazaki, Ryotaro Quartic Thue equations. (English) Zbl 1214.11037 J. Number Theory 130, No. 1, 40-60 (2010). Reviewer: Maurice Mignotte (Strasbourg) MSC: 11D25 11D59 11J86 11D45 PDF BibTeX XML Cite \textit{S. Akhtari} and \textit{R. Okazaki}, J. Number Theory 130, No. 1, 40--60 (2010; Zbl 1214.11037) Full Text: DOI OpenURL
Le, Maohua On the exponential Diophantine equation \(x+\cdots +x^m=y^n\). (Chinese. English summary) Zbl 1212.11059 J. Shangqiu Teach. Coll. 25, No. 12, 4-5 (2009). MSC: 11D61 PDF BibTeX XML Cite \textit{M. Le}, J. Shangqiu Teach. Coll. 25, No. 12, 4--5 (2009; Zbl 1212.11059) OpenURL
Walsh, P. G. On the number of large integer points on elliptic curves. (English) Zbl 1254.11035 Acta Arith. 138, No. 4, 317-327 (2009). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11D45 11D25 11D59 11D09 PDF BibTeX XML Cite \textit{P. G. Walsh}, Acta Arith. 138, No. 4, 317--327 (2009; Zbl 1254.11035) Full Text: DOI OpenURL
Zannier, Umberto [Amoroso, Francesco] Lecture notes on Diophantine analysis. With an appendix by Francesco Amoroso. (English) Zbl 1186.11001 Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) 8. Pisa: Edizioni della Normale (ISBN 978-88-7642-341-3/pbk; 978-88-7642-517-2/ebook). xvi, 237 p. (2009). Reviewer: Michel Waldschmidt (Paris) MSC: 11-01 11D04 11D09 11D41 11D59 11G05 11Jxx PDF BibTeX XML Cite \textit{U. Zannier}, Lecture notes on Diophantine analysis. With an appendix by Francesco Amoroso. Pisa: Edizioni della Normale (2009; Zbl 1186.11001) Full Text: DOI OpenURL
García-Selfa, Irene; Tornero, José M. Thue equations and torsion groups of elliptic curves. (English) Zbl 1216.11061 J. Number Theory 129, No. 2, 367-380 (2009). Reviewer: Olaf Ninnemann (Uffing am Staffelsee) MSC: 11G05 11D41 PDF BibTeX XML Cite \textit{I. García-Selfa} and \textit{J. M. Tornero}, J. Number Theory 129, No. 2, 367--380 (2009; Zbl 1216.11061) Full Text: DOI arXiv Link OpenURL
Györy, K.; Pintér, Á. Polynomial powers and a common generalization of binomial Thue-Mahler equations and \(S\)-unit equations. (English) Zbl 1238.11042 Saradha, N. (ed.), Diophantine equations. Papers from the international conference held in honor of T. N. Shorey’s 60th birthday, Mumbai, India, December 16–20, 2005. New Delhi: Narosa Publishing House/Published for the Tata Institute of Fundamental Research (ISBN 978-81-7319-898-4/hbk). Studies in Mathematics. Tata Institute of Fundamental Research 20, 103-119 (2008). Reviewer: Clemens Heuberger (Klagenfurt) MSC: 11D41 11D57 11D59 PDF BibTeX XML Cite \textit{K. Györy} and \textit{Á. Pintér}, in: Diophantine equations. Papers from the international conference held in honor of T. N. Shorey's 60th birthday, Mumbai, India, December 16--20, 2005. New Delhi: Narosa Publishing House/Published for the Tata Institute of Fundamental Research. 103--119 (2008; Zbl 1238.11042) OpenURL
He, Bo; Togbé, Alain; Walsh, P. Gary On the Diophantine equation \(X^2-(2^{2m}+1)Y^4=-2^{2m}\). (English) Zbl 1192.11020 Publ. Math. Debr. 73, No. 3-4, 417-420 (2008). MSC: 11D25 11D59 11D41 11B39 PDF BibTeX XML Cite \textit{B. He} et al., Publ. Math. Debr. 73, No. 3--4, 417--420 (2008; Zbl 1192.11020) OpenURL
Bugeaud, Yann; Luca, Florian; Mignotte, Maurice; Siksek, Samir Almost powers in the Lucas sequence. (English) Zbl 1204.11030 J. Théor. Nombres Bordx. 20, No. 3, 555-600 (2008). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11B39 11D41 11D59 11D61 11G05 11J86 11Y50 PDF BibTeX XML Cite \textit{Y. Bugeaud} et al., J. Théor. Nombres Bordx. 20, No. 3, 555--600 (2008; Zbl 1204.11030) Full Text: DOI Numdam EuDML OpenURL
Bazsó, András Further computational experiences on norm form equations with solutions forming arithmetic progressions. (English) Zbl 1164.11019 Publ. Math. Debr. 71, No. 3-4, 489-497 (2007). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11D57 11D59 11B25 11G05 11Y50 PDF BibTeX XML Cite \textit{A. Bazsó}, Publ. Math. Debr. 71, No. 3--4, 489--497 (2007; Zbl 1164.11019) OpenURL
Győry, K.; Pintér, Á. On the resolution of equations \(Ax^n-By^n=C\) in integers \(x,y\) and \(n \geq 3\). I. (English) Zbl 1127.11024 Publ. Math. Debr. 70, No. 3-4, 483-501 (2007). MSC: 11D45 11D61 11D41 11J82 11J86 PDF BibTeX XML Cite \textit{K. Győry} and \textit{Á. Pintér}, Publ. Math. Debr. 70, No. 3--4, 483--501 (2007; Zbl 1127.11024) OpenURL
Kirschenhofer, Peter; Lampl, Catrin M. On a parameterized family of relative Thue equations. (English) Zbl 1135.11311 Publ. Math. Debr. 71, No. 1-2, 101-139 (2007). MSC: 11D25 11R11 PDF BibTeX XML Cite \textit{P. Kirschenhofer} and \textit{C. M. Lampl}, Publ. Math. Debr. 71, No. 1--2, 101--139 (2007; Zbl 1135.11311) OpenURL
Ziegler, Volker Thomas’ conjecture over function fields. (English) Zbl 1193.11030 J. Théor. Nombres Bordx. 19, No. 1, 289-309 (2007). Reviewer: Alain S. Togbe (Westville) MSC: 11D59 11D25 11Y50 PDF BibTeX XML Cite \textit{V. Ziegler}, J. Théor. Nombres Bordx. 19, No. 1, 289--309 (2007; Zbl 1193.11030) Full Text: DOI Numdam EuDML OpenURL
Wakabayashi, Isao Number of solutions for cubic Thue equations with automorphisms. (English) Zbl 1133.11024 Ramanujan J. 14, No. 1, 131-154 (2007). Reviewer: Clemens Heuberger (Graz) MSC: 11D59 11D25 PDF BibTeX XML Cite \textit{I. Wakabayashi}, Ramanujan J. 14, No. 1, 131--154 (2007; Zbl 1133.11024) Full Text: DOI OpenURL
Ta Thi Hoai An; Wang, Julie Tzu-Yueh An effective Schmidt’s subspace theorem for non-linear forms over function fields. (English) Zbl 1201.14017 J. Number Theory 125, No. 1, 210-228 (2007). Reviewer: Günter Lettl (Graz) MSC: 14G27 11D59 PDF BibTeX XML Cite \textit{Ta Thi Hoai An} and \textit{J. T. Y. Wang}, J. Number Theory 125, No. 1, 210--228 (2007; Zbl 1201.14017) Full Text: DOI OpenURL
Bérczes, Attila; Evertse, Jan-Hendrik; Győry, Kálmán On the number of pairs of binary forms with given degree and given resultant. (English) Zbl 1152.11015 Acta Arith. 128, No. 1, 19-54 (2007). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11D57 11D59 11D72 PDF BibTeX XML Cite \textit{A. Bérczes} et al., Acta Arith. 128, No. 1, 19--54 (2007; Zbl 1152.11015) Full Text: DOI OpenURL
Bremner, A.; Tzanakis, N. Lucas sequences whose \(n\)th term is a square or an almost square. (English) Zbl 1109.11022 Acta Arith. 126, No. 3, 261-280 (2007). Reviewer: Alain Kraus (Paris) MSC: 11D41 11B39 11D59 11G30 PDF BibTeX XML Cite \textit{A. Bremner} and \textit{N. Tzanakis}, Acta Arith. 126, No. 3, 261--280 (2007; Zbl 1109.11022) Full Text: DOI arXiv OpenURL
Wakabayashi, Isao Cubic Thue equations with automorphisms. (English) Zbl 1155.11020 Katsurada, Masanori (ed.) et al., Diophantine analysis and related fields 2006. In honor of Iekata Shiokawa. Proceedings of the conference, Keio University, Yokohama, Japan, March 7–10, 2006. Yokohama: Keio University, Department of Mathematics. Seminar on Mathematical Sciences 35, 193-202 (2006). Reviewer: Péter Olajos (Miskolc) MSC: 11D59 11D25 11D75 PDF BibTeX XML Cite \textit{I. Wakabayashi}, Semin. Math. Sci. 35, 193--202 (2006; Zbl 1155.11020) OpenURL
Tanaka, Yuzen Rational approximation of \((1+x)^a\) and applications to the Thue inequality. (English) Zbl 1158.11032 Katsurada, Masanori (ed.) et al., Diophantine analysis and related fields 2006. In honor of Iekata Shiokawa. Proceedings of the conference, Keio University, Yokohama, Japan, March 7–10, 2006. Yokohama: Keio University, Department of Mathematics. Seminar on Mathematical Sciences 35, 187-191 (2006). Reviewer: István Gaál (Debrecen) MSC: 11J13 11D59 PDF BibTeX XML Cite \textit{Y. Tanaka}, Semin. Math. Sci. 35, 187--191 (2006; Zbl 1158.11032) OpenURL
Heuberger, Clemens All solutions to Thomas’ family of Thue equations over imaginary quadratic number fields. (English) Zbl 1158.11016 J. Symb. Comput. 41, No. 9, 980-998 (2006). MSC: 11D59 11Y50 11D25 11R11 PDF BibTeX XML Cite \textit{C. Heuberger}, J. Symb. Comput. 41, No. 9, 980--998 (2006; Zbl 1158.11016) Full Text: DOI OpenURL
Togbé, Alain On the solutions of a family of quartic Thue equations. II. (English) Zbl 1135.11013 C. R. Math. Acad. Sci., Soc. R. Can. 28, No. 1, 24-32 (2006). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11D59 11J86 11Y50 PDF BibTeX XML Cite \textit{A. Togbé}, C. R. Math. Acad. Sci., Soc. R. Can. 28, No. 1, 24--32 (2006; Zbl 1135.11013) OpenURL
Togbé, Alain A parametric family of sextic Thue equations. (English) Zbl 1158.11017 Acta Arith. 125, No. 4, 347-361 (2006). Reviewer: Günter Lettl (Graz) MSC: 11D59 11J86 11Y50 PDF BibTeX XML Cite \textit{A. Togbé}, Acta Arith. 125, No. 4, 347--361 (2006; Zbl 1158.11017) Full Text: DOI OpenURL
Coulter, Robert S.; Henderson, Marie; Lazebnik, Felix On certain combinatorial Diophantine equations and their connection to Pythagorean numbers. (English) Zbl 1158.11015 Acta Arith. 122, No. 4, 395-406 (2006). Reviewer: Lajos Hajdu (Debrecen) MSC: 11D41 11D09 11G45 11D59 PDF BibTeX XML Cite \textit{R. S. Coulter} et al., Acta Arith. 122, No. 4, 395--406 (2006; Zbl 1158.11015) Full Text: DOI OpenURL
Togbé, Alain Complete solutions of a family of cubic Thue equations. (English) Zbl 1115.11021 J. Théor. Nombres Bordx. 18, No. 1, 285-298 (2006). Reviewer: Clemens Heuberger (Graz) MSC: 11D59 11D25 PDF BibTeX XML Cite \textit{A. Togbé}, J. Théor. Nombres Bordx. 18, No. 1, 285--298 (2006; Zbl 1115.11021) Full Text: DOI Numdam EuDML Link OpenURL
Bugeaud, Yann; Mignotte, Maurice; Siksek, Samir Classical and modular approaches to exponential Diophantine equations. I: Fibonacci and Lucas perfect powers. (English) Zbl 1113.11021 Ann. Math. (2) 163, No. 3, 969-1018 (2006). Reviewer: Wolfgang Schwarz (Frankfurt / Main) MSC: 11D61 11B39 11J86 11G99 PDF BibTeX XML Cite \textit{Y. Bugeaud} et al., Ann. Math. (2) 163, No. 3, 969--1018 (2006; Zbl 1113.11021) Full Text: DOI arXiv OpenURL
Bennett, Michael A.; Togbé, Alain; Walsh, P. G. A generalization of a theorem of Bumby on quartic Diophantine equations. (English) Zbl 1122.11019 Int. J. Number Theory 2, No. 2, 195-206 (2006). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11D41 11B39 11J82 PDF BibTeX XML Cite \textit{M. A. Bennett} et al., Int. J. Number Theory 2, No. 2, 195--206 (2006; Zbl 1122.11019) Full Text: DOI OpenURL
Fuchs, Clemens; Ziegler, Volker On a family of Thue equations over function fields. (English) Zbl 1103.11009 Monatsh. Math. 147, No. 1, 11-23 (2006). Reviewer: Alain S. Togbe (Westville) MSC: 11D59 11D25 11Y50 PDF BibTeX XML Cite \textit{C. Fuchs} and \textit{V. Ziegler}, Monatsh. Math. 147, No. 1, 11--23 (2006; Zbl 1103.11009) Full Text: DOI OpenURL
Togbé, A.; Voutier, P. M.; Walsh, P. G. Solving a family of Thue equations with an application to the equation \(x^2-Dy^4=1\). (English) Zbl 1155.11318 Acta Arith. 120, No. 1, 39-58 (2005). Reviewer: Clemens Heuberger (Klagenfurt) MSC: 11D59 11D25 PDF BibTeX XML Cite \textit{A. Togbé} et al., Acta Arith. 120, No. 1, 39--58 (2005; Zbl 1155.11318) Full Text: DOI OpenURL
Jadrijević, Borka A system of Pellian equations and related two-parametric family of quartic Thue equations. (English) Zbl 1090.11021 Rocky Mt. J. Math. 35, No. 2, 547-571 (2005). Reviewer: Nikos Tzanakis (Iraklion) MSC: 11D59 11D25 11B37 11J86 PDF BibTeX XML Cite \textit{B. Jadrijević}, Rocky Mt. J. Math. 35, No. 2, 547--571 (2005; Zbl 1090.11021) Full Text: DOI OpenURL