Lal, Roshan; Dangi, Chinika Dynamic analysis of bi-directional functionally graded Timoshenko nanobeam on the basis of Eringen’s nonlocal theory incorporating the surface effect. (English) Zbl 07335156 Appl. Math. Comput. 395, Article ID 125857, 15 p. (2021). MSC: 74 35 PDF BibTeX XML Cite \textit{R. Lal} and \textit{C. Dangi}, Appl. Math. Comput. 395, Article ID 125857, 15 p. (2021; Zbl 07335156) Full Text: DOI
Huy, Nguyen Thieu; Ha, Vu Thi Ngoc; Mai, Vu Thi Conditional stability of semigroups and periodic solutions to evolution equations. (English) Zbl 07332031 Cicognani, Massimo (ed.) et al., Anomalies in partial differential equations. Based on talks given at the INDAM workshop, University of Rome “La Sapienza”, Rome, Italy, September 9–13, 2019. Cham: Springer (ISBN 978-3-030-61345-7/hbk; 978-3-030-61346-4/ebook). Springer INdAM Series 43, 331-346 (2021). MSC: 35L90 35B10 PDF BibTeX XML Cite \textit{N. T. Huy} et al., Springer INdAM Ser. 43, 331--346 (2021; Zbl 07332031) Full Text: DOI
Ramos, A. J. A.; Aouadi, M.; Almeida Júnior, D. S.; Freitas, M. M.; Araújo, M. L. A new stabilization scenario for Timoshenko systems with thermo-diffusion effects in second spectrum perspective. (English) Zbl 07322650 Arch. Math. 116, No. 2, 203-219 (2021). MSC: 74K10 74F05 74H20 74H25 74H40 35Q74 PDF BibTeX XML Cite \textit{A. J. A. Ramos} et al., Arch. Math. 116, No. 2, 203--219 (2021; Zbl 07322650) Full Text: DOI
Gul, Ufuk; Aydogdu, Metin A micro/nano-scale Timoshenko-Ehrenfest beam model for bending, buckling and vibration analyses based on doublet mechanics theory. (English) Zbl 07312442 Eur. J. Mech., A, Solids 86, Article ID 104199, 17 p. (2021). MSC: 74 PDF BibTeX XML Cite \textit{U. Gul} and \textit{M. Aydogdu}, Eur. J. Mech., A, Solids 86, Article ID 104199, 17 p. (2021; Zbl 07312442) Full Text: DOI
Rizzoni, Raffaella; Dumont, Serge; Lebon, Frédéric; Sacco, Elio Higher order adhesive effects in composite beams. (English) Zbl 07305843 Eur. J. Mech., A, Solids 85, Article ID 104108, 17 p. (2021). MSC: 74 PDF BibTeX XML Cite \textit{R. Rizzoni} et al., Eur. J. Mech., A, Solids 85, Article ID 104108, 17 p. (2021; Zbl 07305843) Full Text: DOI
Mustafa, Muhammad I. On the control of dissipative viscoelastic Timoshenko beams. (English) Zbl 07302849 Mediterr. J. Math. 18, No. 2, Paper No. 49, 20 p. (2021). MSC: 35B40 74D99 93D15 93D20 PDF BibTeX XML Cite \textit{M. I. Mustafa}, Mediterr. J. Math. 18, No. 2, Paper No. 49, 20 p. (2021; Zbl 07302849) Full Text: DOI
Yas, M. H.; Rahimi, S. Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets. (English) Zbl 07327134 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 8, 1209-1226 (2020). MSC: 74H45 74F05 74E30 PDF BibTeX XML Cite \textit{M. H. Yas} and \textit{S. Rahimi}, AMM, Appl. Math. Mech., Engl. Ed. 41, No. 8, 1209--1226 (2020; Zbl 07327134) Full Text: DOI
Ochoa, Elena Ochoa; Ávalos, Gerardo Gómez; Rivera, Jaime E. Muñoz About partial boundary dissipation to Timoshenko system with delay. (English) Zbl 1455.35145 Math. Methods Appl. Sci. 43, No. 17, 9805-9813 (2020). MSC: 35L53 35B35 35B40 74H40 74K10 93D15 PDF BibTeX XML Cite \textit{E. O. Ochoa} et al., Math. Methods Appl. Sci. 43, No. 17, 9805--9813 (2020; Zbl 1455.35145) Full Text: DOI
Sklyar, G. M.; Woźniak, J.; Firkowski, M. Exact observability conditions for Hilbert space dynamical systems connected with Riesz basis of divided differences. (English) Zbl 07290550 Syst. Control Lett. 145, Article ID 104782, 7 p. (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 93B07 93C25 PDF BibTeX XML Cite \textit{G. M. Sklyar} et al., Syst. Control Lett. 145, Article ID 104782, 7 p. (2020; Zbl 07290550) Full Text: DOI
Gholizadeh Pasha, A. H.; Sadeghi, A. Nonlinear vibrations of the immersed dagger-shaped atomic force microscope cantilever in different liquids studied by experimental and theoretical methods. (English. Russian original) Zbl 1451.74040 J. Appl. Mech. Tech. Phys. 61, No. 4, 652-660 (2020); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 4, 174-183 (2020). MSC: 74A60 74K10 74H45 PDF BibTeX XML Cite \textit{A. H. Gholizadeh Pasha} and \textit{A. Sadeghi}, J. Appl. Mech. Tech. Phys. 61, No. 4, 652--660 (2020; Zbl 1451.74040); translation from Prikl. Mekh. Tekh. Fiz. 61, No. 4, 174--183 (2020) Full Text: DOI
Li, Yongqiang; Li, Meng Dynamic analysis of rotating double-tapered cantilever Timoshenko nano-beam using the nonlocal strain gradient theory. (English) Zbl 1454.35376 Math. Methods Appl. Sci. 43, No. 15, 9206-9222 (2020). MSC: 35Q74 74H45 74K10 PDF BibTeX XML Cite \textit{Y. Li} and \textit{M. Li}, Math. Methods Appl. Sci. 43, No. 15, 9206--9222 (2020; Zbl 1454.35376) Full Text: DOI
Feng, Baowei; Soufyane, Abdelaziz Memory-type boundary control of a laminated Timoshenko beam. (English) Zbl 07272701 Math. Mech. Solids 25, No. 8, 1568-1588 (2020). MSC: 74 PDF BibTeX XML Cite \textit{B. Feng} and \textit{A. Soufyane}, Math. Mech. Solids 25, No. 8, 1568--1588 (2020; Zbl 07272701) Full Text: DOI
Elishakoff, Isaac Who developed the so-called Timoshenko beam theory? (English) Zbl 1446.74003 Math. Mech. Solids 25, No. 1, 97-116 (2020). MSC: 74-03 74K10 01A60 PDF BibTeX XML Cite \textit{I. Elishakoff}, Math. Mech. Solids 25, No. 1, 97--116 (2020; Zbl 1446.74003) Full Text: DOI
Oquendo, Higidio Portillo; da Luz, Cleverson Roberto Asymptotic behavior for Timoshenko systems with fractional damping. (English) Zbl 1451.35214 Asymptotic Anal. 118, No. 1-2, 123-142 (2020). MSC: 35Q74 74M10 35B40 35R11 26A33 PDF BibTeX XML Cite \textit{H. P. Oquendo} and \textit{C. R. da Luz}, Asymptotic Anal. 118, No. 1--2, 123--142 (2020; Zbl 1451.35214) Full Text: DOI
Yin, Shuohui; Deng, Yang; Zhang, Gongye; Yu, Tiantang; Gu, Shuitao A new isogeometric Timoshenko beam model incorporating microstructures and surface energy effects. (English) Zbl 07259268 Math. Mech. Solids 25, No. 10, 2005-2022 (2020). MSC: 74 PDF BibTeX XML Cite \textit{S. Yin} et al., Math. Mech. Solids 25, No. 10, 2005--2022 (2020; Zbl 07259268) Full Text: DOI
Santos, Manoel J.; Raposo, Carlos A.; Rodrigues, Leonardo R. S. Boundary exact controllability for a porous elastic Timoshenko system. (English) Zbl 07250666 Appl. Math., Praha 65, No. 4, 343-354 (2020). MSC: 93C20 93B05 PDF BibTeX XML Cite \textit{M. J. Santos} et al., Appl. Math., Praha 65, No. 4, 343--354 (2020; Zbl 07250666) Full Text: DOI
Bhattacharya, Sujash; Das, Debabrata A study on free vibration behavior of microbeam under large static deflection using modified couple stress theory. (English) Zbl 1452.74047 Maity, Damodar (ed.) et al., Advances in fluid mechanics and solid mechanics. Proceedings of the 63rd congress of the Indian Society of Theoretical and Applied Mechanics (ISTAM), Bangalore, India, December 20–23, 2018. Singapore: Springer. Lect. Notes Mech. Engin., 155-164 (2020). MSC: 74H45 74K10 74M25 74H80 74S99 PDF BibTeX XML Cite \textit{S. Bhattacharya} and \textit{D. Das}, in: Advances in fluid mechanics and solid mechanics. Proceedings of the 63rd congress of the Indian Society of Theoretical and Applied Mechanics (ISTAM), Bangalore, India, December 20--23, 2018. Singapore: Springer. 155--164 (2020; Zbl 1452.74047) Full Text: DOI
Lei, Yeui-Lung; Gao, Kang; Wang, Xinwei; Yang, Jie Dynamic behaviors of single- and multi-span functionally graded porous beams with flexible boundary constraints. (English) Zbl 07203976 Appl. Math. Modelling 83, 754-776 (2020). MSC: 74 80 PDF BibTeX XML Cite \textit{Y.-L. Lei} et al., Appl. Math. Modelling 83, 754--776 (2020; Zbl 07203976) Full Text: DOI
Alavi, Seyed Ehsan; Sadighi, Mojtaba; Pazhooh, Mitra Danesh; Ganghoffer, Jean-François Development of size-dependent consistent couple stress theory of Timoshenko beams. (English) Zbl 07190995 Appl. Math. Modelling 79, 685-712 (2020). MSC: 74 65 PDF BibTeX XML Cite \textit{S. E. Alavi} et al., Appl. Math. Modelling 79, 685--712 (2020; Zbl 07190995) Full Text: DOI
Guesmia, Aissa Well-posedness and stability results for laminated Timoshenko beams with interfacial slip and infinite memory. (English) Zbl 1436.93116 IMA J. Math. Control Inf. 37, No. 1, 300-350 (2020). MSC: 93D23 93C20 93C80 70Q05 PDF BibTeX XML Cite \textit{A. Guesmia}, IMA J. Math. Control Inf. 37, No. 1, 300--350 (2020; Zbl 1436.93116) Full Text: DOI
Zhang, Liping; Liu, Dongyi; Xu, Genqi Stabilization of a Timoshenko beam system with a tip mass under unknown non-uniformly bounded disturbances. (English) Zbl 1436.93121 IMA J. Math. Control Inf. 37, No. 1, 241-259 (2020). MSC: 93D23 93B53 70Q05 PDF BibTeX XML Cite \textit{L. Zhang} et al., IMA J. Math. Control Inf. 37, No. 1, 241--259 (2020; Zbl 1436.93121) Full Text: DOI
Doeva, Olga; Masjedi, Pedram Khaneh; Weaver, Paul M. Static deflection of fully coupled composite Timoshenko beams: an exact analytical solution. (English) Zbl 07181912 Eur. J. Mech., A, Solids 81, Article ID 103975, 17 p. (2020). MSC: 74 PDF BibTeX XML Cite \textit{O. Doeva} et al., Eur. J. Mech., A, Solids 81, Article ID 103975, 17 p. (2020; Zbl 07181912) Full Text: DOI
Furtsev, Alekseĭ Igor’evich The unilateral contact problem for a Timoshenko plate and a thin elastic obstacle. (Russian. English summary) Zbl 1435.35374 Sib. Èlektron. Mat. Izv. 17, 364-379 (2020). MSC: 35Q74 74G65 74M15 74K20 35A01 35A02 49J40 74M05 93C20 PDF BibTeX XML Cite \textit{A. I. Furtsev}, Sib. Èlektron. Mat. Izv. 17, 364--379 (2020; Zbl 1435.35374) Full Text: DOI
Barchiesi, Emilio; Khakalo, Sergei Variational asymptotic homogenization of beam-like square lattice structures. (English) Zbl 07273367 Math. Mech. Solids 24, No. 10, 3295-3318 (2019). MSC: 74 PDF BibTeX XML Cite \textit{E. Barchiesi} and \textit{S. Khakalo}, Math. Mech. Solids 24, No. 10, 3295--3318 (2019; Zbl 07273367) Full Text: DOI
Kienzler, Reinhold; Schneider, Patrick A beam – just a beam in linear plane bending. (English) Zbl 07270535 Altenbach, Holm (ed.) et al., Recent developments in the theory of shells. Dedicated to Wojciech Pietraszkiewicz on the occasion of his 80th birthday. Cham: Springer (ISBN 978-3-030-17746-1/hbk; 978-3-030-17747-8/ebook). Advanced Structured Materials 110, 329-350 (2019). Reviewer: M. Cengiz Dökmeci (İstanbul) MSC: 74K10 74G10 PDF BibTeX XML Cite \textit{R. Kienzler} and \textit{P. Schneider}, Adv. Struct. Mater. 110, 329--350 (2019; Zbl 07270535) Full Text: DOI
De Felice, Alessandro; Sorrentino, Silvio On the dynamic behaviour of rotating shafts under combined axial and torsional loads. (English) Zbl 1442.74099 Meccanica 54, No. 7, 1029-1055 (2019). MSC: 74K10 70E05 PDF BibTeX XML Cite \textit{A. De Felice} and \textit{S. Sorrentino}, Meccanica 54, No. 7, 1029--1055 (2019; Zbl 1442.74099) Full Text: DOI
Zhao, Dong; Liu, Ying Effects of director rotation relaxation on viscoelastic wave dispersion in nematic elastomer beams. (English) Zbl 1445.74036 Math. Mech. Solids 24, No. 4, 1103-1115 (2019). MSC: 74J20 74K10 74D99 74E10 PDF BibTeX XML Cite \textit{D. Zhao} and \textit{Y. Liu}, Math. Mech. Solids 24, No. 4, 1103--1115 (2019; Zbl 1445.74036) Full Text: DOI
Miranda, E. J. P. jun.; Dos Santos, J. M. C. Flexural wave band gaps in multi-resonator elastic metamaterial Timoshenko beams. (English) Zbl 07222231 Wave Motion 91, Article ID 102391, 23 p. (2019). MSC: 74 78 PDF BibTeX XML Cite \textit{E. J. P. Miranda jun.} and \textit{J. M. C. Dos Santos}, Wave Motion 91, Article ID 102391, 23 p. (2019; Zbl 07222231) Full Text: DOI
Ducceschi, Michele; Bilbao, Stefan Conservative finite difference time domain schemes for the prestressed Timoshenko, shear and Euler-Bernoulli beam equations. (English) Zbl 07222044 Wave Motion 89, 142-165 (2019). MSC: 74 35 PDF BibTeX XML Cite \textit{M. Ducceschi} and \textit{S. Bilbao}, Wave Motion 89, 142--165 (2019; Zbl 07222044) Full Text: DOI
Piccardo, Giuseppe; Tubino, Frederica; Luongo, Angelo Equivalent Timoshenko linear beam model for the static and dynamic analysis of tower buildings. (English) Zbl 07186606 Appl. Math. Modelling 71, 77-95 (2019). MSC: 74 70 PDF BibTeX XML Cite \textit{G. Piccardo} et al., Appl. Math. Modelling 71, 77--95 (2019; Zbl 07186606) Full Text: DOI
Ghafarian, M.; Ariaei, A. Forced vibration analysis of a Timoshenko beam featuring bending-torsion on Pasternak foundation. (English) Zbl 07183393 Appl. Math. Modelling 66, 472-485 (2019). MSC: 74 70 PDF BibTeX XML Cite \textit{M. Ghafarian} and \textit{A. Ariaei}, Appl. Math. Modelling 66, 472--485 (2019; Zbl 07183393) Full Text: DOI
Chen, Fu-quan; Lin, Luo-bin; Wang, Jian-jun Energy method as solution for deformation of geosynthetic-reinforced embankment on Pasternak foundation. (English) Zbl 07183390 Appl. Math. Modelling 66, 424-439 (2019). MSC: 74 76 PDF BibTeX XML Cite \textit{F.-q. Chen} et al., Appl. Math. Modelling 66, 424--439 (2019; Zbl 07183390) Full Text: DOI
Korayem, Alireza Habibnejad; Korayem, Moharam Habibnejad Effect of three types of piezoelectric cantilever on the topography quality in the vicinity of rough surface in a fluid ambient. (English) Zbl 07183341 Appl. Math. Modelling 65, 333-347 (2019). MSC: 74 76 PDF BibTeX XML Cite \textit{A. H. Korayem} and \textit{M. H. Korayem}, Appl. Math. Modelling 65, 333--347 (2019; Zbl 07183341) Full Text: DOI
Panigrahi, B.; Pohit, G. Amplitude incremental method: a novel approach to capture stable and unstable solutions of harmonically excited vibration response of functionally graded beams under large amplitude motion. (English) Zbl 07168306 Int. J. Nonlinear Sci. Numer. Simul. 20, No. 5, 581-594 (2019). MSC: 37M05 PDF BibTeX XML Cite \textit{B. Panigrahi} and \textit{G. Pohit}, Int. J. Nonlinear Sci. Numer. Simul. 20, No. 5, 581--594 (2019; Zbl 07168306) Full Text: DOI
Xu, Jing; Li, Shiyao; Wang, Bintai; Li, Jing; Jiang, Xiugen Analytical finite element for Timoshenko beams. (Chinese. English summary) Zbl 1449.74194 J. Southwest Jiaotong Univ. 54, No. 3, 492-498 (2019). MSC: 74S05 74K10 PDF BibTeX XML Cite \textit{J. Xu} et al., J. Southwest Jiaotong Univ. 54, No. 3, 492--498 (2019; Zbl 1449.74194) Full Text: DOI
Spagnuolo, Mario; Andreaus, Ugo A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. (English) Zbl 1425.74267 Math. Mech. Solids 24, No. 1, 258-280 (2019). MSC: 74K10 74G60 74-02 PDF BibTeX XML Cite \textit{M. Spagnuolo} and \textit{U. Andreaus}, Math. Mech. Solids 24, No. 1, 258--280 (2019; Zbl 1425.74267) Full Text: DOI
Zeng, Jin; Ma, Hui; Yu, Kun; Xu, Zhitao; Wen, Bangchun Coupled flapwise-chordwise-axial-torsional dynamic responses of rotating pre-twisted and inclined cantilever beams subject to the base excitation. (English) Zbl 1422.74063 AMM, Appl. Math. Mech., Engl. Ed. 40, No. 8, 1053-1082 (2019). MSC: 74K10 74H45 74S05 PDF BibTeX XML Cite \textit{J. Zeng} et al., AMM, Appl. Math. Mech., Engl. Ed. 40, No. 8, 1053--1082 (2019; Zbl 1422.74063) Full Text: DOI
Öchsner, Andreas; Makvandi, Resam Finite elements using Maxima. Theory and routines for rods and beams. (English) Zbl 1427.74001 Cham: Springer (ISBN 978-3-030-17198-8/hbk; 978-3-030-17199-5/ebook). xiii, 256 p. (2019). Reviewer: V. Leontiev (Ul’yanovsk) MSC: 74-01 74-04 74S05 74K10 PDF BibTeX XML Cite \textit{A. Öchsner} and \textit{R. Makvandi}, Finite elements using Maxima. Theory and routines for rods and beams. Cham: Springer (2019; Zbl 1427.74001) Full Text: DOI
Ding, Hu; Zhu, Minhui; Chen, Liqun Dynamic stiffness method for free vibration of an axially moving beam with generalized boundary conditions. (English) Zbl 1418.74019 AMM, Appl. Math. Mech., Engl. Ed. 40, No. 7, 911-924 (2019). MSC: 74K10 74H45 PDF BibTeX XML Cite \textit{H. Ding} et al., AMM, Appl. Math. Mech., Engl. Ed. 40, No. 7, 911--924 (2019; Zbl 1418.74019) Full Text: DOI
Aouadi, Moncef; Campo, Marco; Copetti, Maria I. M.; Fernández, José R. Existence, stability and numerical results for a Timoshenko beam with thermodiffusion effects. (English) Zbl 1418.74018 Z. Angew. Math. Phys. 70, No. 4, Paper No. 117, 26 p. (2019). MSC: 74K10 37N15 74F05 65M60 65M12 PDF BibTeX XML Cite \textit{M. Aouadi} et al., Z. Angew. Math. Phys. 70, No. 4, Paper No. 117, 26 p. (2019; Zbl 1418.74018) Full Text: DOI
Berkani, Amirouche; Tatar, Nasser-Eddine Stabilization of a viscoelastic Timoshenko beam fixed into a moving base. (English) Zbl 1447.35215 Math. Model. Nat. Phenom. 14, No. 5, Paper No. 501, 29 p. (2019). MSC: 35L53 74K10 93D15 93D20 PDF BibTeX XML Cite \textit{A. Berkani} and \textit{N.-E. Tatar}, Math. Model. Nat. Phenom. 14, No. 5, Paper No. 501, 29 p. (2019; Zbl 1447.35215) Full Text: DOI
Faraji-Oskouie, M.; Norouzzadeh, A.; Ansari, R.; Rouhi, H. Bending of small-scale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach. (English) Zbl 1416.74074 AMM, Appl. Math. Mech., Engl. Ed. 40, No. 6, 767-782 (2019). MSC: 74M25 74K10 74S05 74A35 PDF BibTeX XML Cite \textit{M. Faraji-Oskouie} et al., AMM, Appl. Math. Mech., Engl. Ed. 40, No. 6, 767--782 (2019; Zbl 1416.74074) Full Text: DOI
Lyu, Qiang; Li, Jingjing; Zhang, Nenghui Quasi-static and dynamical analyses of a thermoviscoelastic Timoshenko beam using the differential quadrature method. (English) Zbl 1416.74063 AMM, Appl. Math. Mech., Engl. Ed. 40, No. 4, 549-562 (2019). MSC: 74K10 74F05 74A15 PDF BibTeX XML Cite \textit{Q. Lyu} et al., AMM, Appl. Math. Mech., Engl. Ed. 40, No. 4, 549--562 (2019; Zbl 1416.74063) Full Text: DOI
Paimushin, V. N.; Kholmogorov, S. A.; Badriev, I. B. Consistent equations of nonlinear multilayer shells theory in the quadratic approximation. (English) Zbl 07080235 Lobachevskii J. Math. 40, No. 3, 349-363 (2019). MSC: 74K25 74E30 74M15 74K10 PDF BibTeX XML Cite \textit{V. N. Paimushin} et al., Lobachevskii J. Math. 40, No. 3, 349--363 (2019; Zbl 07080235) Full Text: DOI
Wang, Xiaorui; Han, Zhongjie; Xu, Genqi Spectral analysis of Timoshenko beam with time delay in interior damping. (English) Zbl 07067235 Z. Angew. Math. Phys. 70, No. 2, Paper No. 65, 25 p. (2019). MSC: 34K08 35P20 PDF BibTeX XML Cite \textit{X. Wang} et al., Z. Angew. Math. Phys. 70, No. 2, Paper No. 65, 25 p. (2019; Zbl 07067235) Full Text: DOI
Della Corte, A.; Battista, A.; dell’Isola, F.; Seppecher, P. Large deformations of Timoshenko and Euler beams under distributed load. (English) Zbl 1415.74010 Z. Angew. Math. Phys. 70, No. 2, Paper No. 52, 19 p. (2019). MSC: 74B20 34B15 49J45 PDF BibTeX XML Cite \textit{A. Della Corte} et al., Z. Angew. Math. Phys. 70, No. 2, Paper No. 52, 19 p. (2019; Zbl 1415.74010) Full Text: DOI
Peng, Y. X.; Zhang, A. M.; Li, S. F.; Ming, F. R. A beam formulation based on RKPM for the dynamic analysis of stiffened shell structures. (English) Zbl 07024097 Comput. Mech. 63, No. 1, 35-48 (2019). MSC: 74 PDF BibTeX XML Cite \textit{Y. X. Peng} et al., Comput. Mech. 63, No. 1, 35--48 (2019; Zbl 07024097) Full Text: DOI
Balobanov, Viacheslav; Niiranen, Jarkko Locking-free variational formulations and isogeometric analysis for the Timoshenko beam models of strain gradient and classical elasticity. (English) Zbl 1440.74179 Comput. Methods Appl. Mech. Eng. 339, 137-159 (2018). MSC: 74K10 65D07 74S05 65N30 PDF BibTeX XML Cite \textit{V. Balobanov} and \textit{J. Niiranen}, Comput. Methods Appl. Mech. Eng. 339, 137--159 (2018; Zbl 1440.74179) Full Text: DOI
Sabbagh-Yazdi, Saeed Reza; Farhoud, Arwin; Gharebaghi, Saeed Asil Simulation of 2D linear crack growth under constant load using GFVM and two-point displacement extrapolation method. (English) Zbl 07182483 Appl. Math. Modelling 61, 650-667 (2018). MSC: 74R10 74S10 74K10 PDF BibTeX XML Cite \textit{S. R. Sabbagh-Yazdi} et al., Appl. Math. Modelling 61, 650--667 (2018; Zbl 07182483) Full Text: DOI
Mokhtari, Ali; Mirdamadi, Hamid Reza Study on vibration and stability of an axially translating viscoelastic Timoshenko beam: non-transforming spectral element analysis. (English) Zbl 07166691 Appl. Math. Modelling 56, 342-358 (2018). MSC: 74 93 PDF BibTeX XML Cite \textit{A. Mokhtari} and \textit{H. R. Mirdamadi}, Appl. Math. Modelling 56, 342--358 (2018; Zbl 07166691) Full Text: DOI
Moradweysi, P.; Ansari, R.; Hosseini, Kamyar; Sadeghi, F. Application of modified Adomian decomposition method to pull-in instability of nano-switches using nonlocal Timoshenko beam theory. (English) Zbl 07166611 Appl. Math. Modelling 54, 594-604 (2018). MSC: 74 76 PDF BibTeX XML Cite \textit{P. Moradweysi} et al., Appl. Math. Modelling 54, 594--604 (2018; Zbl 07166611) Full Text: DOI
Bhattacharyya, A.; Mukhopadhyay, B. The general solution for dynamical problem of rectangular micro-polar beam vibrating at high frequency. (English) Zbl 1427.74083 Appl. Math. Comput. 332, 376-389 (2018). MSC: 74K10 74H45 PDF BibTeX XML Cite \textit{A. Bhattacharyya} and \textit{B. Mukhopadhyay}, Appl. Math. Comput. 332, 376--389 (2018; Zbl 1427.74083) Full Text: DOI
Jia, Yanna Active disturbance rejection control to stabilization for Timoshenko beam with tip mass subject to boundary control matched disturbance. (Chinese. English summary) Zbl 1438.93195 J. Syst. Sci. Math. Sci. 38, No. 11, 1252-1266 (2018). MSC: 93D21 74K10 93C20 PDF BibTeX XML Cite \textit{Y. Jia}, J. Syst. Sci. Math. Sci. 38, No. 11, 1252--1266 (2018; Zbl 1438.93195)
Peradze, J.; Tsiklauri, Z. On an iteration method of solution of a system of discrete equations for a dynamic beam. (English) Zbl 1438.74150 Proc. I. Vekua Inst. Appl. Math. 68, 68-76 (2018). MSC: 74S05 74S20 65N22 35L53 65N30 74H15 74K10 PDF BibTeX XML Cite \textit{J. Peradze} and \textit{Z. Tsiklauri}, Proc. I. Vekua Inst. Appl. Math. 68, 68--76 (2018; Zbl 1438.74150)
Zhang, Chunguo; Liu, Yubiao; Liu, Weiwei Boundary optimal control for the Timoshenko beam. (Chinese. English summary) Zbl 1440.35208 Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 3, 454-466 (2018). MSC: 35L53 35Q74 74K10 PDF BibTeX XML Cite \textit{C. Zhang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 3, 454--466 (2018; Zbl 1440.35208)
Kufner, Tobias; Leugering, Günter; Semmler, Johannes; Sting, Michael; Strohmeyer, Christoph Simulation and structural optimization of 3D Timoshenko beam networks based on fully analytic network solutions. (English) Zbl 1419.34107 ESAIM, Math. Model. Numer. Anal. 52, No. 6, 2409-2431 (2018). MSC: 34B45 68U20 74P05 90C90 PDF BibTeX XML Cite \textit{T. Kufner} et al., ESAIM, Math. Model. Numer. Anal. 52, No. 6, 2409--2431 (2018; Zbl 1419.34107) Full Text: DOI
Liu, Dongyi; Chen, Yining; Shang, Yingfeng; Xu, Genqi Stabilization of a Timoshenko beam with disturbance observer-based time varying boundary controls. (English) Zbl 1407.93334 Asian J. Control 20, No. 5, 1869-1880 (2018). MSC: 93D15 93D20 93B07 93C15 93C73 70Q05 PDF BibTeX XML Cite \textit{D. Liu} et al., Asian J. Control 20, No. 5, 1869--1880 (2018; Zbl 1407.93334) Full Text: DOI
Howcroft, C.; Cook, R. G.; Neild, S. A.; Lowenberg, M. H.; Cooper, J. E.; Coetzee, E. B. On the geometrically exact low-order modelling of a flexible beam: formulation and numerical tests. (English) Zbl 1404.74080 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 474, No. 2216, Article ID 20180423, 27 p. (2018). MSC: 74K10 PDF BibTeX XML Cite \textit{C. Howcroft} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 474, No. 2216, Article ID 20180423, 27 p. (2018; Zbl 1404.74080) Full Text: DOI
Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H. Timoshenko beam model for chiral materials. (English) Zbl 1404.74082 Acta Mech. Sin. 34, No. 3, 549-560 (2018). MSC: 74K10 PDF BibTeX XML Cite \textit{T. Y. Ma} et al., Acta Mech. Sin. 34, No. 3, 549--560 (2018; Zbl 1404.74082) Full Text: DOI
Baraldi, Daniele; Tullini, Nerio In-plane bending of Timoshenko beams in bilateral frictionless contact with an elastic half-space using a coupled FE-BIE method. (English) Zbl 1404.74077 Eng. Anal. Bound. Elem. 97, 114-130 (2018). MSC: 74K10 74M15 74S05 PDF BibTeX XML Cite \textit{D. Baraldi} and \textit{N. Tullini}, Eng. Anal. Bound. Elem. 97, 114--130 (2018; Zbl 1404.74077) Full Text: DOI
Bock, Igor Dynamic contact of a thermoelastic Mindlin-Timoshenko beam with a rigid obstacle. (English) Zbl 1404.74122 Math. Mech. Solids 23, No. 3, 411-419 (2018). MSC: 74M15 74K10 74F05 74H20 PDF BibTeX XML Cite \textit{I. Bock}, Math. Mech. Solids 23, No. 3, 411--419 (2018; Zbl 1404.74122) Full Text: DOI
Khakalo, Sergei; Balobanov, Viacheslav; Niiranen, Jarkko Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics. (English) Zbl 1423.74343 Int. J. Eng. Sci. 127, 33-52 (2018). MSC: 74G60 74H45 74K10 PDF BibTeX XML Cite \textit{S. Khakalo} et al., Int. J. Eng. Sci. 127, 33--52 (2018; Zbl 1423.74343) Full Text: DOI
Faghidian, S. Ali On non-linear flexure of beams based on non-local elasticity theory. (English) Zbl 1423.74471 Int. J. Eng. Sci. 124, 49-63 (2018). MSC: 74K10 74B20 PDF BibTeX XML Cite \textit{S. A. Faghidian}, Int. J. Eng. Sci. 124, 49--63 (2018; Zbl 1423.74471) Full Text: DOI
Bahaadini, Reza; Saidi, Ali Reza; Hosseini, Mohammad On dynamics of nanotubes conveying nanoflow. (English) Zbl 1423.74456 Int. J. Eng. Sci. 123, 181-196 (2018). MSC: 74K10 74M25 82D80 PDF BibTeX XML Cite \textit{R. Bahaadini} et al., Int. J. Eng. Sci. 123, 181--196 (2018; Zbl 1423.74456) Full Text: DOI
Nolde, E.; Pichugin, A. V.; Kaplunov, J. An asymptotic higher-order theory for rectangular beams. (English) Zbl 1402.74065 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 474, No. 2214, Article ID 20180001, 20 p. (2018). MSC: 74K10 PDF BibTeX XML Cite \textit{E. Nolde} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 474, No. 2214, Article ID 20180001, 20 p. (2018; Zbl 1402.74065) Full Text: DOI
Wong, F. T.; Sulistio, Adam; Syamsoeyadi, Hidayat Kriging-based Timoshenko beam elements with the discrete shear gap technique. (English) Zbl 1404.74087 Int. J. Comput. Methods 15, No. 7, Article ID 1850064, 27 p. (2018). MSC: 74K10 74S05 65M60 PDF BibTeX XML Cite \textit{F. T. Wong} et al., Int. J. Comput. Methods 15, No. 7, Article ID 1850064, 27 p. (2018; Zbl 1404.74087) Full Text: DOI
Liu, Xiufang; Xu, Genqi Exponential stabilization for Timoshenko beam with different delays in the internal feedback. (Chinese. English summary) Zbl 1413.74068 J. Syst. Sci. Math. Sci. 38, No. 2, 131-146 (2018). MSC: 74K10 74H55 93D15 PDF BibTeX XML Cite \textit{X. Liu} and \textit{G. Xu}, J. Syst. Sci. Math. Sci. 38, No. 2, 131--146 (2018; Zbl 1413.74068)
Kiani, Keivan; Wang, Quan Nonlocal magneto-thermo-vibro-elastic analysis of vertically aligned arrays of single-walled carbon nanotubes. (English) Zbl 1406.74306 Eur. J. Mech., A, Solids 72, 497-515 (2018). MSC: 74H45 74K10 PDF BibTeX XML Cite \textit{K. Kiani} and \textit{Q. Wang}, Eur. J. Mech., A, Solids 72, 497--515 (2018; Zbl 1406.74306) Full Text: DOI
Talimian, Abbas; Béda, Péter Dynamic stability of a size-dependent micro-beam. (English) Zbl 1406.74344 Eur. J. Mech., A, Solids 72, 245-251 (2018). MSC: 74H55 74K10 74M25 PDF BibTeX XML Cite \textit{A. Talimian} and \textit{P. Béda}, Eur. J. Mech., A, Solids 72, 245--251 (2018; Zbl 1406.74344) Full Text: DOI
Yang, Xiao-Dong; Wang, Shao-Wen; Zhang, Wei; Yang, Tian-Zhi; Lim, C. W. Model formulation and modal analysis of a rotating elastic uniform Timoshenko beam with setting angle. (English) Zbl 1406.74415 Eur. J. Mech., A, Solids 72, 209-222 (2018). MSC: 74K10 70J10 PDF BibTeX XML Cite \textit{X.-D. Yang} et al., Eur. J. Mech., A, Solids 72, 209--222 (2018; Zbl 1406.74415) Full Text: DOI
Hosseini, Seyed Farhad; Hashemian, Ali; Moetakef-Imani, Behnam; Hadidimoud, Saied Isogeometric analysis of free-form Timoshenko curved beams including the nonlinear effects of large deformations. (English) Zbl 1397.74116 Acta Mech. Sin. 34, No. 4, 728-743 (2018). MSC: 74K10 74S30 65D07 PDF BibTeX XML Cite \textit{S. F. Hosseini} et al., Acta Mech. Sin. 34, No. 4, 728--743 (2018; Zbl 1397.74116) Full Text: DOI
Zhao, Hai-Sheng; Zhang, Yao; Lie, Seng-Tjhen Explicit frequency equations of free vibration of a nonlocal Timoshenko beam with surface effects. (English) Zbl 1397.74095 Acta Mech. Sin. 34, No. 4, 676-688 (2018). MSC: 74H45 74K10 PDF BibTeX XML Cite \textit{H.-S. Zhao} et al., Acta Mech. Sin. 34, No. 4, 676--688 (2018; Zbl 1397.74095) Full Text: DOI
Ferretti, M. Flexural torsional buckling of uniformly compressed beam-like structures. (English) Zbl 1396.74055 Contin. Mech. Thermodyn. 30, No. 5, 977-993 (2018). MSC: 74G60 74K10 PDF BibTeX XML Cite \textit{M. Ferretti}, Contin. Mech. Thermodyn. 30, No. 5, 977--993 (2018; Zbl 1396.74055) Full Text: DOI
Abdoul-Anziz, Houssam; Seppecher, Pierre Strain gradient and generalized continua obtained by homogenizing frame lattices. (English) Zbl 1403.35028 Math. Mech. Complex Syst. 6, No. 3, 213-250 (2018). MSC: 35B27 74Q05 78M40 PDF BibTeX XML Cite \textit{H. Abdoul-Anziz} and \textit{P. Seppecher}, Math. Mech. Complex Syst. 6, No. 3, 213--250 (2018; Zbl 1403.35028) Full Text: DOI
Maryati, Tita K.; Muñoz Rivera, Jaime E.; Rambaud, Amelie; Vera, Octavio Stability of an \(N\)-component Timoshenko beam with localized Kelvin-Voigt and frictional dissipation. (English) Zbl 1397.35030 Electron. J. Differ. Equ. 2018, Paper No. 136, 18 p. (2018). MSC: 35B40 74K10 35Q74 74D05 PDF BibTeX XML Cite \textit{T. K. Maryati} et al., Electron. J. Differ. Equ. 2018, Paper No. 136, 18 p. (2018; Zbl 1397.35030) Full Text: Link
Rezaiee-Pajand, Mohammad; Gharaei-Moghaddam, Nima Using co-rotational method for cracked frame analysis. (English) Zbl 1392.74083 Meccanica 53, No. 8, 2121-2143 (2018). MSC: 74R10 74S05 PDF BibTeX XML Cite \textit{M. Rezaiee-Pajand} and \textit{N. Gharaei-Moghaddam}, Meccanica 53, No. 8, 2121--2143 (2018; Zbl 1392.74083) Full Text: DOI
Battista, Antonio; Della Corte, Alessandro; dell’Isola, Francesco; Seppecher, P. Large deformations of 1D microstructured systems modeled as generalized Timoshenko beams. (English) Zbl 1391.74028 Z. Angew. Math. Phys. 69, No. 3, Paper No. 52, 22 p. (2018). MSC: 74B20 74K10 74M25 49J45 PDF BibTeX XML Cite \textit{A. Battista} et al., Z. Angew. Math. Phys. 69, No. 3, Paper No. 52, 22 p. (2018; Zbl 1391.74028) Full Text: DOI
Kiendl, Josef; Auricchio, F.; Reali, A. A displacement-free formulation for the Timoshenko beam problem and a corresponding isogeometric collocation approach. (English) Zbl 1390.74117 Meccanica 53, No. 6, 1403-1413 (2018). MSC: 74K10 65N35 PDF BibTeX XML Cite \textit{J. Kiendl} et al., Meccanica 53, No. 6, 1403--1413 (2018; Zbl 1390.74117) Full Text: DOI
Tang, Youqi; Luo, Erbao; Yang, Xiaodong Complex modes and traveling waves in axially moving Timoshenko beams. (English) Zbl 1390.74120 AMM, Appl. Math. Mech., Engl. Ed. 39, No. 4, 597-608 (2018). MSC: 74K10 74S70 35Q74 PDF BibTeX XML Cite \textit{Y. Tang} et al., AMM, Appl. Math. Mech., Engl. Ed. 39, No. 4, 597--608 (2018; Zbl 1390.74120) Full Text: DOI
Rudoy, E. M.; Lazarev, N. P. Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko’s beam. (English) Zbl 06825415 J. Comput. Appl. Math. 334, 18-26 (2018). MSC: 74 49 PDF BibTeX XML Cite \textit{E. M. Rudoy} and \textit{N. P. Lazarev}, J. Comput. Appl. Math. 334, 18--26 (2018; Zbl 06825415) Full Text: DOI
Han, Hesheng; Cao, Dengqing; Liu, Lun Green’s functions for forced vibration analysis of bending-torsion coupled Timoshenko beam. (English) Zbl 1446.74017 Appl. Math. Modelling 45, 621-635 (2017). MSC: 74-10 74K10 74H45 PDF BibTeX XML Cite \textit{H. Han} et al., Appl. Math. Modelling 45, 621--635 (2017; Zbl 1446.74017) Full Text: DOI
Korayem, Moharam Habibnejad; Korayem, Alireza Habibnejad Modeling of AFM with a piezoelectric layer based on the modified couple stress theory with geometric discontinuities. (English) Zbl 1446.74026 Appl. Math. Modelling 45, 439-456 (2017). MSC: 74-10 74K10 PDF BibTeX XML Cite \textit{M. H. Korayem} and \textit{A. H. Korayem}, Appl. Math. Modelling 45, 439--456 (2017; Zbl 1446.74026) Full Text: DOI
Oskouie, M. Faraji; Ansari, R. Linear and nonlinear vibrations of fractional viscoelastic Timoshenko nanobeams considering surface energy effects. (English) Zbl 1446.74041 Appl. Math. Modelling 43, 337-350 (2017). MSC: 74-10 74D05 74K10 74H45 PDF BibTeX XML Cite \textit{M. F. Oskouie} and \textit{R. Ansari}, Appl. Math. Modelling 43, 337--350 (2017; Zbl 1446.74041) Full Text: DOI
Selezov, I. T. Generalization of Cauchy-Poisson method and construction of equations of Timoshenko type. (Ukrainian, English) Zbl 1438.35282 Mat. Metody Fiz.-Mekh. Polya 60, No. 2, 57-65 (2017); translation in J. Math. Sci., New York 243, No. 1, 63-72 (2019). Reviewer: V. I. Zhukovsky (Moscow) MSC: 35L99 74A99 PDF BibTeX XML Cite \textit{I. T. Selezov}, Mat. Metody Fiz.-Mekh. Polya 60, No. 2, 57--65 (2017; Zbl 1438.35282); translation in J. Math. Sci., New York 243, No. 1, 63--72 (2019)
Liu, Xiu Fang; Xu, Gen Qi Exponential stabilization for Timoshenko beam with different delays in the boundary control. (English) Zbl 1397.93184 IMA J. Math. Control Inf. 34, No. 1, 93-110 (2017). MSC: 93D21 93D20 74K10 93C15 93B07 PDF BibTeX XML Cite \textit{X. F. Liu} and \textit{G. Q. Xu}, IMA J. Math. Control Inf. 34, No. 1, 93--110 (2017; Zbl 1397.93184) Full Text: DOI
Ding, Hu; Tan, Xia; Dowell, Earl H. Natural frequencies of a super-critical transporting Timoshenko beam. (English) Zbl 1406.74381 Eur. J. Mech., A, Solids 66, 79-93 (2017). MSC: 74K10 74H45 PDF BibTeX XML Cite \textit{H. Ding} et al., Eur. J. Mech., A, Solids 66, 79--93 (2017; Zbl 1406.74381) Full Text: DOI
Coleman, Matthew P.; McSweeney, Laura A. An asymptotic and numerical analysis of the vibration spectrum of two Timoshenko beams coupled by general linear dissipative joints. (English) Zbl 1408.74028 Eur. J. Mech., A, Solids 64, 99-111 (2017). MSC: 74H45 74K10 PDF BibTeX XML Cite \textit{M. P. Coleman} and \textit{L. A. McSweeney}, Eur. J. Mech., A, Solids 64, 99--111 (2017; Zbl 1408.74028) Full Text: DOI
Arvin, Hadi Free vibration analysis of micro rotating beams based on the strain gradient theory using the differential transform method: Timoshenko versus Euler-Bernoulli beam models. (English) Zbl 1406.74280 Eur. J. Mech., A, Solids 65, 336-348 (2017). MSC: 74H45 74K10 74M25 PDF BibTeX XML Cite \textit{H. Arvin}, Eur. J. Mech., A, Solids 65, 336--348 (2017; Zbl 1406.74280) Full Text: DOI
Arbind, A.; Reddy, J. N.; Srinivasa, A. R. Nonlinear analysis of beams with rotation gradient dependent potential energy for constrained micro-rotation. (English) Zbl 1406.74369 Eur. J. Mech., A, Solids 65, 178-194 (2017). MSC: 74K10 74S05 PDF BibTeX XML Cite \textit{A. Arbind} et al., Eur. J. Mech., A, Solids 65, 178--194 (2017; Zbl 1406.74369) Full Text: DOI
Seguini, Meriem; Nedjar, Djamel Nonlinear analysis of deep beam resting on linear and nonlinear random soil. (English) Zbl 1390.74139 Arab. J. Sci. Eng. 42, No. 9, 3875-3893 (2017). MSC: 74L10 74A40 74K10 PDF BibTeX XML Cite \textit{M. Seguini} and \textit{D. Nedjar}, Arab. J. Sci. Eng. 42, No. 9, 3875--3893 (2017; Zbl 1390.74139) Full Text: DOI
Cruz Varona, Maria; Lohmann, B. Model reduction of linear time-varying systems with applications for moving loads. (English) Zbl 06861110 Benner, Peter (ed.) et al., Model reduction of parametrized systems. Selected contributions based on the presentations at the MoRePaS conference, SISSA, Trieste, Italy, October 13–16, 2015. Cham: Springer (ISBN 978-3-319-58785-1/hbk; 978-3-319-58786-8/ebook). MS&A. Modeling, Simulation and Applications 17, 367-386 (2017). MSC: 74H45 74H15 74K10 70J50 PDF BibTeX XML Cite \textit{M. Cruz Varona} and \textit{B. Lohmann}, in: Model reduction of parametrized systems. Selected contributions based on the presentations at the MoRePaS conference, SISSA, Trieste, Italy, October 13--16, 2015. Cham: Springer. 367--386 (2017; Zbl 06861110) Full Text: DOI
Tian, Zongfei; Xu, Gen-Qi Exponential stability analysis of Timoshenko beam system with boundary delays. (English) Zbl 1375.74057 Appl. Anal. 96, No. 15, 2575-2603 (2017). MSC: 74K10 35Q74 35L20 93B51 93D30 PDF BibTeX XML Cite \textit{Z. Tian} and \textit{G.-Q. Xu}, Appl. Anal. 96, No. 15, 2575--2603 (2017; Zbl 1375.74057) Full Text: DOI
Khludnev, Alexandr Mikhailovich; Popova, Tatiana Semenovna On crack propagations in elastic bodies with thin inclusions. (English) Zbl 1386.35394 Sib. Èlektron. Mat. Izv. 14, 586-599 (2017). MSC: 35Q74 35Q93 PDF BibTeX XML Cite \textit{A. M. Khludnev} and \textit{T. S. Popova}, Sib. Èlektron. Mat. Izv. 14, 586--599 (2017; Zbl 1386.35394) Full Text: DOI
Benaissa, Abbes; Benazzouz, Sohbi Well-posedness and asymptotic behavior of Timoshenko beam system with dynamic boundary dissipative feedback of fractional derivative type. (English) Zbl 1386.93230 Z. Angew. Math. Phys. 68, No. 4, Paper No. 94, 38 p. (2017). MSC: 93D15 35B40 47D03 74D05 PDF BibTeX XML Cite \textit{A. Benaissa} and \textit{S. Benazzouz}, Z. Angew. Math. Phys. 68, No. 4, Paper No. 94, 38 p. (2017; Zbl 1386.93230) Full Text: DOI
Yang, Xiaodong; Wang, Shaowen; Zhang, Wei; Qin, Zhaohong; Yang, Tianzhi Dynamic analysis of a rotating tapered cantilever Timoshenko beam based on the power series method. (English) Zbl 1374.74132 AMM, Appl. Math. Mech., Engl. Ed. 38, No. 10, 1425-1438 (2017). MSC: 74S70 74K10 35Q74 35C11 PDF BibTeX XML Cite \textit{X. Yang} et al., AMM, Appl. Math. Mech., Engl. Ed. 38, No. 10, 1425--1438 (2017; Zbl 1374.74132) Full Text: DOI
Zhang, Liping; Liu, Dongyi; Zhang, Guoshan Exponential stabilization of a Timoshenko beam system with internal disturbances. (Chinese. English summary) Zbl 1389.93206 Acta Math. Sci., Ser. A, Chin. Ed. 37, No. 1, 185-198 (2017). MSC: 93D20 93D15 93C10 74K10 47H05 PDF BibTeX XML Cite \textit{L. Zhang} et al., Acta Math. Sci., Ser. A, Chin. Ed. 37, No. 1, 185--198 (2017; Zbl 1389.93206)
Ansari, R.; Faraji Oskouie, M.; Rouhi, H. Studying linear and nonlinear vibrations of fractional viscoelastic Timoshenko micro-/nano-beams using the strain gradient theory. (English) Zbl 1371.74118 Nonlinear Dyn. 87, No. 1, 695-711 (2017). MSC: 74H45 74D10 74K10 74S05 35R11 65R20 PDF BibTeX XML Cite \textit{R. Ansari} et al., Nonlinear Dyn. 87, No. 1, 695--711 (2017; Zbl 1371.74118) Full Text: DOI
Bahlil, Mounir Global existence and energy decay of solutions to a viscoelastic Timoshenko beam system with a nonlinear time varying delay term in the weakly nonlinear internal feedbacks. (English) Zbl 1371.35008 Electron. J. Math. Analysis Appl. 5, No. 1, 219-241 (2017). MSC: 35B40 35L70 93D15 PDF BibTeX XML Cite \textit{M. Bahlil}, Electron. J. Math. Analysis Appl. 5, No. 1, 219--241 (2017; Zbl 1371.35008) Full Text: Link
Latalski, Jarosław; Warminski, Jerzy; Rega, Giuseppe Bending-twisting vibrations of a rotating hub-thin-walled composite beam system. (English) Zbl 1371.74127 Math. Mech. Solids 22, No. 6, 1303-1325 (2017). MSC: 74H45 74K10 74E30 PDF BibTeX XML Cite \textit{J. Latalski} et al., Math. Mech. Solids 22, No. 6, 1303--1325 (2017; Zbl 1371.74127) Full Text: DOI
Xu, Genqi; Feng, Xiaoyu; Kwok, Ki Lung The exponential stability region of Timoshenko beam with interior delays and boundary damping. (English) Zbl 1367.93576 Int. J. Control 90, No. 8, 1529-1542 (2017). MSC: 93D20 74K10 93C20 47D03 PDF BibTeX XML Cite \textit{G. Xu} et al., Int. J. Control 90, No. 8, 1529--1542 (2017; Zbl 1367.93576) Full Text: DOI