Mehiri, El-Mehdi; Belbachir, Hacene The weighted tower of Hanoi. (English) Zbl 07942955 Discrete Math. Algorithms Appl. 16, No. 5, Article ID 2350051, 15 p. (2024). MSC: 00A08 05C12 05C20 03D20 68R99 90C39 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Mehiri, El-Mehdi On the restricted Hanoi graphs. (English) Zbl 07936043 Art Discrete Appl. Math. 7, No. 2, Paper No. P2.08, 13 p. (2024). MSC: 05A15 05C20 00A08 68R10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Bousch, Thierry How to do a half-turn in the cyclic tower of Hanoi. (Comment faire un demi-tour dans la tour d’Hanoï cyclique.) (French. English summary) Zbl 07922264 Bull. Belg. Math. Soc. - Simon Stevin 31, No. 2, 139-161 (2024). MSC: 05A15 05C38 05A10 91A46 × Cite Format Result Cite Review PDF Full Text: DOI
Rittaud, Benoît Fibonacci-like sequences for variants of the tower of Hanoi, with corresponding graphs and Gray codes. (English) Zbl 1535.05020 Fibonacci Q. 61, No. 3, 240-256 (2023). MSC: 05A15 11B39 94B60 × Cite Format Result Cite Review PDF Full Text: arXiv Link
Balakrishnan, Kannan; Changat, Manoj; Hinz, Andreas M.; Lekha, Divya Sindhu The median of Sierpiński graphs. (English) Zbl 1494.05031 Discrete Appl. Math. 319, 159-170 (2022). MSC: 05C12 05C35 05C38 × Cite Format Result Cite Review PDF Full Text: DOI
Hinz, Andreas M.; Lužar, Borut; Petr, Ciril The Dudeney-Stockmeyer conjecture. (English) Zbl 1494.05037 Discrete Appl. Math. 319, 19-26 (2022). MSC: 05C12 68W40 90C39 × Cite Format Result Cite Review PDF Full Text: DOI
Majumdar, Abdullah-Al-Kafi New variants of the bottleneck tower of Hanoi problems. (English) Zbl 1486.05017 J. Bangladesh Acad. Sci. 44, No. 2, 197-200 (2021). MSC: 05A15 68W40 × Cite Format Result Cite Review PDF Full Text: DOI
Majumdar, A. A. K. The tower of Hanoi problem with evildoer discs. (English) Zbl 1485.05013 J. Bangladesh Acad. Sci. 43, No. 2, 205-209 (2019). MSC: 05A99 × Cite Format Result Cite Review PDF Full Text: Link
Li, Wei-Bang; Chang, Shu-Chiuan Dimer coverings on the Tower of Hanoi graph. (English) Zbl 1425.82005 Int. J. Mod. Phys. B 33, No. 7, Article ID 1950043, 17 p. (2019). MSC: 82B20 05C90 × Cite Format Result Cite Review PDF Full Text: DOI
Hinz, Andreas M.; Stockmeyer, Paul K. Discovering Fibonacci numbers, Fibonacci words, and a Fibonacci fractal in the tower of Hanoi. (English) Zbl 1447.11029 Fibonacci Q. 57, No. 5, 72-83 (2019). MSC: 11B39 × Cite Format Result Cite Review PDF Full Text: Link
Majumdar, A. A. K. A note on the Frame-Stewart conjecture on the generalized Tower of Hanoi problem. (English) Zbl 1428.05014 J. Bangladesh Acad. Sci. 43, No. 1, 79-83 (2019). MSC: 05A10 × Cite Format Result Cite Review PDF
Egler, Stephanie Graphs, random walks, and the tower of Hanoi. (English) Zbl 1422.05099 Undergrad. Math J. 20, No. 1, Paper No. 6, 23 p. (2019). MSC: 05C90 05C81 × Cite Format Result Cite Review PDF Full Text: Link
Bousch, Thierry; Hinz, Andreas M.; Klavžar, Sandi; Parisse, Daniele; Petr, Ciril; Stockmeyer, Paul K. A note on the frame-Stewart conjecture. (English) Zbl 1420.05012 Discrete Math. Algorithms Appl. 11, No. 4, Article ID 1950049, 4 p. (2019). MSC: 05A15 × Cite Format Result Cite Review PDF Full Text: DOI
Lavrov, Mikhail; Loh, Po-Shen; Messegué, Arnau Distance-uniform graphs with large diameter. (English) Zbl 1419.05063 SIAM J. Discrete Math. 33, No. 2, 994-1005 (2019). MSC: 05C12 05C35 90B10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Demontis, Roberto What is the least number of moves needed to solve the \(k\)-peg Tower of Hanoi problem? (What is the least number of moves needed to solve the \(k\)-peg Towers of Hanoi problem?) (English) Zbl 1407.00009 Discrete Math. Algorithms Appl. 11, No. 1, Article ID 1930001, 8 p. (2019). MSC: 00A08 05A15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Herter, Felix; Rote, Günter Loopless Gray code enumeration and the Tower of Bucharest. (English) Zbl 1402.68135 Theor. Comput. Sci. 748, 40-54 (2018). MSC: 68R05 68W32 91A46 × Cite Format Result Cite Review PDF Full Text: DOI Link
Chappelon, Jonathan; Larsson, Urban; Matsuura, Akihiro Two-player tower of Hanoi. (English) Zbl 1416.91055 Int. J. Game Theory 47, No. 2, 463-486 (2018). MSC: 91A46 91A05 × Cite Format Result Cite Review PDF Full Text: DOI arXiv HAL
Jin, Yujia; Li, Huan; Zhang, Zhongzhi Maximum matchings and minimum dominating sets in Apollonian networks and extended tower of Hanoi graphs. (English) Zbl 1380.05182 Theor. Comput. Sci. 703, 37-54 (2017). MSC: 05C82 05C70 05C69 05C35 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Chen, Hanlin; Wu, Renfang; Huang, Guihua; Deng, Hanyuan Independent sets on the towers of Hanoi graphs. (English) Zbl 1370.05097 Ars Math. Contemp. 12, No. 2, 247-260 (2017). MSC: 05C30 05C69 × Cite Format Result Cite Review PDF Full Text: DOI
Bousch, Thierry Stockmeyer’s tower. (La tour de Stockmeyer.) (French. English summary) Zbl 1361.05015 Sémin. Lothar. Comb. 77(2016-2017), Article B77d, 27 p. (2017). MSC: 05A19 68W05 × Cite Format Result Cite Review PDF Full Text: EMIS Link
Forbes, Tamsin; Forbes, Tony Hanoi revisited. (English) Zbl 1384.05023 Math. Gaz. 100, No. 549, 435-441 (2016). MSC: 05A15 × Cite Format Result Cite Review PDF Full Text: DOI
Herter, Felix; Rote, Günter Loopless Gray code enumeration and the Tower of Bucharest. (English) Zbl 1369.68267 Demaine, Erik D. (ed.) et al., 8th international conference on fun with algorithms, FUN 2016, La Maddalena, Italy, June 8–10, 2016. Proceedings. Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik (ISBN 978-3-95977-005-7). LIPIcs – Leibniz International Proceedings in Informatics 49, Article 19, 19 p. (2016). MSC: 68R05 68W32 91A46 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Barbay, Jérémy Selenite towers move faster than Hanoï towers, but still require exponential time. (English) Zbl 1369.68231 Demaine, Erik D. (ed.) et al., 8th international conference on fun with algorithms, FUN 2016, La Maddalena, Italy, June 8–10, 2016. Proceedings. Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik (ISBN 978-3-95977-005-7). LIPIcs – Leibniz International Proceedings in Informatics 49, Article 5, 20 p. (2016). MSC: 68Q25 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Berend, Daniel; Sapir, Amir Exponential vs. subexponential Tower of Hanoi variants. (English) Zbl 1358.05188 J. Graph Algorithms Appl. 20, No. 2, 461-479 (2016). MSC: 05C57 05C85 05C20 91A43 × Cite Format Result Cite Review PDF Full Text: DOI
Hinz, Andreas M.; Petr, Ciril Computational solution of an old tower of Hanoi problem. (English) Zbl 1347.05049 Hinz, Andreas (ed.) et al., Proceedings of the international conference on graph theory and its applications (ICGTA-15), Coimbatore, India, December 16–19, 2015. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 53, 445-458, electronic only (2016). MSC: 05C12 × Cite Format Result Cite Review PDF Full Text: DOI
Zhang, Zhongzhi; Wu, Shunqi; Li, Mingyun; Comellas, Francesc The number and degree distribution of spanning trees in the Tower of Hanoi graph. (English) Zbl 1332.05036 Theor. Comput. Sci. 609, Part 2, 443-455 (2016). MSC: 05C05 05C07 05C85 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Chen, Hanlin; Wu, Renfang; Huang, Guihua; Deng, Hanyuan Dimer-monomer model on the Towers of Hanoi graphs. (English) Zbl 1337.82027 Int. J. Mod. Phys. B 29, No. 23, Article ID 1550173, 13 p. (2015). MSC: 82D60 05C30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Aumann, Simon; Götz, Katharina A. M.; Hinz, Andreas M.; Petr, Ciril The number of moves of the largest disc in shortest paths on Hanoi graphs. (English) Zbl 1305.05059 Electron. J. Comb. 21, No. 4, Research Paper P4.38, 22 p. (2014). MSC: 05C12 05C38 68W05 × Cite Format Result Cite Review PDF Full Text: Link
Hinz, Andreas M.; Holz auf der Heide, Caroline An efficient algorithm to determine all shortest paths in Sierpiński graphs. (English) Zbl 1300.05147 Discrete Appl. Math. 177, 111-120 (2014). MSC: 05C38 05C12 05C35 × Cite Format Result Cite Review PDF Full Text: DOI
Hinz, Andreas M.; Klavžar, Sandi; Milutinović, Uroš; Petr, Ciril [Stewart, Ian] The Tower of Hanoi – myths and maths. With a foreword by Ian Stewart. (English) Zbl 1285.00003 Basel: Birkhäuser (ISBN 978-3-0348-0236-9/hbk; 978-3-0348-0237-6/ebook). xvi, 336 p. (2013). Reviewer: Andrew Percy (Churchill) MSC: 00A08 97A20 05-01 00-01 × Cite Format Result Cite Review PDF Full Text: DOI
Hinz, Andreas M.; Parisse, Daniele The average eccentricity of Sierpiński graphs. (English) Zbl 1256.05058 Graphs Comb. 28, No. 5, 671-686 (2012). MSC: 05C12 05A10 11B83 11B73 × Cite Format Result Cite Review PDF Full Text: DOI
Berend, Daniel; Sapir, Amir Which multi-peg Tower of Hanoi problems are exponential? (English) Zbl 1321.68297 Golumbic, Martin Charles (ed.) et al., Graph-theoretic concepts in computer science. 38th international workshop, WG 2012, Jerusalem, Israel, June 26–28, 2012. Revised selected papers. Berlin: Springer (ISBN 978-3-642-34610-1/pbk). Lecture Notes in Computer Science 7551, 81-90 (2012). MSC: 68Q25 05A15 05C20 05C40 × Cite Format Result Cite Review PDF Full Text: DOI
Corolli, Luca; Maj, Carlo; Marini, Fabrizio; Besozzi, Daniela; Mauri, Giancarlo An excursion in reaction systems: from computer science to biology. (English) Zbl 1247.68086 Theor. Comput. Sci. 454, 95-108 (2012). MSC: 68Q05 68Q10 92C40 92C37 × Cite Format Result Cite Review PDF Full Text: DOI
Berend, Daniel; Sapir, Amir; Solomon, Shay The tower of Hanoi problem on Path\(_h\) graphs. (English) Zbl 1244.05013 Discrete Appl. Math. 160, No. 10-11, 1465-1483 (2012). MSC: 05A15 90C39 05A05 68W40 × Cite Format Result Cite Review PDF Full Text: DOI
Chappelon, Jonathan; Matsuura, Akihiro On generalized Frame-Stewart numbers. (English) Zbl 1241.05006 Discrete Math. 312, No. 5, 830-836 (2012). MSC: 05A99 05A10 05A16 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Lee, Man-Keun The Hamiltonian cycle in Hanoi graph. (English) Zbl 1499.05342 Adv. Appl. Discrete Math. 7, No. 2, 109-119 (2011). MSC: 05C45 68R10 × Cite Format Result Cite Review PDF Full Text: Link
Park, So Eun The group of symmetries of the tower of Hanoi graph. (English) Zbl 1200.05026 Am. Math. Mon. 117, No. 4, 353-360 (2010). MSC: 05A99 20B25 05C25 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Fu, Hong-Yong; Xie, Dezheng Equitable \(L(2,1)\)-labelings of Sierpiński graphs. (English) Zbl 1196.05083 Australas. J. Comb. 46, 147-156 (2010). MSC: 05C78 × Cite Format Result Cite Review PDF
Parisse, Daniele On some metric properties of the Sierpiński graphs \(S(n,k)\). (English) Zbl 1224.05153 Ars Comb. 90, 145-160 (2009). MSC: 05C12 05C15 11D04 × Cite Format Result Cite Review PDF
Iwasaki, Yoshimitsu Solution for the tower of Hanoi problem with four pegs. (English) Zbl 1179.05010 Adv. Appl. Discrete Math. 4, No. 2, 95-104 (2009). MSC: 05A10 11B37 11B65 × Cite Format Result Cite Review PDF Full Text: Link
Hinz, Andreas M.; Kostov, Anton; Kneißl, Fabian; Sürer, Fatma; Danek, Adrian A mathematical model and a computer tool for the Tower of Hanoi and Tower of London puzzles. (English) Zbl 1180.68201 Inf. Sci. 179, No. 17, 2934-2947 (2009). MSC: 68R10 91E45 × Cite Format Result Cite Review PDF Full Text: DOI
Camp, Dane R. Flipping coins, folding paper, and finding familiar fractals in the tower of Hanoi. (English) Zbl 1168.28304 Fractals 17, No. 1, 83-89 (2009). MSC: 28A80 28A78 × Cite Format Result Cite Review PDF Full Text: DOI
Azriel, Dany; Solomon, Noam; Solomon, Shay On an infinite family of solvable Hanoi graphs. (English) Zbl 1451.05221 ACM Trans. Algorithms 5, No. 1, Article No. 13, 22 p. (2008). MSC: 05C85 05C57 05C75 05C20 91A43 × Cite Format Result Cite Review PDF Full Text: DOI
Dinitz, Yefim; Solomon, Shay Optimality of an algorithm solving the bottleneck Tower of Hanoi problem. (English) Zbl 1446.68205 ACM Trans. Algorithms 4, No. 3, Article No. 25, 9 p. (2008). MSC: 68W40 90C27 × Cite Format Result Cite Review PDF Full Text: DOI
Zhao, Tian-yu; Zhang, Wei Algorithm and time complexity analysis of six-pole Hanoi tower problem. (Chinese. English summary) Zbl 1225.68277 J. Yangtze Univ., Nat. Sci. 5, No. 1, 6-12 (2008). MSC: 68W40 05A99 × Cite Format Result Cite Review PDF
Sunic, Zoran Rational tree morphisms and transducer integer sequences: definition and examples. (English) Zbl 1165.11086 J. Integer Seq. 10, No. 4, Article 07.4.3, 26 p. (2007). Reviewer: Jean-Paul Allouche (Orsay) MSC: 11Y55 11B85 20M20 20M35 × Cite Format Result Cite Review PDF Full Text: arXiv EuDML EMIS
Berend, Daniel; Sapir, Amir The cyclic multi-peg Tower of Hanoi. (English) Zbl 1321.68447 ACM Trans. Algorithms 2, No. 3, 297-317 (2006). MSC: 68W05 05A15 68Q25 × Cite Format Result Cite Review PDF Full Text: DOI
Berend, Daniel; Sapir, Amir The diameter of Hanoi graphs. (English) Zbl 1178.05089 Inf. Process. Lett. 98, No. 2, 79-85 (2006). MSC: 05C85 68W40 68Q25 × Cite Format Result Cite Review PDF Full Text: DOI
Ikpotokin, F. O.; Chiemeke, S. C. Comparison of two generalized methods for solving multi-peg towers of Hanoi puzzles. (English) Zbl 1132.05307 J. Interdiscip. Math. 9, No. 3, 569-580 (2006). MSC: 05A99 90C39 × Cite Format Result Cite Review PDF
Romik, Dan Shortest paths in the Tower of Hanoi graph and finite automata. (English) Zbl 1127.68069 SIAM J. Discrete Math. 20, No. 3, 610-622 (2006). MSC: 68R05 05C85 28A80 68Q25 68Q45 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Azriel, D.; Berend, D. On a question of Leiss regarding the Hanoi Tower problem. (English) Zbl 1140.68074 Theor. Comput. Sci. 369, No. 1-3, 377-383 (2006). MSC: 68W40 05C20 91A46 × Cite Format Result Cite Review PDF Full Text: DOI
Hinz, Andreas M.; Klavžar, Sandi; Milutinović, Uroš; Parisse, Daniele; Petr, Ciril Metric properties of the Tower of Hanoi graphs and Stern’s diatomic sequence. (English) Zbl 1060.05007 Eur. J. Comb. 26, No. 5, 693-708 (2005). MSC: 05A15 05C12 11B83 51M15 × Cite Format Result Cite Review PDF Full Text: DOI
Klavžar, Sandi; Milutinović, Uroš Simple explicit formulas for the Frame-Stewart numbers. (English) Zbl 1009.05004 Ann. Comb. 6, No. 2, 157-167 (2002). MSC: 05A10 11B83 × Cite Format Result Cite Review PDF Full Text: DOI
Bond, Alan H. Problem-solving behavior in a system model of the primate neocortex. (English) Zbl 1007.68823 Neurocomputing 44-46, 735-742 (2002). MSC: 68U99 68T05 92C20 × Cite Format Result Cite Review PDF Full Text: DOI
Klavžar, Sandi; Milutinović, Uroš; Petr, Ciril On the Frame-Stewart algorithm for the multi-peg Tower of Hanoi problem. (English) Zbl 1019.90047 Discrete Appl. Math. 120, No. 1-3, 141-157 (2002). MSC: 90C39 68R10 × Cite Format Result Cite Review PDF Full Text: DOI
Sharapov, M. M. On Hanoi tower problems. (Ukrainian) Zbl 1224.65033 Sviti Mat. 7, No. 2, 17-22 (2001). Reviewer: A. Ya. Olenko (Kyïv) MSC: 65D15 05C99 × Cite Format Result Cite Review PDF
Hinz, Andreas M. The Tower of Hanoi. (English) Zbl 0955.05010 Shum, Kar-Ping (ed.) et al., Algebras and combinatorics. Papers from the international congress, ICAC’97, Hong Kong, August 1997. Singapore: Springer. 277-289 (1999). MSC: 05A99 × Cite Format Result Cite Review PDF
Bode, Jens-P.; Hinz, Andreas M. Results and open problems on the Tower of Hanoi. (English) Zbl 0963.68228 Congr. Numerantium 139, 113-122 (1999). MSC: 68W05 × Cite Format Result Cite Review PDF
Cull, Paul; Nelson, Ingrid Perfect codes, NP-completeness, and Towers of Hanoi graphs. (English) Zbl 0927.94021 Bull. Inst. Comb. Appl. 26, 13-38 (1999). Reviewer: G.Faina (Perugia) MSC: 94B99 05C90 × Cite Format Result Cite Review PDF
Klavžar, S.; Milutinović, U. Graphs \(S(n,k)\) and a variant of the Tower of Hanoi problem. (English) Zbl 0898.05042 Czech. Math. J. 47, No. 1, 95-104 (1997). Reviewer: B.Zelinka (Liberec) MSC: 05C38 05C45 05C12 × Cite Format Result Cite Review PDF Full Text: DOI EuDML
Parisse, Daniele The tower of Hanoi and the Stern-Brocot array. (English) Zbl 0897.11005 München: Univ. München, Fakultät für Mathematik und Informatik, 146 p. (1997). MSC: 11D04 05C05 05A17 × Cite Format Result Cite Review PDF
Majumdar, A. A. K. Generalized multi-peg tower of Hanoi problem. (English) Zbl 0869.90099 J. Aust. Math. Soc., Ser. B 38, No. 2, 201-208 (1996). MSC: 91A99 × Cite Format Result Cite Review PDF Full Text: DOI
Hinz, Andreas M. Square-free tower of Hanoi sequences. (English) Zbl 0868.68085 Enseign. Math., II. Sér. 42, No. 3-4, 257-264 (1996). MSC: 68R10 × Cite Format Result Cite Review PDF
Majumdar, A. A. K. The divide-and-conquer approach to the generalized \(p\)-peg tower of Hanoi problem. (English) Zbl 0858.90134 Optimization 34, No. 4, 373-378 (1995). MSC: 90C39 05A99 × Cite Format Result Cite Review PDF Full Text: DOI
Kaykobad, M.; Rahman, S. T.-U.; Bakhtiar, R.-A.; Majumdar, A. A. K. A recursive algorithm for the multi-peg tower of Hanoi problem. (English) Zbl 0845.90125 Int. J. Comput. Math. 57, No. 1-2, 67-73 (1995). MSC: 90C39 × Cite Format Result Cite Review PDF Full Text: DOI
Majumdar, A. A. K. The generalized \(p\)-PEG tower of Hanoi problem. (English) Zbl 0831.90119 Optimization 32, No. 2, 175-183 (1995). MSC: 90C39 05A99 × Cite Format Result Cite Review PDF Full Text: DOI
Stewart, Ian Four encounters with Sierpiński’s gasket. (English) Zbl 0814.28002 Math. Intell. 17, No. 1, 52-64 (1995). Reviewer: H.Haase (Greifswald) MSC: 28-03 28A80 01A60 × Cite Format Result Cite Review PDF Full Text: DOI
Majumdar, A. A. K. Frame’s conjecture and the tower of Hanoi problem with four pegs. (English) Zbl 0865.90132 Indian J. Math. 36, No. 3, 215-227 (1994). MSC: 90C39 × Cite Format Result Cite Review PDF
Majumdar, A. A. K. The generalized four-peg tower of Hanoi problem. (English) Zbl 0818.90128 Optimization 29, No. 4, 349-360 (1994). MSC: 90C39 05A99 × Cite Format Result Cite Review PDF Full Text: DOI
Poole, David G. The towers and triangles of Professor Claus (or, Pascal knows Hanoi). (English) Zbl 0819.05040 Math. Mag. 67, No. 5, 323-344 (1994). Reviewer: B.M.Agrawal (Lashkar-Gwalior) MSC: 05C38 68R05 68T20 68R10 × Cite Format Result Cite Review PDF Full Text: DOI
Hinz, Andreas M. Shortest paths between regular states of the Tower of Hanoi. (English) Zbl 0792.68125 Inf. Sci. 63, No. 1-2, 173-181 (1992). MSC: 68R05 68Q25 05C99 × Cite Format Result Cite Review PDF Full Text: DOI
Hinz, Andreas M. Pascal’s triangle and the tower of Hanoi. (English) Zbl 0782.05003 Am. Math. Mon. 99, No. 6, 538-544 (1992). Reviewer: K.W.Lih (Nankang) MSC: 05A10 05C99 68R05 01A70 × Cite Format Result Cite Review PDF Full Text: DOI
Allouche, Jean-Paul; Bacher, Roland Toeplitz sequences, paperfolding, towers of Hanoi and progression-free sequences of integers. (English) Zbl 0784.11008 Enseign. Math., II. Sér. 38, No. 3-4, 315-327 (1992). Reviewer: A.J.van der Poorten (North Ryde) MSC: 11B85 × Cite Format Result Cite Review PDF
van Zanten, A. J. An iterative optimal algorithm for the generalized tower of Hanoi problem. (English) Zbl 0726.68049 Int. J. Comput. Math. 39, No. 3-4, 163-168 (1991). MSC: 68Q25 68W10 68R05 × Cite Format Result Cite Review PDF Full Text: DOI
Van Zanten, A. J. The complexity of an optimal algorithm for the generalized tower of Hanoi problem. (English) Zbl 0701.68052 Int. J. Comput. Math. 36, No. 1-2, 1-8 (1990). MSC: 68Q25 68W10 68R05 × Cite Format Result Cite Review PDF Full Text: DOI
Knoblock, Craig A. A theory of abstraction for hierarchical planning. (English) Zbl 0792.68167 Change of representation and inductive bias, Proc. 1st Int. workshop, Tarrytown, NY/USA 1988, Kluwer Int. Ser. Eng. Comput. Sci. 87, 81-104 (1990). MSC: 68T20 68R05 × Cite Format Result Cite Review PDF
Hinz, Andreas M. The tower of Hanoi. (English) Zbl 0746.05035 Enseign. Math., II. Sér. 35, No. 3-4, 289-321 (1989). Reviewer: B.M.Agrawal (Lashkar-Gwalior) MSC: 05C38 × Cite Format Result Cite Review PDF
Hinz, A. M. An iterative algorithm for the Tower of Hanoi with four pegs. (English) Zbl 0672.05016 Computing 42, No. 2-3, 133-140 (1989). MSC: 05A99 68W99 × Cite Format Result Cite Review PDF Full Text: DOI
Er, M. C. An algorithmic solution to the multi-tower Hanoi problem. (English) Zbl 0626.05002 J. Inf. Optim. Sci. 8, 91-100 (1987). MSC: 05A99 05-04 × Cite Format Result Cite Review PDF Full Text: DOI
Lavallée, Ivan Note on the Towers of Hanoi problem. (Note sur le problème des tours de Hanoi.) (French) Zbl 0556.05006 Acta Math. Vietnam. 7, No. 2, 131-137 (1982). Reviewer: P.Gerl MSC: 05A99 05-01 × Cite Format Result Cite Review PDF
Er, M. C. A representation approach to the tower of Hanoi problem. (English) Zbl 0493.90100 Comput. J. 25, 442-447 (1982). MSC: 91A99 68N01 05A99 03D80 × Cite Format Result Cite Review PDF Full Text: DOI