zbMATH — the first resource for mathematics

On transformations of multivariate ARMA processes. (English) Zbl 0637.62084
Summary: Transformations of multivariate ARMA processes are investigated such that they preserve the ARMA structure. A theorem is given that characterizes a multivariate ARMA process using a property of its covariance function. The theorem is applied to the linear transformation of a multivariate ARMA process and to the scalar product of two ARMA processes.
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
Full Text: Link EuDML
[1] J. Anděl: Statistická analýza časových řad. (Statistical Analysis of Time Series.) SNTL, Praha 1976.
[2] E. M. R. A. Engel: A unified approach to the study of sums, products, time aggregation and other functions of ARMA processes. J. Time Series Anal. 5 (1984), 159-171. · Zbl 0541.62072 · doi:10.1111/j.1467-9892.1984.tb00384.x
[3] J. W. C. Granger, M. J. Morris: Time series modelling and interpretation. J. Roy. Statist. Soc. Ser. A 138 (1976), 246-257.
[4] I. I. Gichman, A. V. Skorochod: Teorija slučajnych processov. Nauka, Moskva 1971.
[5] E. J. Hannan: Multiple Time Series. Wiley, New York 1971. · Zbl 0211.49804
[6] E. J. Hannan: The identification of vector mixed autoregressive-moving average systems. Biometrika 56 (1969), 223-225. · Zbl 0177.22502
[7] L. Isserlis: On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. Biometrika 12 (1918), 134-239.
[8] H. Lütkepohl: Linear transformations of vector ARMA processes. J. Econometrics 26 (1984), 283-293. · Zbl 0555.62072
[9] J. A. Rozanov: Stacionarnyje slučajnyje processy. Gos. izd., Moskva 1963.
[10] E. W. Wecker: A note on the time series which is the product of two stationary time series. Stoch. Proc. Appl. 8 (1978), 153-157. · Zbl 0387.62074 · doi:10.1016/0304-4149(78)90004-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.