Tahar, Guillaume Veech groups of flat surfaces with poles. (English. French summary) Zbl 1446.30059 Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 1, 57-78 (2020). Reviewer: Quentin Gendron (Guanajuato) MSC: 30F30 PDF BibTeX XML Cite \textit{G. Tahar}, Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 1, 57--78 (2020; Zbl 1446.30059) Full Text: DOI
Goujard, Elise; Möller, Martin Counting Feynman-like graphs: quasimodularity and Siegel-Veech weight. (English) Zbl 1433.05155 J. Eur. Math. Soc. (JEMS) 22, No. 2, 365-412 (2020). MSC: 05C30 05A15 11F11 32G15 14H30 PDF BibTeX XML Cite \textit{E. Goujard} and \textit{M. Möller}, J. Eur. Math. Soc. (JEMS) 22, No. 2, 365--412 (2020; Zbl 1433.05155) Full Text: DOI
Schmoll, Martin Orbit classification and asymptotic constants for \(d\)-symmetric covers. (English) Zbl 1431.14020 Hawkins, Jane (ed.) et al., Dynamical systems and random processes, 16th Carolina dynamics symposium, Agnes Scott College, Decatur, Georgia, April 13–15, 2018. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 736, 201-238 (2019). Reviewer: Jayadev Athreya (Seattle) MSC: 14H15 14H52 30F30 30F60 37C85 58D15 58D27 PDF BibTeX XML Cite \textit{M. Schmoll}, Contemp. Math. 736, 201--238 (2019; Zbl 1431.14020) Full Text: DOI
Duryev, Eduard; Fougeron, Charles; Ghazouani, Selim Dilation surfaces and their Veech groups. (English) Zbl 1416.37036 J. Mod. Dyn. 14, 121-151 (2019). MSC: 37D40 37C85 37E35 PDF BibTeX XML Cite \textit{E. Duryev} et al., J. Mod. Dyn. 14, 121--151 (2019; Zbl 1416.37036) Full Text: DOI
Avila, Artur; Matheus, Carlos; Yoccoz, Jean-Christophe The Kontsevich-Zorich cocycle over Veech-McMullen family of symmetric translation surfaces. (English) Zbl 1426.37030 J. Mod. Dyn. 14, 21-54 (2019). MSC: 37D40 37C85 30F60 PDF BibTeX XML Cite \textit{A. Avila} et al., J. Mod. Dyn. 14, 21--54 (2019; Zbl 1426.37030) Full Text: DOI arXiv
Strenner, Balázs Algebraic degrees of pseudo-Anosov stretch factors. (English) Zbl 1382.37046 Geom. Funct. Anal. 27, No. 6, 1497-1539 (2017). Reviewer: Zemin Zhou (Beijing) MSC: 37F30 57M50 30F60 PDF BibTeX XML Cite \textit{B. Strenner}, Geom. Funct. Anal. 27, No. 6, 1497--1539 (2017; Zbl 1382.37046) Full Text: DOI
Lehnert, Ralf On the critical exponent of infinitely generated Veech groups. (English) Zbl 1380.30033 Math. Ann. 368, No. 3-4, 1017-1058 (2017). Reviewer: Alastair Fletcher (Dekalb) MSC: 30F30 05C63 20F65 PDF BibTeX XML Cite \textit{R. Lehnert}, Math. Ann. 368, No. 3--4, 1017--1058 (2017; Zbl 1380.30033) Full Text: DOI arXiv
Filali, M.; Galindo, J. Algebraic structure of semigroup compactifications: Pym’s and Veech’s theorems and strongly prime points. (English) Zbl 1379.22003 J. Math. Anal. Appl. 456, No. 1, 117-150 (2017). Reviewer: Tyrone Crisp (Nijmegen) MSC: 22D15 22A15 43A46 54D35 PDF BibTeX XML Cite \textit{M. Filali} and \textit{J. Galindo}, J. Math. Anal. Appl. 456, No. 1, 117--150 (2017; Zbl 1379.22003) Full Text: DOI
Ramírez Maluendeas, Camilo; Valdez, Ferrán Veech groups of infinite-genus surfaces. (English) Zbl 1407.30019 Algebr. Geom. Topol. 17, No. 1, 529-560 (2017). MSC: 30F35 32G15 PDF BibTeX XML Cite \textit{C. Ramírez Maluendeas} and \textit{F. Valdez}, Algebr. Geom. Topol. 17, No. 1, 529--560 (2017; Zbl 1407.30019) Full Text: DOI arXiv
Finster, Myriam Congruence Veech groups. (English) Zbl 1353.32020 Isr. J. Math. 214, No. 2, 885-930 (2016). Reviewer: Gerhard Rosenberger (Hamburg) MSC: 32J15 30F35 30F20 14H55 20H10 PDF BibTeX XML Cite \textit{M. Finster}, Isr. J. Math. 214, No. 2, 885--930 (2016; Zbl 1353.32020) Full Text: DOI arXiv
Lanneau, Erwan; Nguyen, Duc-Manh Complete periodicity of Prym eigenforms. (English. French summary) Zbl 1338.32013 Ann. Sci. Éc. Norm. Supér. (4) 49, No. 1, 87-130 (2016). MSC: 32G15 30F60 PDF BibTeX XML Cite \textit{E. Lanneau} and \textit{D.-M. Nguyen}, Ann. Sci. Éc. Norm. Supér. (4) 49, No. 1, 87--130 (2016; Zbl 1338.32013) Full Text: DOI Link
Hooper, W. Patrick The invariant measures of some infinite interval exchange maps. (English) Zbl 1371.37076 Geom. Topol. 19, No. 4, 1895-2038 (2015). MSC: 37E05 37E20 37A40 PDF BibTeX XML Cite \textit{W. P. Hooper}, Geom. Topol. 19, No. 4, 1895--2038 (2015; Zbl 1371.37076) Full Text: DOI arXiv
Coulbois, Thierry; Hilion, Arnaud; Reynolds, Patrick Indecomposable \(F_N\)-trees and minimal laminations. (English) Zbl 1342.20028 Groups Geom. Dyn. 9, No. 2, 567-597 (2015). MSC: 20E08 20E05 20F65 37A25 37B10 PDF BibTeX XML Cite \textit{T. Coulbois} et al., Groups Geom. Dyn. 9, No. 2, 567--597 (2015; Zbl 1342.20028) Full Text: DOI arXiv
Weitze-Schmithüsen, Gabriela The deficiency of being a congruence group for Veech groups of origamis. (English) Zbl 1318.30065 Int. Math. Res. Not. 2015, No. 6, 1613-1637 (2015). Reviewer: Gerhard Rosenberger (Hamburg) MSC: 30F10 20H10 30F35 30F60 32G15 14H55 PDF BibTeX XML Cite \textit{G. Weitze-Schmithüsen}, Int. Math. Res. Not. 2015, No. 6, 1613--1637 (2015; Zbl 1318.30065) Full Text: DOI arXiv
Alaste, T. A simple proof of Veech’s theorem. (English) Zbl 1310.22001 Semigroup Forum 88, No. 3, 768-770 (2014). Reviewer: Saak S. Gabriyelyan (Beer-Sheva) MSC: 22A10 PDF BibTeX XML Cite \textit{T. Alaste}, Semigroup Forum 88, No. 3, 768--770 (2014; Zbl 1310.22001) Full Text: DOI
Shinomiya, Yoshihiko Veech holomorphic families of Riemann surfaces, holomorphic sections, Diophantine problems. (English) Zbl 1300.30083 Trans. Am. Math. Soc. 366, No. 6, 3161-3190 (2014). Reviewer: Gou Nakamura (Toyota) MSC: 30F60 32G15 PDF BibTeX XML Cite \textit{Y. Shinomiya}, Trans. Am. Math. Soc. 366, No. 6, 3161--3190 (2014; Zbl 1300.30083) Full Text: DOI arXiv
Hooper, W. Patrick Grid graphs and lattice surfaces. (English) Zbl 1333.37047 Int. Math. Res. Not. 2013, No. 12, 2657-2698 (2013). Reviewer: Tao Chen (Long Island City) MSC: 37F30 37F15 32Q55 53C56 05C10 PDF BibTeX XML Cite \textit{W. P. Hooper}, Int. Math. Res. Not. 2013, No. 12, 2657--2698 (2013; Zbl 1333.37047) Full Text: DOI arXiv
Calta, Kariane; Schmidt, Thomas A. Infinitely many lattice surfaces with special pseudo-Anosov maps. (English) Zbl 1322.30015 J. Mod. Dyn. 7, No. 2, 239-254 (2013). MSC: 30F60 PDF BibTeX XML Cite \textit{K. Calta} and \textit{T. A. Schmidt}, J. Mod. Dyn. 7, No. 2, 239--254 (2013; Zbl 1322.30015) Full Text: DOI arXiv
Bowman, Joshua P. The complete family of Arnoux-Yoccoz surfaces. (English) Zbl 1277.30026 Geom. Dedicata 164, 113-130 (2013). Reviewer: Toshihiro Nakanishi (Matsue) MSC: 30F30 32G15 37E05 05B45 57M50 14K20 37B10 PDF BibTeX XML Cite \textit{J. P. Bowman}, Geom. Dedicata 164, 113--130 (2013; Zbl 1277.30026) Full Text: DOI arXiv
Hooper, W. Patrick Another Veech triangle. (English) Zbl 1272.14022 Proc. Am. Math. Soc. 141, No. 3, 857-865 (2013). Reviewer: Simona Settepanella (Pisa) MSC: 14H37 37D50 52C05 PDF BibTeX XML Cite \textit{W. P. Hooper}, Proc. Am. Math. Soc. 141, No. 3, 857--865 (2013; Zbl 1272.14022) Full Text: DOI arXiv
Shinomiya, Yoshihiko Veech groups of flat structures on Riemann surfaces. (English) Zbl 1256.32017 Jiang, Yunping (ed.) et al., Quasiconformal mappings, Riemann surfaces, and Teichmüller spaces. AMS special session in honor of Clifford J. Earle, Syracuse, NY, USA, October 2–3, 2010. Providence, RI: American Mathematical Society (AMS) (ISBN 978-0-8218-5340-5/pbk; 978-0-8218-9029-5/ebook). Contemporary Mathematics 575, 343-362 (2012). MSC: 32G15 14H30 20F28 PDF BibTeX XML Cite \textit{Y. Shinomiya}, Contemp. Math. 575, 343--362 (2012; Zbl 1256.32017) Full Text: arXiv
Herrlich, Frank Introduction to origamis in Teichmüller space. (English) Zbl 1264.30033 Papadopoulos, Athanase (ed.), Strasbourg master class on geometry. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-105-7/pbk). IRMA Lectures in Mathematics and Theoretical Physics 18, 233-253 (2012). Reviewer: Yuliang Shen (Suzhou) MSC: 30F60 32G15 PDF BibTeX XML Cite \textit{F. Herrlich}, IRMA Lect. Math. Theor. Phys. 18, 233--253 (2012; Zbl 1264.30033) Full Text: DOI
Broughton, S. Allen; Judge, Chris Ellipses in translation surfaces. (English) Zbl 1241.57023 Geom. Dedicata 157, 111-151 (2012). Reviewer: Bruno Zimmermann (Trieste) MSC: 57M50 30F60 PDF BibTeX XML Cite \textit{S. A. Broughton} and \textit{C. Judge}, Geom. Dedicata 157, 111--151 (2012; Zbl 1241.57023) Full Text: DOI arXiv
Valdez, Ferrán Veech groups, irrational billiards and stable Abelian differentials. (English) Zbl 1260.37024 Discrete Contin. Dyn. Syst. 32, No. 3, 1055-1063 (2012). Reviewer: Anke Pohl (Göttingen) MSC: 37D50 37J35 37D40 PDF BibTeX XML Cite \textit{F. Valdez}, Discrete Contin. Dyn. Syst. 32, No. 3, 1055--1063 (2012; Zbl 1260.37024) Full Text: DOI
Finster, Myriam A series of coverings of the regular \(n\)-gon. (English) Zbl 1268.57001 Geom. Dedicata 155, 191-214 (2011). Reviewer: Shinpei Baba (Pasadena) MSC: 57M12 53C10 30F35 52C15 PDF BibTeX XML Cite \textit{M. Finster}, Geom. Dedicata 155, 191--214 (2011; Zbl 1268.57001) Full Text: DOI arXiv
Nguyen, Duc-Manh Parallelogram decompositions and generic surfaces in \(\mathcal H^{\text{hyp}}(4)\). (English) Zbl 1238.57020 Geom. Topol. 15, No. 3, 1707-1747 (2011). Reviewer: Athanase Papadopoulos (Strasbourg) MSC: 57M50 37D40 37B05 PDF BibTeX XML Cite \textit{D.-M. Nguyen}, Geom. Topol. 15, No. 3, 1707--1747 (2011; Zbl 1238.57020) Full Text: DOI arXiv
Smillie, John; Ulcigrai, Corinna Beyond Sturmian sequences: coding linear trajectories in the regular octagon. (English) Zbl 1230.37021 Proc. Lond. Math. Soc. (3) 102, No. 2, 291-340 (2011). Reviewer: Wolfgang Steiner (Sydney) MSC: 37B10 11A55 37E35 PDF BibTeX XML Cite \textit{J. Smillie} and \textit{C. Ulcigrai}, Proc. Lond. Math. Soc. (3) 102, No. 2, 291--340 (2011; Zbl 1230.37021) Full Text: DOI arXiv
Hubert, Pascal; Schmithüsen, Gabriela Infinite translation surfaces with infinitely generated Veech groups. (English) Zbl 1219.30019 J. Mod. Dyn. 4, No. 4, 715-732 (2010). Reviewer: Jürgen Wolfart (Frankfurt am Main) MSC: 30F35 30F30 14H30 37D50 PDF BibTeX XML Cite \textit{P. Hubert} and \textit{G. Schmithüsen}, J. Mod. Dyn. 4, No. 4, 715--732 (2010; Zbl 1219.30019) Full Text: DOI
Smillie, John; Weiss, Barak Finiteness results for flat surfaces: large cusps and short geodesics. (English) Zbl 1189.57017 Comment. Math. Helv. 85, No. 2, 313-336 (2010). Reviewer: François Fillastre (Cergy-Pontoise Cedex) MSC: 57M50 37D40 PDF BibTeX XML Cite \textit{J. Smillie} and \textit{B. Weiss}, Comment. Math. Helv. 85, No. 2, 313--336 (2010; Zbl 1189.57017) Full Text: DOI Link arXiv
Arnoux, Pierre; Schmidt, Thomas A. Veech surfaces with nonperiodic directions in the trace field. (English) Zbl 1186.37050 J. Mod. Dyn. 3, No. 4, 611-629 (2009). MSC: 37D99 30F60 11J70 PDF BibTeX XML Cite \textit{P. Arnoux} and \textit{T. A. Schmidt}, J. Mod. Dyn. 3, No. 4, 611--629 (2009; Zbl 1186.37050) Full Text: DOI arXiv
Herrlich, Frank; Schmithüsen, Gabriela Dessins d’enfants and origami curves. (English) Zbl 1203.30043 Papadopoulos, Athanase (ed.), Handbook of Teichmüller theory. Volume II. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-055-5/hbk). IRMA Lectures in Mathematics and Theoretical Physics 13, 767-809 (2009). Reviewer: Jürgen Wolfart (Frankfurt am Main) MSC: 30F10 30F60 14H15 14H10 14H52 PDF BibTeX XML Cite \textit{F. Herrlich} and \textit{G. Schmithüsen}, IRMA Lect. Math. Theor. Phys. 13, 767--809 (2009; Zbl 1203.30043)
Herrlich, Frank; Schmithüsen, Gabriela An extraordinary origami curve. (English) Zbl 1159.14012 Math. Nachr. 281, No. 2, 219-237 (2008). Reviewer: Irene Bouw (Ulm) MSC: 14H10 14H30 32G15 PDF BibTeX XML Cite \textit{F. Herrlich} and \textit{G. Schmithüsen}, Math. Nachr. 281, No. 2, 219--237 (2008; Zbl 1159.14012) Full Text: DOI arXiv
Herrlich, Frank; Schmithüsen, Gabriela A comb of origami curves in the moduli space \(M_{3}\) with three dimensional closure. (English) Zbl 1119.14024 Geom. Dedicata 124, 69-94 (2007). Reviewer: Ruben A. Hidalgo (Valparaiso) MSC: 14H10 14H30 32G15 53C10 PDF BibTeX XML Cite \textit{F. Herrlich} and \textit{G. Schmithüsen}, Geom. Dedicata 124, 69--94 (2007; Zbl 1119.14024) Full Text: DOI
Möller, Martin Periodic points on Veech surfaces and the Mordell-Weil group over a Teichmüller curve. (English) Zbl 1111.14019 Invent. Math. 165, No. 3, 633-649 (2006). Reviewer: Jürgen Wolfart (Frankfurt/Main) MSC: 14H15 14H40 14H45 14H55 30F10 30F60 11G10 PDF BibTeX XML Cite \textit{M. Möller}, Invent. Math. 165, No. 3, 633--649 (2006; Zbl 1111.14019) Full Text: DOI
Schmithüsen, Gabriela Examples for Veech groups of origamis. (English) Zbl 1099.14015 Muñoz Porras, José M. (ed.) et al., The geometry of Riemann surfaces and abelian varieties. III Iberoamerican congress on geometry in honor of Professor Sevín Recillas-Pishmish’s 60th birthday, Salamanca, Spain, June 8–12, 2004. Providence, RI: American Mathematical Society (AMS) (ISBN 0-8218-3855-5/pbk). Contemporary Mathematics 397, 193-206 (2006). Reviewer: Edoardo Ballico (Povo) MSC: 14H30 32G15 30F60 PDF BibTeX XML Cite \textit{G. Schmithüsen}, Contemp. Math. 397, 193--206 (2006; Zbl 1099.14015)
Herrlich, Frank Teichmüller curves defined by characteristic origamis. (English) Zbl 1098.14019 Muñoz Porras, José M. (ed.) et al., The geometry of Riemann surfaces and abelian varieties. III Iberoamerican congress on geometry in honor of Professor Sevín Recillas-Pishmish’s 60th birthday, Salamanca, Spain, June 8–12, 2004. Providence, RI: American Mathematical Society (AMS) (ISBN 0-8218-3855-5/pbk). Contemporary Mathematics 397, 133-144 (2006). Reviewer: Edoardo Ballico (Povo) MSC: 14H10 14H30 32G15 53C10 PDF BibTeX XML Cite \textit{F. Herrlich}, Contemp. Math. 397, 133--144 (2006; Zbl 1098.14019)
Leininger, C. J.; Reid, A. W. A combination theorem for Veech subgroups of the mapping class group. (English) Zbl 1099.57002 Geom. Funct. Anal. 16, No. 2, 403-436 (2006). Reviewer: William Goldman (College Park) MSC: 57M07 30F60 20F65 57M99 PDF BibTeX XML Cite \textit{C. J. Leininger} and \textit{A. W. Reid}, Geom. Funct. Anal. 16, No. 2, 403--436 (2006; Zbl 1099.57002) Full Text: DOI
Hubert, Pascal; Lanneau, Erwan Veech groups without parabolic elements. (English) Zbl 1101.30044 Duke Math. J. 133, No. 2, 335-346 (2006). Reviewer: Andrzej Piatkowski (Łódź) MSC: 30F35 30F50 37D40 37D20 32G15 37C85 37F30 PDF BibTeX XML Cite \textit{P. Hubert} and \textit{E. Lanneau}, Duke Math. J. 133, No. 2, 335--346 (2006; Zbl 1101.30044) Full Text: DOI Euclid
Eskin, Alex; Marklof, Jens; Witte Morris, Dave Unipotent flows on the space of branched covers of Veech surfaces. (English) Zbl 1085.37021 Ergodic Theory Dyn. Syst. 26, No. 1, 129-162 (2006). MSC: 37C85 37D50 PDF BibTeX XML Cite \textit{A. Eskin} et al., Ergodic Theory Dyn. Syst. 26, No. 1, 129--162 (2006; Zbl 1085.37021) Full Text: DOI arXiv
Baker, J. W.; Filali, M. On the analogue of Veech’s theorem in the \(WAP\)-compactification of a locally compact group. (English) Zbl 1001.22002 Semigroup Forum 65, No. 1, 107-112 (2002). Reviewer: Jorge Galindo (Castellon) MSC: 22A15 43A60 22D15 PDF BibTeX XML Cite \textit{J. W. Baker} and \textit{M. Filali}, Semigroup Forum 65, No. 1, 107--112 (2002; Zbl 1001.22002) Full Text: DOI
Arnoux, Pierre; Hubert, Pascal Continued fractions on the Veech surfaces. (Fractions continues sur les surfaces de Veech.) (French) Zbl 1029.11035 J. Anal. Math. 81, 35-64 (2000). Reviewer: Thomas Schmidt (Corvallis) MSC: 11J70 37A17 37C85 30B70 30F60 PDF BibTeX XML Cite \textit{P. Arnoux} and \textit{P. Hubert}, J. Anal. Math. 81, 35--64 (2000; Zbl 1029.11035) Full Text: DOI
Pym, John A note on \(G^{\mathcal {LUC}}\) and Veech’s theorem. (English) Zbl 0980.22009 Semigroup Forum 59, No. 2, 171-174 (1999). Reviewer: Jorge Galindo (Castellon) MSC: 22D05 PDF BibTeX XML Cite \textit{J. Pym}, Semigroup Forum 59, No. 2, 171--174 (1999; Zbl 0980.22009) Full Text: DOI
Ward, Clayton C. Calculation of Fuchsian groups associated to billiards in a rational triangle. (English) Zbl 0915.58059 Ergodic Theory Dyn. Syst. 18, No. 4, 1019-1042 (1998). MSC: 37A99 37G05 PDF BibTeX XML Cite \textit{C. C. Ward}, Ergodic Theory Dyn. Syst. 18, No. 4, 1019--1042 (1998; Zbl 0915.58059) Full Text: DOI
Gutkin, Eugene; Judge, Chris The geometry and arithmetic of translation surfaces with applications to polygonal billiards. (English) Zbl 0865.30060 Math. Res. Lett. 3, No. 3, 391-403 (1996). Reviewer: E.Petrisor (Timişoara) MSC: 30F60 30F30 37D40 53D25 11F72 PDF BibTeX XML Cite \textit{E. Gutkin} and \textit{C. Judge}, Math. Res. Lett. 3, No. 3, 391--403 (1996; Zbl 0865.30060) Full Text: DOI
Lemańczyk, Mariusz; Mentzen, Mieczysław K. Compact subgroups in the centralizer of natural factors of an ergodic group extension of a rotation determine all factors. (English) Zbl 0725.54030 Ergodic Theory Dyn. Syst. 10, No. 4, 763-776 (1990). MSC: 54H20 28D15 22D40 PDF BibTeX XML Cite \textit{M. Lemańczyk} and \textit{M. K. Mentzen}, Ergodic Theory Dyn. Syst. 10, No. 4, 763--776 (1990; Zbl 0725.54030) Full Text: DOI