Friedrich, Manuel; Kružík, Martin; Valdman, Jan Numerical approximation of von Kármán viscoelastic plates. (English) Zbl 07314559 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 299-319 (2021). MSC: 74D05 74D10 35A15 35Q74 49J45 49S05 PDF BibTeX XML Cite \textit{M. Friedrich} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 299--319 (2021; Zbl 07314559) Full Text: DOI
Şengül, Yasemin Viscoelasticity with limiting strain. (English) Zbl 07314549 Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 57-70 (2021). MSC: 74D99 74A20 35Q74 74A05 74A10 PDF BibTeX XML Cite \textit{Y. Şengül}, Discrete Contin. Dyn. Syst., Ser. S 14, No. 1, 57--70 (2021; Zbl 07314549) Full Text: DOI
Bauchau, Olivier A.; Nemani, Nishant Modeling viscoelastic behavior in flexible multibody systems. (English) Zbl 07314303 Multibody Syst. Dyn. 51, No. 2, 159-194 (2021). MSC: 70E55 PDF BibTeX XML Cite \textit{O. A. Bauchau} and \textit{N. Nemani}, Multibody Syst. Dyn. 51, No. 2, 159--194 (2021; Zbl 07314303) Full Text: DOI
Barrett, Jeff M.; Callaghan, Jack P. A one-dimensional collagen-based biomechanical model of passive soft tissue with viscoelasticity and failure. (English) Zbl 07309197 J. Theor. Biol. 509, Article ID 110488, 12 p. (2021). MSC: 92C10 35Q92 PDF BibTeX XML Cite \textit{J. M. Barrett} and \textit{J. P. Callaghan}, J. Theor. Biol. 509, Article ID 110488, 12 p. (2021; Zbl 07309197) Full Text: DOI
Neto, Antonio Rodrigues; Leonel, Edson Denner Three dimensional nonlinear BEM formulations for the mechanical analysis of nonhomogeneous reinforced structural systems. (English) Zbl 07305290 Eng. Anal. Bound. Elem. 123, 200-219 (2021). MSC: 65 74 PDF BibTeX XML Cite \textit{A. R. Neto} and \textit{E. D. Leonel}, Eng. Anal. Bound. Elem. 123, 200--219 (2021; Zbl 07305290) Full Text: DOI
Mustafa, Muhammad I. The control of Timoshenko beams by memory-type boundary conditions. (English) Zbl 07305246 Appl. Anal. 100, No. 2, 290-301 (2021). MSC: 35B40 74D99 93D15 93D20 PDF BibTeX XML Cite \textit{M. I. Mustafa}, Appl. Anal. 100, No. 2, 290--301 (2021; Zbl 07305246) Full Text: DOI
Sarma, Rajkumar; Mondal, Pranab Kumar Marangoni instability in a viscoelastic binary film with cross-diffusive effect. (English) Zbl 07298980 J. Fluid Mech. 910, Paper No. A30, 34 p. (2021). MSC: 76 PDF BibTeX XML Cite \textit{R. Sarma} and \textit{P. K. Mondal}, J. Fluid Mech. 910, Paper No. A30, 34 p. (2021; Zbl 07298980) Full Text: DOI
Jensen, Oliver E. Thin-sheet theory for soft materials. (English) Zbl 07298963 J. Fluid Mech. 910, Paper No. F1, 4 p. (2021). MSC: 76 PDF BibTeX XML Cite \textit{O. E. Jensen}, J. Fluid Mech. 910, Paper No. F1, 4 p. (2021; Zbl 07298963) Full Text: DOI
Kalousek, Martin; Schlömerkemper, Anja Dissipative solutions to a system for the flow of magnetoviscoelastic materials. (English) Zbl 07283607 J. Differ. Equations 271, 1023-1057 (2021). MSC: 35Q35 35Q56 35A01 35B65 76A10 76W05 74F15 PDF BibTeX XML Cite \textit{M. Kalousek} and \textit{A. Schlömerkemper}, J. Differ. Equations 271, 1023--1057 (2021; Zbl 07283607) Full Text: DOI
Bartelt, M.; Klöckner, O.; Dietzsch, J.; Groß, M. Higher order finite elements in space and time for anisotropic simulations with variational integrators. Application of an efficient GPU implementation. (English) Zbl 07317984 Math. Comput. Simul. 170, 164-204 (2020). MSC: 74S 65N PDF BibTeX XML Cite \textit{M. Bartelt} et al., Math. Comput. Simul. 170, 164--204 (2020; Zbl 07317984) Full Text: DOI
Shimura, Kazuki; Yoshikawa, Shuji Error estimate for structure-preserving finite difference schemes of the one-dimensional Cahn-Hilliard system coupled with viscoelasticity. (English) Zbl 07311534 RIMS Kôkyûroku Bessatsu B82, 159-175 (2020). MSC: 65M06 35K60 65M12 65M15 PDF BibTeX XML Cite \textit{K. Shimura} and \textit{S. Yoshikawa}, RIMS Kôkyûroku Bessatsu B82, 159--175 (2020; Zbl 07311534) Full Text: Link
Sarma, Rajkumar; Mondal, Pranab Kumar Thermosolutal Marangoni instability in a viscoelastic liquid film: effect of heating from the free surface. (English) Zbl 07298506 J. Fluid Mech. 909, Paper No. A12, 24 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{R. Sarma} and \textit{P. K. Mondal}, J. Fluid Mech. 909, Paper No. A12, 24 p. (2020; Zbl 07298506) Full Text: DOI
Hewitt, I. J.; Balmforth, N. J. Viscoelastic ribbons. (English) Zbl 07298099 J. Fluid Mech. 908, Paper No. A5, 27 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{I. J. Hewitt} and \textit{N. J. Balmforth}, J. Fluid Mech. 908, Paper No. A5, 27 p. (2020; Zbl 07298099) Full Text: DOI
Gerber, Julia; Schutzius, Thomas M.; Poulikakos, Dimos Patterning of colloidal droplet deposits on soft materials. (English) Zbl 07297768 J. Fluid Mech. 907, Paper No. A39, 21 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{J. Gerber} et al., J. Fluid Mech. 907, Paper No. A39, 21 p. (2020; Zbl 07297768) Full Text: DOI
Khokhlov, Andreĭ Vladimirovich Properties of the strain rate sensitivity function produced by the linear viscoelasticity theory and existence of its maximum with respect to strain and strain rate. (Russian. English summary) Zbl 07294549 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 3, 469-505 (2020). MSC: 74D05 74A20 PDF BibTeX XML Cite \textit{A. V. Khokhlov}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 24, No. 3, 469--505 (2020; Zbl 07294549) Full Text: DOI MNR
Cocou, Marius A dynamic viscoelastic problem with friction and rate-depending contact interactions. (English) Zbl 1452.35207 Evol. Equ. Control Theory 9, No. 4, 981-993 (2020). MSC: 35Q74 49J40 74A55 74D05 74H20 PDF BibTeX XML Cite \textit{M. Cocou}, Evol. Equ. Control Theory 9, No. 4, 981--993 (2020; Zbl 1452.35207) Full Text: DOI
Rustamova, Kaklik O.; Darishova, Aynur O. Stress relaxation behavior of the annular sealing element – a linear modeling approach. (English) Zbl 07291767 J. Contemp. Appl. Math. 10, No. 1, 24-37 (2020). MSC: 74B10 74B05 PDF BibTeX XML Cite \textit{K. O. Rustamova} and \textit{A. O. Darishova}, J. Contemp. Appl. Math. 10, No. 1, 24--37 (2020; Zbl 07291767) Full Text: Link
Praharaj, Rajendra K.; Datta, N. On the transient response of plates on fractionally damped viscoelastic foundation. (English) Zbl 07291001 Comput. Appl. Math. 39, No. 4, Paper No. 256, 20 p. (2020). MSC: 26A 74D PDF BibTeX XML Cite \textit{R. K. Praharaj} and \textit{N. Datta}, Comput. Appl. Math. 39, No. 4, Paper No. 256, 20 p. (2020; Zbl 07291001) Full Text: DOI
Gachechiladze, Roland Dynamical contact problems with regard to friction of couple-stress viscoelasticity for inhomogeneous anisotropic bodies. (English) Zbl 07286085 Mem. Differ. Equ. Math. Phys. 79, 69-91 (2020). MSC: 35J86 49J40 74M10 74M15 PDF BibTeX XML Cite \textit{R. Gachechiladze}, Mem. Differ. Equ. Math. Phys. 79, 69--91 (2020; Zbl 07286085) Full Text: Link
Zvyagin, V. G.; Orlov, V. P. On regularity of weak solutions to a generalized Voigt model of viscoelasticity. (English. Russian original) Zbl 07283503 Comput. Math. Math. Phys. 60, No. 11, 1872-1888 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1933-1949 (2020). MSC: 35B65 35Q35 76A10 35R11 PDF BibTeX XML Cite \textit{V. G. Zvyagin} and \textit{V. P. Orlov}, Comput. Math. Math. Phys. 60, No. 11, 1872--1888 (2020; Zbl 07283503); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 11, 1933--1949 (2020) Full Text: DOI
Kabanova, L. A. An approach to experimental computation of an anisotropic viscoelastic plate stiffnesses. (English) Zbl 1453.74054 Lobachevskii J. Math. 41, No. 10, 2010-2017 (2020). MSC: 74K20 74E30 74D05 74E10 74-05 PDF BibTeX XML Cite \textit{L. A. Kabanova}, Lobachevskii J. Math. 41, No. 10, 2010--2017 (2020; Zbl 1453.74054) Full Text: DOI
Narayan, S. P. Atul; Palade, Liviu Iulian Modeling Payne effect with a framework of multiple natural configurations. (English) Zbl 07278789 Int. J. Eng. Sci. 157, Article ID 103396, 14 p. (2020). MSC: 74 35 PDF BibTeX XML Cite \textit{S. P. A. Narayan} and \textit{L. I. Palade}, Int. J. Eng. Sci. 157, Article ID 103396, 14 p. (2020; Zbl 07278789) Full Text: DOI
Cruz-González, O. L.; Rodríguez-Ramos, Reinaldo; Otero, J. A.; Ramírez-Torres, A.; Penta, R.; Lebon, F. On the effective behavior of viscoelastic composites in three dimensions. (English) Zbl 07278779 Int. J. Eng. Sci. 157, Article ID 103377, 20 p. (2020). MSC: 74 35 PDF BibTeX XML Cite \textit{O. L. Cruz-González} et al., Int. J. Eng. Sci. 157, Article ID 103377, 20 p. (2020; Zbl 07278779) Full Text: DOI
Vishen, Amit Singh Heat dissipation rate in a nonequilibrium viscoelastic medium. (English) Zbl 07275301 J. Stat. Mech. Theory Exp. 2020, No. 6, Article ID 063201, 13 p. (2020). MSC: 82 PDF BibTeX XML Cite \textit{A. S. Vishen}, J. Stat. Mech. Theory Exp. 2020, No. 6, Article ID 063201, 13 p. (2020; Zbl 07275301) Full Text: DOI
Wineman, Alan Dimensional changes during shear without normal tractions (the Poynting effect) in nonlinear viscoelastic fiber-reinforced solids. (English) Zbl 1446.74107 Math. Mech. Solids 25, No. 3, 582-596 (2020). MSC: 74E30 74D10 PDF BibTeX XML Cite \textit{A. Wineman}, Math. Mech. Solids 25, No. 3, 582--596 (2020; Zbl 1446.74107) Full Text: DOI
Nedjar, Boumediene A modelling framework for finite strain magnetoviscoelasticity. (English) Zbl 1446.74121 Math. Mech. Solids 25, No. 2, 288-304 (2020). MSC: 74F15 74D10 74A15 PDF BibTeX XML Cite \textit{B. Nedjar}, Math. Mech. Solids 25, No. 2, 288--304 (2020; Zbl 1446.74121) Full Text: DOI
Cagney, Neil; Lacassagne, Tom; Balabani, Stavroula Taylor-Couette flow of polymer solutions with shear-thinning and viscoelastic rheology. (English) Zbl 07271163 J. Fluid Mech. 905, Paper No. A28, 37 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{N. Cagney} et al., J. Fluid Mech. 905, Paper No. A28, 37 p. (2020; Zbl 07271163) Full Text: DOI
Zhu, Yabiao; Song, Jiaxing; Liu, Nansheng; Lu, Xiyun; Khomami, Bamin Polymer-induced flow relaminarization and drag enhancement in spanwise-rotating plane Couette flow. (English) Zbl 07271154 J. Fluid Mech. 905, Paper No. A19, 13 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{Y. Zhu} et al., J. Fluid Mech. 905, Paper No. A19, 13 p. (2020; Zbl 07271154) Full Text: DOI
Faria, J. C. O.; Jorge Silva, M. A.; Souza Franco, A. Y. A general stability result for the semilinear viscoelastic wave model under localized effects. (English) Zbl 1451.74099 Nonlinear Anal., Real World Appl. 56, Article ID 103158, 34 p. (2020). MSC: 74H40 74D99 74J99 35Q74 PDF BibTeX XML Cite \textit{J. C. O. Faria} et al., Nonlinear Anal., Real World Appl. 56, Article ID 103158, 34 p. (2020; Zbl 1451.74099) Full Text: DOI
Lu, Ruihan; Ren, Yonghua Global attractor for a viscoelastic plate equation with time-varying delay. (Chinese. English summary) Zbl 07267255 Math. Appl. 33, No. 2, 263-274 (2020). MSC: 35B41 35Q74 37L30 PDF BibTeX XML Cite \textit{R. Lu} and \textit{Y. Ren}, Math. Appl. 33, No. 2, 263--274 (2020; Zbl 07267255)
Ghayesh, Mergen H.; Farajpour, Ali; Farokhi, Hamed Effect of flow pulsations on chaos in nanotubes using nonlocal strain gradient theory. (English) Zbl 1451.74110 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105090, 16 p. (2020). MSC: 74H65 74H60 74F10 74D10 74H15 PDF BibTeX XML Cite \textit{M. H. Ghayesh} et al., Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105090, 16 p. (2020; Zbl 1451.74110) Full Text: DOI
Lappa, Marcello; Boaro, Alessio Rayleigh-Bénard convection in viscoelastic liquid bridges. (English) Zbl 07261488 J. Fluid Mech. 904, Paper No. A2, 52 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{M. Lappa} and \textit{A. Boaro}, J. Fluid Mech. 904, Paper No. A2, 52 p. (2020; Zbl 07261488) Full Text: DOI
Deblais, A.; Herrada, M. A.; Eggers, J.; Bonn, D. Self-similarity in the breakup of very dilute viscoelastic solutions. (English) Zbl 07261487 J. Fluid Mech. 904, Paper No. R2, 9 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{A. Deblais} et al., J. Fluid Mech. 904, Paper No. R2, 9 p. (2020; Zbl 07261487) Full Text: DOI
Su, Xianglong; Yao, Donggang; Xu, Wenxiang A new method for formulating linear viscoelastic models. (English) Zbl 07261132 Int. J. Eng. Sci. 156, Article ID 103375, 15 p. (2020). MSC: 74 80 PDF BibTeX XML Cite \textit{X. Su} et al., Int. J. Eng. Sci. 156, Article ID 103375, 15 p. (2020; Zbl 07261132) Full Text: DOI
Ai, Zhi Yong; Zhao, Yong Zhi; Liu, Wen Jie Fractional derivative modeling for axisymmetric consolidation of multilayered cross-anisotropic viscoelastic porous media. (English) Zbl 1443.74173 Comput. Math. Appl. 79, No. 5, 1321-1334 (2020). MSC: 74F10 74D05 74E10 76S05 35R11 PDF BibTeX XML Cite \textit{Z. Y. Ai} et al., Comput. Math. Appl. 79, No. 5, 1321--1334 (2020; Zbl 1443.74173) Full Text: DOI
Druetta, P.; Picchioni, F. Influence of the polymer properties and numerical schemes on tertiary oil recovery processes. (English) Zbl 1443.76213 Comput. Math. Appl. 79, No. 4, 1094-1110 (2020). MSC: 76S05 76A10 65M06 65Z05 PDF BibTeX XML Cite \textit{P. Druetta} and \textit{F. Picchioni}, Comput. Math. Appl. 79, No. 4, 1094--1110 (2020; Zbl 1443.76213) Full Text: DOI
Jiang, Yu; Fujiwara, Hiroshi; Nakamura, Gen Erratum to: “Approximate steady state models for magnetic resonance elastography”. (English) Zbl 1443.35192 SIAM J. Appl. Math. 80, No. 4, 2001 (2020). MSC: 35R30 74G10 74L15 92C55 PDF BibTeX XML Cite \textit{Y. Jiang} et al., SIAM J. Appl. Math. 80, No. 4, 2001 (2020; Zbl 1443.35192) Full Text: DOI
Bonetti, Elena; Bonfanti, Giovanna; Licht, Christian; Rossi, Riccarda Dynamics of two linearly elastic bodies connected by a heavy thin soft viscoelastic layer. (English) Zbl 1447.49021 J. Elasticity 141, No. 1, 75-107 (2020). MSC: 49J45 35B40 35Q74 74B05 74D10 74K30 PDF BibTeX XML Cite \textit{E. Bonetti} et al., J. Elasticity 141, No. 1, 75--107 (2020; Zbl 1447.49021) Full Text: DOI
Ravindran, S. S. Analysis of a second-order decoupled time-stepping scheme for transient viscoelastic flow. (English) Zbl 07244678 Int. J. Numer. Anal. Model. 17, No. 1, 87-109 (2020). MSC: 65 PDF BibTeX XML Cite \textit{S. S. Ravindran}, Int. J. Numer. Anal. Model. 17, No. 1, 87--109 (2020; Zbl 07244678) Full Text: Link
Ferreira, José A.; de Oliveira, Paula; Pinto, Luís Aging effect on iontophoretic transdermal drug delivery. (English) Zbl 1447.35332 SIAM J. Appl. Math. 80, No. 4, 1882-1907 (2020). Reviewer: Eugene Postnikov (Kursk) MSC: 35Q92 92C37 92C50 92-08 74D10 PDF BibTeX XML Cite \textit{J. A. Ferreira} et al., SIAM J. Appl. Math. 80, No. 4, 1882--1907 (2020; Zbl 1447.35332) Full Text: DOI
Shariff, M. H. B. M.; Bustamante, R.; Merodio, J. A nonlinear spectral rate-dependent constitutive equation for electro-viscoelastic solids. (English) Zbl 1446.74123 Z. Angew. Math. Phys. 71, No. 4, Paper No. 126, 22 p. (2020). MSC: 74F15 74D10 PDF BibTeX XML Cite \textit{M. H. B. M. Shariff} et al., Z. Angew. Math. Phys. 71, No. 4, Paper No. 126, 22 p. (2020; Zbl 1446.74123) Full Text: DOI
Binagia, Jeremy P.; Phoa, Ardella; Housiadas, Kostas D.; Shaqfeh, Eric S. G. Swimming with swirl in a viscoelastic fluid. (English) Zbl 07235770 J. Fluid Mech. 900, Paper No. A4, 20 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{J. P. Binagia} et al., J. Fluid Mech. 900, Paper No. A4, 20 p. (2020; Zbl 07235770) Full Text: DOI
Guimarães, Mateus C.; Pimentel, Nuno; Pinho, Fernando T.; da Silva, Carlos B. Direct numerical simulations of turbulent viscoelastic jets. (English) Zbl 07229198 J. Fluid Mech. 899, Paper No. A11, 37 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{M. C. Guimarães} et al., J. Fluid Mech. 899, Paper No. A11, 37 p. (2020; Zbl 07229198) Full Text: DOI
Nguyen, Van Thuong; Hwu, Chyanbin Boundary element method for contact between multiple rigid punches and anisotropic viscoelastic foundation. (English) Zbl 07228826 Eng. Anal. Bound. Elem. 118, 295-305 (2020). MSC: 74 35 PDF BibTeX XML Cite \textit{V. T. Nguyen} and \textit{C. Hwu}, Eng. Anal. Bound. Elem. 118, 295--305 (2020; Zbl 07228826) Full Text: DOI
Choudhary, Akash; Li, Di; Renganathan, T.; Xuan, Xiangchun; Pushpavanam, S. Electrokinetically enhanced cross-stream particle migration in viscoelastic flows. (English) Zbl 07227604 J. Fluid Mech. 898, Paper No. A20, 22 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{A. Choudhary} et al., J. Fluid Mech. 898, Paper No. A20, 22 p. (2020; Zbl 07227604) Full Text: DOI
Conti, Monica; Pata, Vittorino; Pellicer, Marta; Quintanilla, Ramon On the analyticity of the MGT-viscoelastic plate with heat conduction. (English) Zbl 1442.35073 J. Differ. Equations 269, No. 10, 7862-7880 (2020). MSC: 35G46 35B40 35B65 47D06 74F05 74K20 PDF BibTeX XML Cite \textit{M. Conti} et al., J. Differ. Equations 269, No. 10, 7862--7880 (2020; Zbl 1442.35073) Full Text: DOI
Caponi, Maicol; Sapio, Francesco A dynamic model for viscoelastic materials with prescribed growing cracks. (English) Zbl 1442.35250 Ann. Mat. Pura Appl. (4) 199, No. 4, 1263-1292 (2020). MSC: 35L53 35A01 35Q74 74H20 74R10 74D05 PDF BibTeX XML Cite \textit{M. Caponi} and \textit{F. Sapio}, Ann. Mat. Pura Appl. (4) 199, No. 4, 1263--1292 (2020; Zbl 1442.35250) Full Text: DOI
Kumhar, Raju; Kundu, S. Effect of the heterogeneity, initial stress and viscosity on the propagation characteristics of shear wave. (English) Zbl 1445.74031 Manna, Santanu (ed.) et al., Mathematical modelling and scientific computing with applications. Proceedings of the international conference, ICMMSC 2018, Indore, India, July 19–21, 2018. Singapore: Springer. Springer Proc. Math. Stat. 308, 137-148 (2020). MSC: 74J10 74E05 PDF BibTeX XML Cite \textit{R. Kumhar} and \textit{S. Kundu}, Springer Proc. Math. Stat. 308, 137--148 (2020; Zbl 1445.74031) Full Text: DOI
Totieva, Zh. D. Determining the kernel of the viscoelasticity equation in a medium with slightly horizontal homogeneity. (English. Russian original) Zbl 1448.45012 Sib. Math. J. 61, No. 2, 359-378 (2020); translation from Sib. Mat. Zh. 61, No. 2, 453-475 (2020). Reviewer: Vincenzo Vespri (Firenze) MSC: 45K05 45Q05 PDF BibTeX XML Cite \textit{Zh. D. Totieva}, Sib. Math. J. 61, No. 2, 359--378 (2020; Zbl 1448.45012); translation from Sib. Mat. Zh. 61, No. 2, 453--475 (2020) Full Text: DOI
Erbay, H. A.; Şengül, Y. A thermodynamically consistent stress-rate type model of one-dimensional strain-limiting viscoelasticity. (English) Zbl 1435.74007 Z. Angew. Math. Phys. 71, No. 3, Paper No. 94, 10 p. (2020). MSC: 74A15 74D05 74D10 74A05 74A10 74A20 74B05 PDF BibTeX XML Cite \textit{H. A. Erbay} and \textit{Y. Şengül}, Z. Angew. Math. Phys. 71, No. 3, Paper No. 94, 10 p. (2020; Zbl 1435.74007) Full Text: DOI
Yang, Zhifeng Blow-up and lifespan of solutions for a nonlinear viscoelastic Kirchhoff equation. (English) Zbl 1440.35016 Result. Math. 75, No. 3, Paper No. 84, 14 p. (2020). MSC: 35B44 35L20 35L72 35R09 PDF BibTeX XML Cite \textit{Z. Yang}, Result. Math. 75, No. 3, Paper No. 84, 14 p. (2020; Zbl 1440.35016) Full Text: DOI
Kasri, Abderrezak; Touzaline, Arezki A quasistatic frictional contact problem for viscoelastic materials with long memory. (English) Zbl 1440.49010 Georgian Math. J. 27, No. 2, 249-264 (2020). MSC: 49J40 74M10 74M15 49J45 PDF BibTeX XML Cite \textit{A. Kasri} and \textit{A. Touzaline}, Georgian Math. J. 27, No. 2, 249--264 (2020; Zbl 1440.49010) Full Text: DOI
Groß, Michael; Dietzsch, Julian; Röbiger, Chris Non-isothermal energy-momentum time integrations with drilling degrees of freedom of composites with viscoelastic fiber bundles and curvature-twist stiffness. (English) Zbl 1442.74015 Comput. Methods Appl. Mech. Eng. 365, Article ID 112973, 51 p. (2020). MSC: 74A40 74A35 PDF BibTeX XML Cite \textit{M. Groß} et al., Comput. Methods Appl. Mech. Eng. 365, Article ID 112973, 51 p. (2020; Zbl 1442.74015) Full Text: DOI
Plagge, Jan; Ricker, A.; Kröger, N. H.; Wriggers, P.; Klüppel, M. Efficient modeling of filled rubber assuming stress-induced microscopic restructurization. (English) Zbl 07205499 Int. J. Eng. Sci. 151, Article ID 103291, 20 p. (2020). MSC: 74 82 PDF BibTeX XML Cite \textit{J. Plagge} et al., Int. J. Eng. Sci. 151, Article ID 103291, 20 p. (2020; Zbl 07205499) Full Text: DOI
Itou, Hiromichi; Kovtunenko, Victor A.; Rajagopal, Kumbakonam R. The Boussinesq flat-punch indentation problem within the context of linearized viscoelasticity. (English) Zbl 07205497 Int. J. Eng. Sci. 151, Article ID 103272, 11 p. (2020). MSC: 74M15 74D99 35C05 31B10 PDF BibTeX XML Cite \textit{H. Itou} et al., Int. J. Eng. Sci. 151, Article ID 103272, 11 p. (2020; Zbl 07205497) Full Text: DOI
Zhang, Haiying; Zhou, Zhenwen; Chudnovsky, Alexander; Pham, Hoang Time-dependent buckling delamination of thin plastic films and their conformability: observations and modeling. (English) Zbl 07205489 Int. J. Eng. Sci. 150, Article ID 103258, 12 p. (2020). MSC: 74 35 PDF BibTeX XML Cite \textit{H. Zhang} et al., Int. J. Eng. Sci. 150, Article ID 103258, 12 p. (2020; Zbl 07205489) Full Text: DOI
Shariyat, M.; Mohammadjani, R. 3D nonlinear variable strain-rate-dependent-order fractional thermoviscoelastic dynamic stress investigation and vibration of thick transversely graded rotating annular plates/discs. (English) Zbl 07203995 Appl. Math. Modelling 84, 287-323 (2020). MSC: 74 80 PDF BibTeX XML Cite \textit{M. Shariyat} and \textit{R. Mohammadjani}, Appl. Math. Modelling 84, 287--323 (2020; Zbl 07203995) Full Text: DOI
Li, Li; Lin, Rongming; Ng, Teng Yong A fractional nonlocal time-space viscoelasticity theory and its applications in structural dynamics. (English) Zbl 07203986 Appl. Math. Modelling 84, 116-136 (2020). MSC: 74 35 PDF BibTeX XML Cite \textit{L. Li} et al., Appl. Math. Modelling 84, 116--136 (2020; Zbl 07203986) Full Text: DOI
Shaw, Soumen; Othman, Mohamed I. A. Extensional and flexural modes of Rayleigh-Lamb wave in an orthotropic thermoelastic layer lying over a viscoelastic half-space. (English) Zbl 07203983 Appl. Math. Modelling 84, 76-88 (2020). MSC: 74 35 PDF BibTeX XML Cite \textit{S. Shaw} and \textit{M. I. A. Othman}, Appl. Math. Modelling 84, 76--88 (2020; Zbl 07203983) Full Text: DOI
Khochemane, Houssem Eddine; Djebabla, Abdelhak; Zitouni, Salah; Bouzettouta, Lamine Well-posedness and general decay of a nonlinear damping porous-elastic system with infinite memory. (English) Zbl 1434.74024 J. Math. Phys. 61, No. 2, 021505, 20 p. (2020). MSC: 74B20 74D10 PDF BibTeX XML Cite \textit{H. E. Khochemane} et al., J. Math. Phys. 61, No. 2, 021505, 20 p. (2020; Zbl 1434.74024) Full Text: DOI
Tai, Cheng-Wei; Wang, Shiyan; Narsimhan, Vivek Cross-stream migration of non-spherical particles in a second-order fluid – theories of particle dynamics in arbitrary quadratic flows. (English) Zbl 07202062 J. Fluid Mech. 895, Paper No. A6, 25 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{C.-W. Tai} et al., J. Fluid Mech. 895, Paper No. A6, 25 p. (2020; Zbl 07202062) Full Text: DOI
Hudson, Thomas; Legoll, Frédéric; Lelièvre, Tony Stochastic homogenization of a scalar viscoelastic model exhibiting stress-strain hysteresis. (English) Zbl 1434.74093 ESAIM, Math. Model. Numer. Anal. 54, No. 3, 879-928 (2020). MSC: 74Q10 35Q74 35B27 PDF BibTeX XML Cite \textit{T. Hudson} et al., ESAIM, Math. Model. Numer. Anal. 54, No. 3, 879--928 (2020; Zbl 1434.74093) Full Text: DOI
Browne, Christopher A.; Shih, Audrey; Datta, Sujit S. Bistability in the unstable flow of polymer solutions through pore constriction arrays. (English) Zbl 07193481 J. Fluid Mech. 890, Paper No. A2, 25 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{C. A. Browne} et al., J. Fluid Mech. 890, Paper No. A2, 25 p. (2020; Zbl 07193481) Full Text: DOI
Paunović, Stepa; Cajić, Milan; Karličić, Danilo; Mijalković, Marina Dynamics of fractional-order multi-beam mass system excited by base motion. (English) Zbl 07193149 Appl. Math. Modelling 80, 702-723 (2020). MSC: 74 93 PDF BibTeX XML Cite \textit{S. Paunović} et al., Appl. Math. Modelling 80, 702--723 (2020; Zbl 07193149) Full Text: DOI
Zhang, Will; Capilnasiu, Adela; Sommer, Gerhard; Holzapfel, Gerhard A.; Nordsletten, David A. An efficient and accurate method for modeling nonlinear fractional viscoelastic biomaterials. (English) Zbl 1439.74083 Comput. Methods Appl. Mech. Eng. 362, Article ID 112834, 33 p. (2020). MSC: 74D10 74L15 74M10 PDF BibTeX XML Cite \textit{W. Zhang} et al., Comput. Methods Appl. Mech. Eng. 362, Article ID 112834, 33 p. (2020; Zbl 1439.74083) Full Text: DOI
Jiang, Yu; Qian, Shi-Hui Bayesian approach for recovering piecewise constant viscoelasticity from MRE data. (English) Zbl 1431.35244 Acta Math. Appl. Sin., Engl. Ser. 36, No. 1, 223-236 (2020). MSC: 35R30 65N21 35J25 92C55 65C05 PDF BibTeX XML Cite \textit{Y. Jiang} and \textit{S.-H. Qian}, Acta Math. Appl. Sin., Engl. Ser. 36, No. 1, 223--236 (2020; Zbl 1431.35244) Full Text: DOI
Le Clainche, Soledad; Izbassarov, D.; Rosti, M.; Brandt, L.; Tammisola, O. Coherent structures in the turbulent channel flow of an elastoviscoplastic fluid. (English) Zbl 07173491 J. Fluid Mech. 888, Paper No. A5, 31 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{S. Le Clainche} et al., J. Fluid Mech. 888, Paper No. A5, 31 p. (2020; Zbl 07173491) Full Text: DOI
Imanuvilov, Oleg Yu.; Yamamoto, Masahiro Carleman estimate for linear viscoelasticity equations and an inverse source problem. (English) Zbl 1430.35266 SIAM J. Math. Anal. 52, No. 1, 718-791 (2020). MSC: 35R30 74D05 35Q74 45Q05 PDF BibTeX XML Cite \textit{O. Yu. Imanuvilov} and \textit{M. Yamamoto}, SIAM J. Math. Anal. 52, No. 1, 718--791 (2020; Zbl 1430.35266) Full Text: DOI
Belhannache, Farida; Algharabli, Mohammad M.; Messaoudi, Salim A. Asymptotic stability for a viscoelastic equation with nonlinear damping and very general type of relaxation functions. (English) Zbl 1442.35027 J. Dyn. Control Syst. 26, No. 1, 45-67 (2020). Reviewer: Giuliano Lazzaroni (Firenze) MSC: 35B35 35L55 74D10 93D20 35B40 PDF BibTeX XML Cite \textit{F. Belhannache} et al., J. Dyn. Control Syst. 26, No. 1, 45--67 (2020; Zbl 1442.35027) Full Text: DOI
Chandra, Bidhan; Shankar, V.; Das, Debopam Early transition, relaminarization and drag reduction in the flow of polymer solutions through microtubes. (English) Zbl 07154409 J. Fluid Mech. 885, Paper No. A47, 34 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{B. Chandra} et al., J. Fluid Mech. 885, Paper No. A47, 34 p. (2020; Zbl 07154409) Full Text: DOI
Davies, A. R.; Douglas, R. J. A kernel approach to deconvolution of the complex modulus in linear viscoelasticity. (English) Zbl 1443.45011 Inverse Probl. 36, No. 1, Article ID 015001, 22 p. (2020). MSC: 45Q05 44A35 76A10 76A05 PDF BibTeX XML Cite \textit{A. R. Davies} and \textit{R. J. Douglas}, Inverse Probl. 36, No. 1, Article ID 015001, 22 p. (2020; Zbl 1443.45011) Full Text: DOI
Li, Gaojin; Koch, Donald L. Electrophoresis in dilute polymer solutions. (English) Zbl 07150050 J. Fluid Mech. 884, Paper No. A9, 30 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{G. Li} and \textit{D. L. Koch}, J. Fluid Mech. 884, Paper No. A9, 30 p. (2020; Zbl 07150050) Full Text: DOI
Onishi, Yuki; Iida, Ryoya; Amaya, Kenji Accurate viscoelastic large deformation analysis using F-bar aided edge-based smoothed finite element method for 4-node tetrahedral meshes (F-bares-FEM-T4). (English) Zbl 07124743 Int. J. Comput. Methods 17, No. 2, Article ID 1845003, 23 p. (2020). MSC: 74 76 PDF BibTeX XML Cite \textit{Y. Onishi} et al., Int. J. Comput. Methods 17, No. 2, Article ID 1845003, 23 p. (2020; Zbl 07124743) Full Text: DOI
Fahmy, Mohamed Abdelsabour Design optimization for a simulation of rotating anisotropic viscoelastic porous structures using time-domain OQBEM. (English) Zbl 07316766 Math. Comput. Simul. 166, 193-205 (2019). MSC: 74P 74K 74B PDF BibTeX XML Cite \textit{M. A. Fahmy}, Math. Comput. Simul. 166, 193--205 (2019; Zbl 07316766) Full Text: DOI
Elhanafy, Ahmed; Guaily, Amr; Elsaid, Ahmed Numerical simulation of blood flow in abdominal aortic aneurysms: effects of blood shear-thinning and viscoelastic properties. (English) Zbl 07316656 Math. Comput. Simul. 160, 55-71 (2019). MSC: 76 92 PDF BibTeX XML Cite \textit{A. Elhanafy} et al., Math. Comput. Simul. 160, 55--71 (2019; Zbl 07316656) Full Text: DOI
Korovaytseva, E. A.; Pshenichnov, S. G.; Tarlakovskii, D. V. Analytical solution of non-stationary waves propagation in viscoelastic layer problem. (English) Zbl 1451.74112 Lobachevskii J. Math. 40, No. 12, 2084-2089 (2019). MSC: 74J05 74D05 74H05 PDF BibTeX XML Cite \textit{E. A. Korovaytseva} et al., Lobachevskii J. Math. 40, No. 12, 2084--2089 (2019; Zbl 1451.74112) Full Text: DOI
Shomberg, Joseph L. Regular global attractors for wave equations with degenerate memory. (English) Zbl 1451.37094 Ural Math. J. 5, No. 1, 59-82 (2019). MSC: 37L30 35L05 35B41 35Q74 PDF BibTeX XML Cite \textit{J. L. Shomberg}, Ural Math. J. 5, No. 1, 59--82 (2019; Zbl 1451.37094) Full Text: DOI MNR
Castiñeira, Gonzalo; Rodríguez-Arós, Ángel On the justification of viscoelastic flexural shell equations. (English) Zbl 1442.74048 Comput. Math. Appl. 77, No. 11, 2933-2942 (2019). MSC: 74D05 74K25 PDF BibTeX XML Cite \textit{G. Castiñeira} and \textit{Á. Rodríguez-Arós}, Comput. Math. Appl. 77, No. 11, 2933--2942 (2019; Zbl 1442.74048) Full Text: DOI
Gallican, Valentin; Brenner, Renald Homogenization estimates for the effective response of fractional viscoelastic particulate composites. (English) Zbl 1442.74014 Contin. Mech. Thermodyn. 31, No. 3, 823-840 (2019). MSC: 74A40 74D99 34A08 82D60 PDF BibTeX XML Cite \textit{V. Gallican} and \textit{R. Brenner}, Contin. Mech. Thermodyn. 31, No. 3, 823--840 (2019; Zbl 1442.74014) Full Text: DOI
Bukenov, Mahat Muhamedievich; Azimova, Dinara Narzullaevna Estimates for Maxwell viscoelastic medium “in tension-rates”. (English) Zbl 07240659 Eurasian Math. J. 10, No. 2, 30-36 (2019). MSC: 65F10 PDF BibTeX XML Cite \textit{M. M. Bukenov} and \textit{D. N. Azimova}, Eurasian Math. J. 10, No. 2, 30--36 (2019; Zbl 07240659) Full Text: DOI MNR
Yue, Xiangying; Pu, Zhilin A decay result of the energy to a viscoelastic equation with memory kernel. (Chinese. English summary) Zbl 1449.35086 J. Sichuan Norm. Univ., Nat. Sci. 42, No. 5, 583-589 (2019). MSC: 35B40 PDF BibTeX XML Cite \textit{X. Yue} and \textit{Z. Pu}, J. Sichuan Norm. Univ., Nat. Sci. 42, No. 5, 583--589 (2019; Zbl 1449.35086) Full Text: DOI
Golub, V. P. Towards the solution of creep problems of thin-shelled tubular elements in isotropic nonlinear viscoelastic materials. (Ukrainian. English summary) Zbl 1449.74062 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 1, 42-45 (2019). MSC: 74D10 74A10 PDF BibTeX XML Cite \textit{V. P. Golub}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2019, No. 1, 42--45 (2019; Zbl 1449.74062)
Bishara, Dana; Jabareen, Mahmood A reduced mixed finite-element formulation for modeling the viscoelastic response of electro-active polymers at finite deformation. (English) Zbl 1440.74375 Math. Mech. Solids 24, No. 5, 1578-1610 (2019). MSC: 74S05 74D10 74F15 PDF BibTeX XML Cite \textit{D. Bishara} and \textit{M. Jabareen}, Math. Mech. Solids 24, No. 5, 1578--1610 (2019; Zbl 1440.74375) Full Text: DOI
Abdelhakim, Ahmed A.; Machado, José A. Tenreiro A critical analysis of the conformable derivative. (English) Zbl 1437.26006 Nonlinear Dyn. 95, No. 4, 3063-3073 (2019). MSC: 26A33 34A08 74D05 PDF BibTeX XML Cite \textit{A. A. Abdelhakim} and \textit{J. A. T. Machado}, Nonlinear Dyn. 95, No. 4, 3063--3073 (2019; Zbl 1437.26006) Full Text: DOI
Golub, V. P.; Kobzar’, Yu. M.; Fernati, P. V. Determining the parameters of the hereditary kernels of isotropic nonlinear viscoelastic materials in combined stress state*. (English) Zbl 1437.74005 Int. Appl. Mech. 55, No. 6, 601-619 (2019); translation from Prikl. Mekh., Kiev 55, No. 6, 25-45 (2019). MSC: 74D10 74A10 PDF BibTeX XML Cite \textit{V. P. Golub} et al., Int. Appl. Mech. 55, No. 6, 601--619 (2019; Zbl 1437.74005); translation from Prikl. Mekh., Kiev 55, No. 6, 25--45 (2019) Full Text: DOI
Wineman, Alan Branching of stretch histories in biaxially loaded nonlinear viscoelastic fiber-reinforced sheets. (English) Zbl 07225909 Math. Mech. Solids 24, No. 3, 807-827 (2019). Reviewer: Vinod K. Arya (Dallas) MSC: 74D10 74E30 PDF BibTeX XML Cite \textit{A. Wineman}, Math. Mech. Solids 24, No. 3, 807--827 (2019; Zbl 07225909) Full Text: DOI
De Pascalis, Riccardo; Napoli, Gaetano; Saccomandi, Giuseppe Kink-type solitary waves within the quasi-linear viscoelastic model. (English) Zbl 07215428 Wave Motion 86, 195-202 (2019). MSC: 35 74 PDF BibTeX XML Cite \textit{R. De Pascalis} et al., Wave Motion 86, 195--202 (2019; Zbl 07215428) Full Text: DOI
Maity, Debayan; Mitra, Debanjana; Renardy, Michael Lack of null controllability of viscoelastic flows. (English) Zbl 1437.35585 ESAIM, Control Optim. Calc. Var. 25, Paper No. 60, 26 p. (2019). MSC: 35Q35 76A10 93B05 PDF BibTeX XML Cite \textit{D. Maity} et al., ESAIM, Control Optim. Calc. Var. 25, Paper No. 60, 26 p. (2019; Zbl 1437.35585) Full Text: DOI
Shaw, Simon An a priori error estimate for a temporally discontinuous Galerkin space-time finite element method for linear elasto- and visco-dynamics. (English) Zbl 1441.74274 Comput. Methods Appl. Mech. Eng. 351, 1-19 (2019). MSC: 74S05 65M60 35Q74 45D05 45K05 65M15 74D05 PDF BibTeX XML Cite \textit{S. Shaw}, Comput. Methods Appl. Mech. Eng. 351, 1--19 (2019; Zbl 1441.74274) Full Text: DOI
Thamburaja, P.; Sarah, K.; Srinivasa, A.; Reddy, J. N. Fracture of viscoelastic materials: FEM implementation of a non-local & rate form-based finite-deformation constitutive theory. (English) Zbl 1441.74026 Comput. Methods Appl. Mech. Eng. 354, 871-903 (2019). MSC: 74A45 74S05 65M60 74D10 PDF BibTeX XML Cite \textit{P. Thamburaja} et al., Comput. Methods Appl. Mech. Eng. 354, 871--903 (2019; Zbl 1441.74026) Full Text: DOI
Eggersmann, R.; Kirchdoerfer, T.; Reese, S.; Stainier, L.; Ortiz, M. Model-free data-driven inelasticity. (English) Zbl 1441.74048 Comput. Methods Appl. Mech. Eng. 350, 81-99 (2019). MSC: 74D05 35Q74 74B99 74C10 PDF BibTeX XML Cite \textit{R. Eggersmann} et al., Comput. Methods Appl. Mech. Eng. 350, 81--99 (2019; Zbl 1441.74048) Full Text: DOI
Xia, Huanxiong; Lu, Jiacai; Tryggvason, Gretar A numerical study of the effect of viscoelastic stresses in fused filament fabrication. (English) Zbl 1440.74092 Comput. Methods Appl. Mech. Eng. 346, 242-259 (2019). MSC: 74D05 PDF BibTeX XML Cite \textit{H. Xia} et al., Comput. Methods Appl. Mech. Eng. 346, 242--259 (2019; Zbl 1440.74092) Full Text: DOI
Chen, Yang; Xin, Ling; Liu, Yu; Guo, Zaoyang; Dong, Leiting; Zhong, Zheng A viscoelastic model for particle-reinforced composites in finite deformations. (English) Zbl 07187117 Appl. Math. Modelling 72, 499-512 (2019). MSC: 74 76 PDF BibTeX XML Cite \textit{Y. Chen} et al., Appl. Math. Modelling 72, 499--512 (2019; Zbl 07187117) Full Text: DOI
Druetta, P.; Picchioni, F. Influence of the polymer degradation on enhanced oil recovery processes. (English) Zbl 07186520 Appl. Math. Modelling 69, 142-163 (2019). MSC: 76 80 PDF BibTeX XML Cite \textit{P. Druetta} and \textit{F. Picchioni}, Appl. Math. Modelling 69, 142--163 (2019; Zbl 07186520) Full Text: DOI
Khokhlov, Andreĭ Vladimirovich Analysis of the bulk creep influence on stress-strain curves under tensile loadings at constant rates and on Poisson’s ratio evolution based on the linear viscoelasticity theory. (Russian. English summary) Zbl 1449.74061 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 23, No. 4, 671-704 (2019). MSC: 74D05 PDF BibTeX XML Cite \textit{A. V. Khokhlov}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 23, No. 4, 671--704 (2019; Zbl 1449.74061) Full Text: DOI MNR
Khokhlov, Andreĭ Vladimirovich Analysis of the linear viscoelasticity theory capabilities to simulate hydrostatic pressure influence on creep curves and lateral contraction ratio of rheonomous materials. (Russian. English summary) Zbl 1449.74060 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 23, No. 2, 304-340 (2019). MSC: 74D05 74A20 PDF BibTeX XML Cite \textit{A. V. Khokhlov}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 23, No. 2, 304--340 (2019; Zbl 1449.74060) Full Text: DOI MNR
Cai, Yuan; Lei, Zhen; Lin, Fanghua; Masmoudi, Nader Vanishing viscosity limit for incompressible viscoelasticity in two dimensions. (English) Zbl 1439.35391 Commun. Pure Appl. Math. 72, No. 10, 2063-2120 (2019). MSC: 35Q35 35Q49 76A10 76D05 35A01 35B65 35D40 PDF BibTeX XML Cite \textit{Y. Cai} et al., Commun. Pure Appl. Math. 72, No. 10, 2063--2120 (2019; Zbl 1439.35391) Full Text: DOI
Khokhlov, A. V. Monotone increase of the strain rate sensitivity value of any parallel connection of the fractional Kelvin-Voigt models. (Russian. English summary) Zbl 1425.74114 Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 11, No. 3, 56-67 (2019). MSC: 74D10 PDF BibTeX XML Cite \textit{A. V. Khokhlov}, Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat., Mekh., Fiz. 11, No. 3, 56--67 (2019; Zbl 1425.74114) Full Text: DOI MNR
Grekova, Elena F.; Abreu, Rafael Isotropic linear viscoelastic reduced Cosserat medium: an acoustic metamaterial and a first step to model geomedium. (English) Zbl 1425.74034 Abali, Bilen Emek (ed.) et al., New achievements in continuum mechanics and thermodynamics. A tribute to Wolfgang H. Müller. Cham: Springer. Adv. Struct. Mater. 108, 165-185 (2019). MSC: 74A35 74D05 74J10 86A15 PDF BibTeX XML Cite \textit{E. F. Grekova} and \textit{R. Abreu}, Adv. Struct. Mater. 108, 165--185 (2019; Zbl 1425.74034) Full Text: DOI
Zhan, Qiwei; Zhuang, Mingwei; Fang, Yuan; Liu, Jian-Guo; Liu, Qing Huo Green’s function for anisotropic dispersive poroelastic media based on the Radon transform and eigenvector diagonalization. (English) Zbl 1425.74120 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 475, No. 2221, Article ID 20180610, 20 p. (2019). MSC: 74E10 74F10 74F15 PDF BibTeX XML Cite \textit{Q. Zhan} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 475, No. 2221, Article ID 20180610, 20 p. (2019; Zbl 1425.74120) Full Text: DOI