×

Lagrangian and symmetry structure of the divergence cleaning model based on generalized Lagrange multipliers. (English) Zbl 1083.70025

Summary: A field theoretical method for the treatment of the often violated charge conservation laws in computational electrodynamics is presented. This approach explores the basic symmetry features of Maxwell theory and the analogy between the gauge field anomalies of quantum field theory and the violation of charge conservation law on the lattice, in Lorentz covariant Lagrangian formalism. A mathematical construction of the counter terms to the anomalous charge conservation law is proposed, and thereby a consistent theory for the generalized Lagrange multiplier (GML) method is presented, which has so far lacked a concrete theoretical framework. Based on the established theoretical framework, the GLM method has been further extended and the question regarding whether GLM method solves ”right” equations is answered. This extended GLM method with new insight is then applied to magnetohydrodynamics (MHD) and recently proposed ”shallow water” MHD. In particular, a GLM-based Godunov-type finite volume solver for the ”shallow water” MHD system on the Cartesian grid has been developed, and the introduced theoretical framework for GLM model is validated. In addition, associated new analytic features of the ”shallow water” MHD system is also presented.

MSC:

70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
76W05 Magnetohydrodynamics and electrohydrodynamics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
78A30 Electro- and magnetostatics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1007/978-1-4757-0836-3 · doi:10.1007/978-1-4757-0836-3
[2] DOI: 10.1007/978-3-662-04078-2 · doi:10.1007/978-3-662-04078-2
[3] DOI: 10.1007/978-3-7091-6622-2 · doi:10.1007/978-3-7091-6622-2
[4] Clemmow P. C., Electrodynamics of Particles and Plasmas (1969)
[5] Hockney R. W., Computer Simulation Using Particles (1981) · Zbl 0662.76002
[6] Birdsall C. K., Plasma Physics Via Computer Simulation (1985)
[7] Jackson J. D., Classical Electrodynamics (1975) · Zbl 0997.78500
[8] Taflove A., Computational Electrodynamics: The Finite-Difference Time-Domain Method (1995) · Zbl 0840.65126
[9] DOI: 10.1007/978-3-642-50319-1 · doi:10.1007/978-3-642-50319-1
[10] DOI: 10.1016/0010-4655(91)90199-U · doi:10.1016/0010-4655(91)90199-U
[11] Brackbill J., J. Comput. Phys. 35 pp 462–
[12] DOI: 10.1016/0010-4655(92)90105-8 · doi:10.1016/0010-4655(92)90105-8
[13] DOI: 10.1016/0021-9991(87)90043-X · Zbl 0603.65079 · doi:10.1016/0021-9991(87)90043-X
[14] DOI: 10.1109/20.312561 · doi:10.1109/20.312561
[15] DOI: 10.1006/jcph.1996.0082 · Zbl 0848.65086 · doi:10.1006/jcph.1996.0082
[16] DOI: 10.1006/jcph.2000.6507 · Zbl 0970.78010 · doi:10.1006/jcph.2000.6507
[17] DOI: 10.1006/jcph.2000.6519 · Zbl 0980.76051 · doi:10.1006/jcph.2000.6519
[18] DOI: 10.1016/S0764-4442(99)80185-2 · Zbl 0937.78005 · doi:10.1016/S0764-4442(99)80185-2
[19] DOI: 10.1016/S0010-4655(00)00045-X · Zbl 0960.78019 · doi:10.1016/S0010-4655(00)00045-X
[20] DOI: 10.1002/(SICI)1097-0207(19990210)44:4<461::AID-NME510>3.0.CO;2-# · Zbl 0941.78015 · doi:10.1002/(SICI)1097-0207(19990210)44:4<461::AID-NME510>3.0.CO;2-#
[21] DOI: 10.1006/jcph.2001.6961 · Zbl 1059.76040 · doi:10.1006/jcph.2001.6961
[22] DOI: 10.1137/1025002 · Zbl 0565.65051 · doi:10.1137/1025002
[23] DOI: 10.1006/jcph.1993.1214 · Zbl 0795.65087 · doi:10.1006/jcph.1993.1214
[24] DOI: 10.1086/317291 · doi:10.1086/317291
[25] DOI: 10.1063/1.1379045 · doi:10.1063/1.1379045
[26] DOI: 10.1063/1.1463415 · doi:10.1063/1.1463415
[27] DOI: 10.1017/CBO9781139644174 · doi:10.1017/CBO9781139644174
[28] DOI: 10.1016/0550-3213(74)90486-6 · doi:10.1016/0550-3213(74)90486-6
[29] DOI: 10.1103/PhysRevD.3.880 · doi:10.1103/PhysRevD.3.880
[30] DOI: 10.1142/1268 · doi:10.1142/1268
[31] DOI: 10.1007/978-3-662-03490-3 · doi:10.1007/978-3-662-03490-3
[32] DOI: 10.1006/jcph.1999.6299 · Zbl 0952.76045 · doi:10.1006/jcph.1999.6299
[33] DOI: 10.1007/978-3-0348-5116-9 · doi:10.1007/978-3-0348-5116-9
[34] Godlewski E., Applied Mathematic Sciences 118, in: Numerical Approximation of Hyperbolic Systems of Conservation Laws (1986)
[35] Kröner D., Numerical Schemes for Conservation Laws (1997) · Zbl 0872.76001
[36] DOI: 10.1016/0021-9991(81)90128-5 · Zbl 0474.65066 · doi:10.1016/0021-9991(81)90128-5
[37] DOI: 10.1086/313092 · doi:10.1086/313092
[38] DOI: 10.1137/0725021 · Zbl 0642.76088 · doi:10.1137/0725021
[39] DOI: 10.1016/0021-9991(79)90145-1 · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[40] Abramowitz M., Handbook of Mathematical Functions (1972) · Zbl 0543.33001
[41] DOI: 10.1016/0021-9991(88)90177-5 · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[42] DOI: 10.1006/jcph.1994.1148 · Zbl 0822.65062 · doi:10.1006/jcph.1994.1148
[43] DOI: 10.1007/978-3-322-90842-1 · doi:10.1007/978-3-322-90842-1
[44] DOI: 10.1006/jcph.1998.5988 · Zbl 1392.76048 · doi:10.1006/jcph.1998.5988
[45] DOI: 10.1002/cpa.3160050303 · Zbl 0047.11704 · doi:10.1002/cpa.3160050303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.