Srivastava, Hari M.; Shah, Firdous A.; Irfan, Mohd Generalized wavelet quasilinearization method for solving population growth model of fractional order. (English) Zbl 1453.92263 Math. Methods Appl. Sci. 43, No. 15, 8753-8762 (2020). MSC: 92D25 42C40 26A33 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Math. Methods Appl. Sci. 43, No. 15, 8753--8762 (2020; Zbl 1453.92263) Full Text: DOI OpenURL
Biswas, Suvankar; Roy, Tapan Kumar Adomian decomposition method for solving initial value problem for fuzzy integro-differential equation with an application in Volterra’s population model. (English) Zbl 1402.65086 J. Fuzzy Math. 26, No. 1, 69-88 (2018). MSC: 65L99 34A07 92D25 PDF BibTeX XML Cite \textit{S. Biswas} and \textit{T. K. Roy}, J. Fuzzy Math. 26, No. 1, 69--88 (2018; Zbl 1402.65086) OpenURL
Bashiri, Tahereh; Vaezpour, S. Mansour; Nieto, Juan J. Approximating solution of Fabrizio-Caputo Volterra’s model for population growth in a closed system by homotopy analysis method. (English) Zbl 1384.92048 J. Funct. Spaces 2018, Article ID 3152502, 10 p. (2018). MSC: 92D25 34A08 PDF BibTeX XML Cite \textit{T. Bashiri} et al., J. Funct. Spaces 2018, Article ID 3152502, 10 p. (2018; Zbl 1384.92048) Full Text: DOI OpenURL
Parand, Kourosh; Hemami, Mohammad Collocation method using compactly supported radial basis function for solving Volterra’s population model. (English) Zbl 1424.65253 Casp. J. Math. Sci. 6, No. 2, 77-86 (2017). MSC: 65R20 65L60 65L05 45J05 45D05 92D25 PDF BibTeX XML Cite \textit{K. Parand} and \textit{M. Hemami}, Casp. J. Math. Sci. 6, No. 2, 77--86 (2017; Zbl 1424.65253) Full Text: DOI arXiv OpenURL
Biazar, J.; Hosseini, K. Analytic approximation of Volterra’s population model. (English) Zbl 1365.65278 J. Appl. Math. Stat. Inform. 13, No. 1, 5-17 (2017). MSC: 65R20 45D05 45J05 92D25 PDF BibTeX XML Cite \textit{J. Biazar} and \textit{K. Hosseini}, J. Appl. Math. Stat. Inform. 13, No. 1, 5--17 (2017; Zbl 1365.65278) Full Text: DOI OpenURL
Paripour, Mahmoud; Karimi, Lotfollah; Abbasbandy, Saeid Differential transform method for Volterra’s population growth model. (English) Zbl 1361.65103 Nonlinear Stud. 24, No. 1, 227-234 (2017). MSC: 65R20 45G10 45J05 92D25 PDF BibTeX XML Cite \textit{M. Paripour} et al., Nonlinear Stud. 24, No. 1, 227--234 (2017; Zbl 1361.65103) Full Text: Link OpenURL
Parand, K.; Hossayni, Sayyed A.; Rad, J. A. Operation matrix method based on Bernstein polynomials for the Riccati differential equation and Volterra population model. (English) Zbl 1446.65210 Appl. Math. Modelling 40, No. 2, 993-1011 (2016). MSC: 65R20 45J05 65L60 92D25 PDF BibTeX XML Cite \textit{K. Parand} et al., Appl. Math. Modelling 40, No. 2, 993--1011 (2016; Zbl 1446.65210) Full Text: DOI OpenURL
Parand, Kourosh; Delkhosh, Mehdi Solving Volterra’s population growth model of arbitrary order using the generalized fractional order of the Chebyshev functions. (English) Zbl 1355.65180 Ric. Mat. 65, No. 1, 307-328 (2016). Reviewer: Mahmoud Annaby (Giza) MSC: 65R20 92D40 92D25 45J05 45G10 26A33 PDF BibTeX XML Cite \textit{K. Parand} and \textit{M. Delkhosh}, Ric. Mat. 65, No. 1, 307--328 (2016; Zbl 1355.65180) Full Text: DOI OpenURL
Dehghan, Mehdi; Shahini, Mehdi Rational pseudospectral approximation to the solution of a nonlinear integro-differential equation arising in modeling of the population growth. (English) Zbl 1443.92005 Appl. Math. Modelling 39, No. 18, 5521-5530 (2015). MSC: 92-08 65L60 PDF BibTeX XML Cite \textit{M. Dehghan} and \textit{M. Shahini}, Appl. Math. Modelling 39, No. 18, 5521--5530 (2015; Zbl 1443.92005) Full Text: DOI OpenURL
Maleki, Mohammad; Tavassoli Kajani, Majid Numerical approximations for Volterra’s population growth model with fractional order via a multi-domain pseudospectral method. (English) Zbl 1443.65442 Appl. Math. Modelling 39, No. 15, 4300-4308 (2015). MSC: 65R20 34K37 45J05 92D25 PDF BibTeX XML Cite \textit{M. Maleki} and \textit{M. Tavassoli Kajani}, Appl. Math. Modelling 39, No. 15, 4300--4308 (2015; Zbl 1443.65442) Full Text: DOI OpenURL
Ghasemi, Mehdi; Fardi, Mojtaba; Ghaziani, Reza Khoshsiar A new application of the homotopy analysis method in solving the fractional Volterra’s population system. (English) Zbl 1340.26016 Appl. Math., Praha 59, No. 3, 319-330 (2014). Reviewer: George Karakostas (Ioannina) MSC: 26A33 92D25 PDF BibTeX XML Cite \textit{M. Ghasemi} et al., Appl. Math., Praha 59, No. 3, 319--330 (2014; Zbl 1340.26016) Full Text: DOI Link OpenURL
Yüzbaşı, Şuayip A numerical approximation for Volterra’s population growth model with fractional order. (English) Zbl 1352.65657 Appl. Math. Modelling 37, No. 5, 3216-3227 (2013). MSC: 65R20 45D05 92D25 65L05 34A08 PDF BibTeX XML Cite \textit{Ş. Yüzbaşı}, Appl. Math. Modelling 37, No. 5, 3216--3227 (2013; Zbl 1352.65657) Full Text: DOI OpenURL
Liu, Lili; He, Zerong; Liu, Rong On the asymptotic behaviors of a class of population models based on individual’s body size. (Chinese. English summary) Zbl 1274.45014 Math. Appl. 25, No. 4, 804-809 (2012). MSC: 45M05 45D05 92D25 44A10 PDF BibTeX XML Cite \textit{L. Liu} et al., Math. Appl. 25, No. 4, 804--809 (2012; Zbl 1274.45014) OpenURL
Rangarajan, R.; Nanjundaswamy, N. On three techniques of approximations for Volterra’s population-type model. (English) Zbl 1260.45008 Adv. Stud. Contemp. Math., Kyungshang 22, No. 4, 579-586 (2012). MSC: 45J05 45G10 92D25 PDF BibTeX XML Cite \textit{R. Rangarajan} and \textit{N. Nanjundaswamy}, Adv. Stud. Contemp. Math., Kyungshang 22, No. 4, 579--586 (2012; Zbl 1260.45008) OpenURL
Parand, K.; Delafkar, Z.; Pakniat, N.; Pirkhedri, A.; Haji, M. Kazemnasab Collocation method using sinc and rational Legendre functions for solving Volterra’s population model. (English) Zbl 1221.65186 Commun. Nonlinear Sci. Numer. Simul. 16, No. 4, 1811-1819 (2011). MSC: 65L60 45J05 92D25 PDF BibTeX XML Cite \textit{K. Parand} et al., Commun. Nonlinear Sci. Numer. Simul. 16, No. 4, 1811--1819 (2011; Zbl 1221.65186) Full Text: DOI OpenURL
Marinca, Vasile; Herisanu, Nicolae Nonlinear dynamical systems in engineering. Some approximate approaches. (English) Zbl 1244.65104 Berlin: Springer (ISBN 978-3-642-22734-9/hbk; 978-3-642-22735-6/ebook). xi, 395 p. (2011). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 65L05 65-02 34-02 76W05 92D25 74H45 74K10 74Sxx 76Mxx 34A34 34C15 34C25 65L20 PDF BibTeX XML Cite \textit{V. Marinca} and \textit{N. Herisanu}, Nonlinear dynamical systems in engineering. Some approximate approaches. Berlin: Springer (2011; Zbl 1244.65104) Full Text: DOI OpenURL
Parand, K.; Abbasbandy, S.; Kazem, S.; Rad, J. A. A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation. (English) Zbl 1222.65150 Commun. Nonlinear Sci. Numer. Simul. 16, No. 11, 4250-4258 (2011). MSC: 65R20 45J05 45G10 92D25 PDF BibTeX XML Cite \textit{K. Parand} et al., Commun. Nonlinear Sci. Numer. Simul. 16, No. 11, 4250--4258 (2011; Zbl 1222.65150) Full Text: DOI OpenURL
Parand, K.; Rezaei, A. R.; Taghavi, A. Numerical approximations for population growth model by rational Chebyshev and Hermite functions collocation approach: a comparison. (English) Zbl 1204.65159 Math. Methods Appl. Sci. 33, No. 17, 2076-2086 (2010). MSC: 65R20 92D25 45J05 45G10 45D05 PDF BibTeX XML Cite \textit{K. Parand} et al., Math. Methods Appl. Sci. 33, No. 17, 2076--2086 (2010; Zbl 1204.65159) Full Text: DOI arXiv OpenURL
Parand, K.; Ghasemi, M.; Rezazadeh, S.; Peiravi, A.; Ghorbanpour, A.; Golpaygani, A. Tavakoli Quasilinearization approach for solving Volterra’s population model. (English) Zbl 1197.65229 Appl. Comput. Math. 9, No. 1, 95-103 (2010). MSC: 65R20 45J05 45G10 92D25 PDF BibTeX XML Cite \textit{K. Parand} et al., Appl. Comput. Math. 9, No. 1, 95--103 (2010; Zbl 1197.65229) Full Text: Link OpenURL
Marzban, H. R.; Hoseini, S. M.; Razzaghi, M. Solution of Volterra’s population model via block-pulse functions and Lagrange-interpolating polynomials. (English) Zbl 1156.65106 Math. Methods Appl. Sci. 32, No. 2, 127-134 (2009). MSC: 65R20 45J05 45G10 92D25 PDF BibTeX XML Cite \textit{H. R. Marzban} et al., Math. Methods Appl. Sci. 32, No. 2, 127--134 (2009; Zbl 1156.65106) Full Text: DOI OpenURL
El-Shahed, Moustafa; El-Harby, Kamraa Approximate analytical solution for Volterra’s integro-differential equation with fractional derivative. (English) Zbl 1124.26005 J. Fractional Calc. 31, 25-29 (2007). MSC: 26A33 45K05 PDF BibTeX XML Cite \textit{M. El-Shahed} and \textit{K. El-Harby}, J. Fractional Calc. 31, 25--29 (2007; Zbl 1124.26005) OpenURL
El-Shahed, Moustafa Application of He’s homotopy perturbation method to Volterra’s integro-differential equation. (English) Zbl 1401.65150 Int. J. Nonlinear Sci. Numer. Simul. 6, No. 2, 163-168 (2005). MSC: 65R20 45D05 65L99 34K07 45J05 PDF BibTeX XML Cite \textit{M. El-Shahed}, Int. J. Nonlinear Sci. Numer. Simul. 6, No. 2, 163--168 (2005; Zbl 1401.65150) Full Text: DOI OpenURL
Parand, K.; Razzaghi, M. Rational Legendre approximation for solving some physical problems on semi-infinite intervals. (English) Zbl 1063.65146 Phys. Scr. 69, No. 5, 353-357 (2004). MSC: 65R20 45J05 45G10 92D25 65L10 34B05 65L60 PDF BibTeX XML Cite \textit{K. Parand} and \textit{M. Razzaghi}, Phys. Scr. 69, No. 5, 353--357 (2004; Zbl 1063.65146) Full Text: DOI Link OpenURL
Parand, K.; Razzaghi, M. Rational Chebyshev tau method for solving Volterra’s population model. (English) Zbl 1038.65149 Appl. Math. Comput. 149, No. 3, 893-900 (2004). MSC: 65R20 45J05 45G10 92D25 PDF BibTeX XML Cite \textit{K. Parand} and \textit{M. Razzaghi}, Appl. Math. Comput. 149, No. 3, 893--900 (2004; Zbl 1038.65149) Full Text: DOI OpenURL
Ding, Tongren; Zanolin, Fabio Periodic solutions and subharmonic solutions for a class of planar systems of Lotka-Volterra type. (English) Zbl 0846.34032 Lakshmikantham, V. (ed.), World congress of nonlinear analysts ’92. Proceedings of the first world congress, Tampa, FL, USA, August 19-26, 1992. 4 volumes. Berlin: de Gruyter. 395-406 (1996). MSC: 34C25 92D25 PDF BibTeX XML Cite \textit{T. Ding} and \textit{F. Zanolin}, in: World congress of nonlinear analysts '92. Proceedings of the first world congress, Tampa, FL, USA, August 19-26, 1992. 4 volumes. Berlin: de Gruyter. 395--406 (1996; Zbl 0846.34032) OpenURL
Edalat, Abbas Stability of the unfolding of the predator-prey model. (English) Zbl 0821.34033 Dyn. Stab. Syst. 9, No. 3, 179-195 (1994). MSC: 34C23 34D05 34D20 92D25 PDF BibTeX XML Cite \textit{A. Edalat}, Dyn. Stab. Syst. 9, No. 3, 179--195 (1994; Zbl 0821.34033) Full Text: DOI OpenURL
Deakin, M. A. B.; McElwain, D. L. S. Approximate solution of an integro-differential equation. (English) Zbl 0803.45009 Int. J. Math. Educ. Sci. Technol. 25, No. 1, 1-4 (1994). Reviewer: Nguyêñ Hôǹg Thái (Minsk) MSC: 45J05 45L05 92D25 PDF BibTeX XML Cite \textit{M. A. B. Deakin} and \textit{D. L. S. McElwain}, Int. J. Math. Educ. Sci. Technol. 25, No. 1, 1--4 (1994; Zbl 0803.45009) Full Text: DOI OpenURL