Yapman, Ömer; Kudu, Mustafa; Amiraliyev, Gabil M. Method of exact difference schemes for the numerical solution of parameterized singularly perturbed problem. (English) Zbl 07660428 Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023). MSC: 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{Ö. Yapman} et al., Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023; Zbl 07660428) Full Text: DOI OpenURL
Liu, Li-Bin; Liao, Yige; Long, Guangqing A novel parameter-uniform numerical method for a singularly perturbed Volterra integro-differential equation. (English) Zbl 07655421 Comput. Appl. Math. 42, No. 1, Paper No. 12, 12 p. (2023). MSC: 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{L.-B. Liu} et al., Comput. Appl. Math. 42, No. 1, Paper No. 12, 12 p. (2023; Zbl 07655421) Full Text: DOI OpenURL
Isojima, Shin; Suzuki, Seiichiro A discrete logarithmic function and Lyapunov function. (English) Zbl 07647809 JSIAM Lett. 14, 139-142 (2022). MSC: 37-XX 93-XX PDF BibTeX XML Cite \textit{S. Isojima} and \textit{S. Suzuki}, JSIAM Lett. 14, 139--142 (2022; Zbl 07647809) Full Text: DOI OpenURL
Çakır, Musa; Güneş, Baransel A new difference method for the singularly perturbed Volterra-Fredholm integro-differential equations on a Shishkin mesh. (English) Zbl 07633472 Hacet. J. Math. Stat. 51, No. 3, 787-799 (2022). MSC: 45J05 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{M. Çakır} and \textit{B. Güneş}, Hacet. J. Math. Stat. 51, No. 3, 787--799 (2022; Zbl 07633472) Full Text: DOI OpenURL
Qiao, Leijie; Wang, Zhibo; Xu, Da An ADI finite difference method for the two-dimensional Volterra integro-differential equation with weakly singular kernel. (English) Zbl 07606318 Int. J. Comput. Math. 99, No. 12, 2542-2554 (2022). MSC: 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{L. Qiao} et al., Int. J. Comput. Math. 99, No. 12, 2542--2554 (2022; Zbl 07606318) Full Text: DOI OpenURL
Islam, Muhammad N.; Neugebauer, Jeffrey T. \(p\)-periodic solutions of a \(q\)-integral equation with finite delay. (English) Zbl 1499.45007 Differ. Equ. Appl. 14, No. 2, 325-333 (2022). MSC: 45D05 45M15 39A12 39A13 47N20 PDF BibTeX XML Cite \textit{M. N. Islam} and \textit{J. T. Neugebauer}, Differ. Equ. Appl. 14, No. 2, 325--333 (2022; Zbl 1499.45007) Full Text: DOI OpenURL
Cakir, Musa; Gunes, Baransel Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations. (English) Zbl 1491.65167 Georgian Math. J. 29, No. 2, 193-203 (2022); correction ibid. 30, No. 1, 159 (2023). MSC: 65R20 45J05 65L05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{M. Cakir} and \textit{B. Gunes}, Georgian Math. J. 29, No. 2, 193--203 (2022; Zbl 1491.65167) Full Text: DOI OpenURL
Raslan, K. R.; Ali, Khalid K.; Ahmed, Reda Gamal; Al-Jeaid, Hind K.; Abd-Elall Ibrahim, Amira Study of nonlocal boundary value problem for the Fredholm-Volterra integro-differential equation. (English) Zbl 1485.45011 J. Funct. Spaces 2022, Article ID 4773005, 16 p. (2022). MSC: 45J05 34K10 65R20 PDF BibTeX XML Cite \textit{K. R. Raslan} et al., J. Funct. Spaces 2022, Article ID 4773005, 16 p. (2022; Zbl 1485.45011) Full Text: DOI OpenURL
Santra, S.; Mohapatra, J. A novel finite difference technique with error estimate for time fractional partial integro-differential equation of Volterra type. (English) Zbl 1496.65128 J. Comput. Appl. Math. 400, Article ID 113746, 13 p. (2022). MSC: 65M06 65N06 65M15 65M12 35R09 65R20 45K05 45D05 35R11 PDF BibTeX XML Cite \textit{S. Santra} and \textit{J. Mohapatra}, J. Comput. Appl. Math. 400, Article ID 113746, 13 p. (2022; Zbl 1496.65128) Full Text: DOI OpenURL
Yapman, Ömer; Amiraliyev, Gabil M. Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation. (English) Zbl 1498.65127 Chaos Solitons Fractals 150, Article ID 111100, 11 p. (2021). MSC: 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{Ö. Yapman} and \textit{G. M. Amiraliyev}, Chaos Solitons Fractals 150, Article ID 111100, 11 p. (2021; Zbl 1498.65127) Full Text: DOI OpenURL
Kendre, Subhash; Kale, Nagesh On nonlinear Volterra-Fredholm type discrete fractional sum inequalities. (English) Zbl 1499.26133 Fract. Differ. Calc. 11, No. 1, 17-33 (2021). MSC: 26D15 26A33 39A12 PDF BibTeX XML Cite \textit{S. Kendre} and \textit{N. Kale}, Fract. Differ. Calc. 11, No. 1, 17--33 (2021; Zbl 1499.26133) Full Text: DOI OpenURL
Khan, Yasir Maclaurin series method for fractal differential-difference models arising in coupled nonlinear optical waveguides. (English) Zbl 1481.78012 Fractals 29, No. 1, Article ID 2150004, 7 p. (2021). MSC: 78A50 78A40 28A80 45D05 39A36 PDF BibTeX XML Cite \textit{Y. Khan}, Fractals 29, No. 1, Article ID 2150004, 7 p. (2021; Zbl 1481.78012) Full Text: DOI OpenURL
Chen, Liqiang; Wang, Wusheng Estimation of solutions for a class of difference inequalities. (Chinese. English summary) Zbl 1499.39107 J. Cent. China Norm. Univ., Nat. Sci. 55, No. 4, 517-521, 526 (2021). MSC: 39B62 39A12 26D20 45D05 45B05 PDF BibTeX XML Cite \textit{L. Chen} and \textit{W. Wang}, J. Cent. China Norm. Univ., Nat. Sci. 55, No. 4, 517--521, 526 (2021; Zbl 1499.39107) Full Text: DOI OpenURL
Long, Guangqing; Liu, Li-Bin; Huang, Zaitang Richardson extrapolation method on an adaptive grid for singularly perturbed Volterra integro-differential equations. (English) Zbl 07379882 Numer. Funct. Anal. Optim. 42, No. 7, 739-757 (2021). MSC: 65L10 65L12 65N30 PDF BibTeX XML Cite \textit{G. Long} et al., Numer. Funct. Anal. Optim. 42, No. 7, 739--757 (2021; Zbl 07379882) Full Text: DOI OpenURL
Lin, Ching-Lung; Lin, Liren; Nakamura, Gen Born approximation and sequence for hyperbolic equations. (English) Zbl 1472.35318 Asymptotic Anal. 121, No. 2, 101-123 (2021). MSC: 35Q40 35L25 35J05 45D05 35B65 65M06 65N06 PDF BibTeX XML Cite \textit{C.-L. Lin} et al., Asymptotic Anal. 121, No. 2, 101--123 (2021; Zbl 1472.35318) Full Text: DOI OpenURL
Zhang, Xiaorui; Wang, Lianglong Existence and uniqueness of solutions of initial value problems for a class of Riemann-Liouville fractional mixed difference and summation equations. (Chinese. English summary) Zbl 1474.39043 J. Anhui Norm. Univ., Nat. Sci. 44, No. 1, 22-27 (2021). MSC: 39A27 39A20 26A33 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{L. Wang}, J. Anhui Norm. Univ., Nat. Sci. 44, No. 1, 22--27 (2021; Zbl 1474.39043) Full Text: DOI OpenURL
Hamidoğlu, Ali; Taghiyev, Mustafa H. On construction of almost periodic sequences and applications to some discrete population models. (English) Zbl 1467.92154 J. Difference Equ. Appl. 27, No. 1, 118-131 (2021). Reviewer: Wan-Tong Li (Lanzhou) MSC: 92D25 11J72 39A24 PDF BibTeX XML Cite \textit{A. Hamidoğlu} and \textit{M. H. Taghiyev}, J. Difference Equ. Appl. 27, No. 1, 118--131 (2021; Zbl 1467.92154) Full Text: DOI OpenURL
Kerekes, Delia-Maria; Popa, Dorian On Ulam stability of an operatorial equation. (English) Zbl 1465.39016 Mediterr. J. Math. 18, No. 3, Paper No. 118, 17 p. (2021). MSC: 39B42 39B82 47B39 47A50 PDF BibTeX XML Cite \textit{D.-M. Kerekes} and \textit{D. Popa}, Mediterr. J. Math. 18, No. 3, Paper No. 118, 17 p. (2021; Zbl 1465.39016) Full Text: DOI OpenURL
Zhou, Yongtao; Stynes, Martin Block boundary value methods for linear weakly singular Volterra integro-differential equations. (English) Zbl 1472.65170 BIT 61, No. 2, 691-720 (2021). MSC: 65R20 65L05 65L12 65L20 PDF BibTeX XML Cite \textit{Y. Zhou} and \textit{M. Stynes}, BIT 61, No. 2, 691--720 (2021; Zbl 1472.65170) Full Text: DOI OpenURL
Xu, Da Uniform \(l^1\) behavior of the first-order interpolant quadrature scheme for some partial integro-differential equations. (English) Zbl 1472.65104 Appl. Math. Lett. 117, Article ID 107097, 7 p. (2021). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 65M06 65M12 35R09 45D05 65D30 44A10 PDF BibTeX XML Cite \textit{D. Xu}, Appl. Math. Lett. 117, Article ID 107097, 7 p. (2021; Zbl 1472.65104) Full Text: DOI OpenURL
Cakir, Musa; Gunes, Baransel; Duru, Hakki A novel computational method for solving nonlinear Volterra integro-differential equation. (English) Zbl 1474.65492 Kuwait J. Sci. 48, No. 1, 1-9 (2021). MSC: 65R20 45D05 45K05 45G10 PDF BibTeX XML Cite \textit{M. Cakir} et al., Kuwait J. Sci. 48, No. 1, 1--9 (2021; Zbl 1474.65492) Full Text: DOI OpenURL
Yapman, Ömer; Amiraliyev, Gabil M. A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation. (English) Zbl 1480.65383 Int. J. Comput. Math. 97, No. 6, 1293-1302 (2020). MSC: 65R20 45D05 45J05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{Ö. Yapman} and \textit{G. M. Amiraliyev}, Int. J. Comput. Math. 97, No. 6, 1293--1302 (2020; Zbl 1480.65383) Full Text: DOI OpenURL
Iragi, Bakulikira C.; Munyakazi, Justin B. A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation. (English) Zbl 1480.65377 Int. J. Comput. Math. 97, No. 4, 759-771 (2020). MSC: 65R20 45J05 45D05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{B. C. Iragi} and \textit{J. B. Munyakazi}, Int. J. Comput. Math. 97, No. 4, 759--771 (2020; Zbl 1480.65377) Full Text: DOI OpenURL
Simonov, Pëtr Mikhaĭlovich On the stability of a system of two linear hybrid functional differential systems with aftereffect. (Russian. English summary) Zbl 1483.34100 Vestn. Ross. Univ., Mat. 25, No. 131, 299-306 (2020). MSC: 34K20 34K06 34K34 PDF BibTeX XML Cite \textit{P. M. Simonov}, Vestn. Ross. Univ., Mat. 25, No. 131, 299--306 (2020; Zbl 1483.34100) Full Text: DOI MNR OpenURL
Saito, Kaori Global attractivity for a Volterra difference equation. (English) Zbl 1477.39005 Baigent, Steve (ed.) et al., Progress on difference equations and discrete dynamical systems. ICDEA 25, London, UK, June 24–28, 2019. Proceedings of the 25th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 341, 411-421 (2020). Reviewer: Fengqin Zhang (Yuncheng) MSC: 39A30 PDF BibTeX XML Cite \textit{K. Saito}, Springer Proc. Math. Stat. 341, 411--421 (2020; Zbl 1477.39005) Full Text: DOI OpenURL
Raffoul, Youssef Recent results on summations and Volterra difference equations via Lyapunov functionals. (English) Zbl 1472.39020 Baigent, Steve (ed.) et al., Progress on difference equations and discrete dynamical systems. ICDEA 25, London, UK, June 24–28, 2019. Proceedings of the 25th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 341, 337-352 (2020). MSC: 39A22 39A30 PDF BibTeX XML Cite \textit{Y. Raffoul}, Springer Proc. Math. Stat. 341, 337--352 (2020; Zbl 1472.39020) Full Text: DOI OpenURL
Fehér, Áron; Márton, Lőrinc; Pituk, Mihály Asymptotically ordinary linear Volterra difference equations with infinite delay. (English) Zbl 1474.39001 Appl. Math. Comput. 386, Article ID 125499, 10 p. (2020). MSC: 39A06 39A10 39A22 PDF BibTeX XML Cite \textit{Á. Fehér} et al., Appl. Math. Comput. 386, Article ID 125499, 10 p. (2020; Zbl 1474.39001) Full Text: DOI OpenURL
Kon, Ryusuke Bifurcations of cycles in nonlinear semelparous Leslie matrix models. (English) Zbl 1433.37080 J. Math. Biol. 80, No. 4, 1187-1207 (2020). MSC: 37N25 39A28 39A30 92D25 PDF BibTeX XML Cite \textit{R. Kon}, J. Math. Biol. 80, No. 4, 1187--1207 (2020; Zbl 1433.37080) Full Text: DOI OpenURL
Huang, Jian; Cen, Zhongdi; Xu, Aimin; Liu, Li-Bin A posteriori error estimation for a singularly perturbed Volterra integro-differential equation. (English) Zbl 1437.65239 Numer. Algorithms 83, No. 2, 549-563 (2020). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45D05 47G20 PDF BibTeX XML Cite \textit{J. Huang} et al., Numer. Algorithms 83, No. 2, 549--563 (2020; Zbl 1437.65239) Full Text: DOI OpenURL
Amiraliyev, Gabil M.; Yapman, Ömer; Kudu, Mustafa A fitted approximate method for a Volterra delay-integro-differential equation with initial layer. (English) Zbl 1488.65735 Hacet. J. Math. Stat. 48, No. 5, 1417-1429 (2019). MSC: 65R20 45J05 45G10 65L10 65L12 65L20 PDF BibTeX XML Cite \textit{G. M. Amiraliyev} et al., Hacet. J. Math. Stat. 48, No. 5, 1417--1429 (2019; Zbl 1488.65735) Full Text: Link OpenURL
Atangana, Abdon; Araz, Seda İğret Analysis of a new partial integro-differential equation with mixed fractional operators. (English) Zbl 1448.65277 Chaos Solitons Fractals 127, 257-271 (2019). MSC: 65R20 65M06 35R09 35R11 45K05 45D05 PDF BibTeX XML Cite \textit{A. Atangana} and \textit{S. İ. Araz}, Chaos Solitons Fractals 127, 257--271 (2019; Zbl 1448.65277) Full Text: DOI OpenURL
Adler, V. E.; Shabat, A. B. Some exact solutions of the Volterra lattice. (English. Russian original) Zbl 1440.37071 Theor. Math. Phys. 201, No. 1, 1442-1456 (2019); translation from Teor. Mat. Fiz. 201, No. 1, 37-53 (2019). Reviewer: Eszter Gselmann (Debrecen) MSC: 37K60 39A36 33C15 34M55 PDF BibTeX XML Cite \textit{V. E. Adler} and \textit{A. B. Shabat}, Theor. Math. Phys. 201, No. 1, 1442--1456 (2019; Zbl 1440.37071); translation from Teor. Mat. Fiz. 201, No. 1, 37--53 (2019) Full Text: DOI arXiv OpenURL
Migda, Malgorzata; Dutkiewicz, Aldona Asymptotic behavior of solutions of second-order difference equations of Volterra type. (English) Zbl 1430.39001 Turk. J. Math. 43, No. 5, 2203-2217 (2019). MSC: 39A10 39A22 39A12 45D05 PDF BibTeX XML Cite \textit{M. Migda} and \textit{A. Dutkiewicz}, Turk. J. Math. 43, No. 5, 2203--2217 (2019; Zbl 1430.39001) Full Text: Link OpenURL
Eloe, Paul; Jonnalagadda, Jagan Mohan; Raffoul, Youssef The large contraction principle and existence of periodic solutions for infinite delay Volterra difference equations. (English) Zbl 1429.39008 Turk. J. Math. 43, No. 4, 1988-1999 (2019). MSC: 39A23 39A12 45J05 PDF BibTeX XML Cite \textit{P. Eloe} et al., Turk. J. Math. 43, No. 4, 1988--1999 (2019; Zbl 1429.39008) Full Text: Link OpenURL
Baev, A. V.; Gavrilov, S. V. The inverse scattering problem in a nonstationary medium. (English. Russian original) Zbl 1429.35164 Comput. Math. Model. 30, No. 3, 218-229 (2019); translation from Prikl. Mat. Inf. 60, 38-50 (2019). MSC: 35P25 35R30 35L05 65M06 PDF BibTeX XML Cite \textit{A. V. Baev} and \textit{S. V. Gavrilov}, Comput. Math. Model. 30, No. 3, 218--229 (2019; Zbl 1429.35164); translation from Prikl. Mat. Inf. 60, 38--50 (2019) Full Text: DOI OpenURL
Neisy, Abdolsadeh; Bidarvand, Mandana An inverse finance problem for estimating volatility in American option pricing under jump-diffusion dynamics. (English) Zbl 1463.91201 J. Math. Model. 7, No. 3, 287-304 (2019). MSC: 91G60 91G20 35Q91 35R30 65M06 65M20 PDF BibTeX XML Cite \textit{A. Neisy} and \textit{M. Bidarvand}, J. Math. Model. 7, No. 3, 287--304 (2019; Zbl 1463.91201) Full Text: DOI OpenURL
Lizama, Carlos; Murillo-Arcila, Marina Maximal \(\ell_p\)-regularity for discrete time Volterra equations with delay. (English) Zbl 1439.45002 J. Difference Equ. Appl. 25, No. 9-10, 1344-1362 (2019). MSC: 45D05 35R09 39A06 39A12 PDF BibTeX XML Cite \textit{C. Lizama} and \textit{M. Murillo-Arcila}, J. Difference Equ. Appl. 25, No. 9--10, 1344--1362 (2019; Zbl 1439.45002) Full Text: DOI OpenURL
Ismailov, M. I.; Erkovan, S. Inverse problem of finding the coefficient of the lowest term in two-dimensional heat equation with Ionkin-type boundary condition. (English) Zbl 1430.80010 Comput. Math. Math. Phys. 59, No. 5, 791-808 (2019). MSC: 80A23 80A19 35K10 45D05 35A01 35Q92 35Q79 35P05 80M20 65M06 65D32 PDF BibTeX XML Cite \textit{M. I. Ismailov} and \textit{S. Erkovan}, Comput. Math. Math. Phys. 59, No. 5, 791--808 (2019; Zbl 1430.80010) Full Text: DOI arXiv OpenURL
Lyu, Pin; Vong, Seakweng A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin-Bona-Mahony equation. (English) Zbl 1428.35461 J. Sci. Comput. 80, No. 3, 1607-1628 (2019). MSC: 35Q53 65D05 45D05 65R20 65M06 65M12 35B65 35R11 PDF BibTeX XML Cite \textit{P. Lyu} and \textit{S. Vong}, J. Sci. Comput. 80, No. 3, 1607--1628 (2019; Zbl 1428.35461) Full Text: DOI OpenURL
Amiraliyev, Gabil M.; Yapman, Ömer On the Volterra delay-integro-differential equation with layer behavior and its numerical solution. (English) Zbl 1438.65319 Miskolc Math. Notes 20, No. 1, 75-87 (2019). MSC: 65R20 45D05 45J05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{G. M. Amiraliyev} and \textit{Ö. Yapman}, Miskolc Math. Notes 20, No. 1, 75--87 (2019; Zbl 1438.65319) Full Text: DOI OpenURL
Yapman, Ömer; Amiraliyev, Gabil M.; Amirali, Ilhame Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay. (English) Zbl 1415.65170 J. Comput. Appl. Math. 355, 301-309 (2019). MSC: 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{Ö. Yapman} et al., J. Comput. Appl. Math. 355, 301--309 (2019; Zbl 1415.65170) Full Text: DOI OpenURL
Migda, Janusz Qualitative approximation of solutions to difference equations of various types. (English) Zbl 1424.39030 Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 4, 15 p. (2019). MSC: 39A22 39A05 39A10 PDF BibTeX XML Cite \textit{J. Migda}, Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 4, 15 p. (2019; Zbl 1424.39030) Full Text: DOI OpenURL
Wang, Jue; Liu, QinPan; Luo, YueSheng The numerical analysis of the long time asymptotic behavior for Lotka-Volterra competition model with diffusion. (English) Zbl 1411.65117 Numer. Funct. Anal. Optim. 40, No. 6, 685-705 (2019). MSC: 65M06 65M12 92D25 PDF BibTeX XML Cite \textit{J. Wang} et al., Numer. Funct. Anal. Optim. 40, No. 6, 685--705 (2019; Zbl 1411.65117) Full Text: DOI OpenURL
Płociniczak, Łukasz Numerical method for the time-fractional porous medium equation. (English) Zbl 1409.76091 SIAM J. Numer. Anal. 57, No. 2, 638-656 (2019). Reviewer: Abdallah Bradji (Annaba) MSC: 76M20 76S05 35Q35 65R20 35R11 45G10 PDF BibTeX XML Cite \textit{Ł. Płociniczak}, SIAM J. Numer. Anal. 57, No. 2, 638--656 (2019; Zbl 1409.76091) Full Text: DOI arXiv OpenURL
Wang, Lisha; Qin, Wendi; Ding, Xiaohua Dissipativity of \(\theta \)-methods for a class of advection-reaction-diffusion equations with both fixed and distributed delays. (English) Zbl 1499.65440 Int. J. Comput. Math. 95, No. 8, 1672-1687 (2018). MSC: 65M06 35K57 35R09 35R10 45D05 45J05 65L03 65M12 PDF BibTeX XML Cite \textit{L. Wang} et al., Int. J. Comput. Math. 95, No. 8, 1672--1687 (2018; Zbl 1499.65440) Full Text: DOI OpenURL
Cao, Junying; Chen, Lizhen; Wang, Ziqiang A high-order numerical scheme for the impulsive fractional ordinary differential equations. (English) Zbl 1499.65336 Int. J. Comput. Math. 95, No. 12, 2433-2457 (2018). MSC: 65L12 PDF BibTeX XML Cite \textit{J. Cao} et al., Int. J. Comput. Math. 95, No. 12, 2433--2457 (2018; Zbl 1499.65336) Full Text: DOI OpenURL
Zarebnia, Mohammad; Parvaz, Reza; Saboor Bagherzadeh, Amir Deviation of the error estimation for Volterra integro-differential equations. (English) Zbl 1438.65346 Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 4, 1322-1344 (2018). MSC: 65R20 45D05 45J05 65L60 65L12 65L70 PDF BibTeX XML Cite \textit{M. Zarebnia} et al., Acta Math. Sci., Ser. B, Engl. Ed. 38, No. 4, 1322--1344 (2018; Zbl 1438.65346) Full Text: DOI OpenURL
Schmeidel, Ewa; Zdanowicz, Małgorzata On the asymptotic behavior of solution of certain systems of Volterra equations. (English) Zbl 1424.39033 Turk. J. Math. 42, No. 6, 2994-3001 (2018). MSC: 39A22 39A10 PDF BibTeX XML Cite \textit{E. Schmeidel} and \textit{M. Zdanowicz}, Turk. J. Math. 42, No. 6, 2994--3001 (2018; Zbl 1424.39033) Full Text: DOI OpenURL
Özbekler, Abdullah On the oscillation of discrete Volterra equations with positive and negative nonlinearities. (English) Zbl 1402.39007 J. Integral Equations Appl. 30, No. 4, 577-591 (2018). MSC: 39A21 39A10 PDF BibTeX XML Cite \textit{A. Özbekler}, J. Integral Equations Appl. 30, No. 4, 577--591 (2018; Zbl 1402.39007) Full Text: DOI Euclid OpenURL
Migda, Małgorzata; Migda, Janusz Qualitative approximation of solutions to discrete Volterra equations. (English) Zbl 1413.39002 Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 3, 27 p. (2018). MSC: 39A05 39A10 39A22 PDF BibTeX XML Cite \textit{M. Migda} and \textit{J. Migda}, Electron. J. Qual. Theory Differ. Equ. 2018, Paper No. 3, 27 p. (2018; Zbl 1413.39002) Full Text: DOI OpenURL
Yankson, E. Periodicity in multiple delay Volterra difference equations of neutral type. (English) Zbl 1383.39007 Electron. J. Math. Anal. Appl. 6, No. 2, 110-118 (2018). MSC: 39A10 39A12 45D05 45G10 39A23 47H09 PDF BibTeX XML Cite \textit{E. Yankson}, Electron. J. Math. Anal. Appl. 6, No. 2, 110--118 (2018; Zbl 1383.39007) Full Text: Link OpenURL
Fahim, Atefeh; Fariborzi Araghi, Mohammad Ali; Rashidinia, Jalil; Jalalvand, Mehdi Numerical solution of Volterra partial integro-differential equations based on sinc-collocation method. (English) Zbl 1444.65075 Adv. Difference Equ. 2017, Paper No. 362, 21 p. (2017). MSC: 65R20 45K05 45D05 PDF BibTeX XML Cite \textit{A. Fahim} et al., Adv. Difference Equ. 2017, Paper No. 362, 21 p. (2017; Zbl 1444.65075) Full Text: DOI OpenURL
Wan, Andy T. S.; Bihlo, Alexander; Nave, Jean-Christophe Conservative methods for dynamical systems. (English) Zbl 1375.65104 SIAM J. Numer. Anal. 55, No. 5, 2255-2285 (2017). MSC: 65L12 34A34 65L05 65P10 37M15 65L20 70F05 PDF BibTeX XML Cite \textit{A. T. S. Wan} et al., SIAM J. Numer. Anal. 55, No. 5, 2255--2285 (2017; Zbl 1375.65104) Full Text: DOI arXiv OpenURL
Appleby, John A. D.; Patterson, Denis D. Large fluctuations and growth rates of linear Volterra summation equations. (English) Zbl 1378.39002 J. Difference Equ. Appl. 23, No. 6, 1047-1080 (2017). Reviewer: Miloš Čanak (Beograd) MSC: 39A06 39A22 PDF BibTeX XML Cite \textit{J. A. D. Appleby} and \textit{D. D. Patterson}, J. Difference Equ. Appl. 23, No. 6, 1047--1080 (2017; Zbl 1378.39002) Full Text: DOI arXiv OpenURL
Huang, Jianfei; Yang, Dandan A unified difference-spectral method for time-space fractional diffusion equations. (English) Zbl 1378.65159 Int. J. Comput. Math. 94, No. 6, 1172-1184 (2017). Reviewer: Gisbert Stoyan (Budapest) MSC: 65M06 45D05 65M12 65M70 35R11 35K05 65M20 35K58 PDF BibTeX XML Cite \textit{J. Huang} and \textit{D. Yang}, Int. J. Comput. Math. 94, No. 6, 1172--1184 (2017; Zbl 1378.65159) Full Text: DOI OpenURL
Deng, Jingwei; Zhao, Lijing; Wu, Yujiang Fast predictor-corrector approach for the tempered fractional differential equations. (English) Zbl 1364.65142 Numer. Algorithms 74, No. 3, 717-754 (2017). Reviewer: Ivan Secrieru (Chişinău) MSC: 65L06 65L12 65L70 65L05 34A08 34A34 PDF BibTeX XML Cite \textit{J. Deng} et al., Numer. Algorithms 74, No. 3, 717--754 (2017; Zbl 1364.65142) Full Text: DOI arXiv OpenURL
Zhao, Zhengang; Zheng, Yunying; Guo, Peng A Galerkin finite element method for a class of time-space fractional differential equation with nonsmooth data. (English) Zbl 1360.65246 J. Sci. Comput. 70, No. 1, 386-406 (2017). Reviewer: H. P. Dikshit (Bhopal) MSC: 65M60 65M20 65M06 65M12 35R11 PDF BibTeX XML Cite \textit{Z. Zhao} et al., J. Sci. Comput. 70, No. 1, 386--406 (2017; Zbl 1360.65246) Full Text: DOI OpenURL
Appleby, John; Patterson, Denis On the admissibility of unboundedness properties of forced deterministic and stochastic sublinear Volterra summation equations. (English) Zbl 1389.39010 Electron. J. Qual. Theory Differ. Equ. 2016, Paper No. 63, 44 p. (2016). MSC: 39A22 39A50 39A60 62M10 PDF BibTeX XML Cite \textit{J. Appleby} and \textit{D. Patterson}, Electron. J. Qual. Theory Differ. Equ. 2016, Paper No. 63, 44 p. (2016; Zbl 1389.39010) Full Text: DOI arXiv OpenURL
Zibaei, S.; Namjoo, M. Solving fractional-order competitive Lotka-Volterra model by NSFD schemes. (English) Zbl 1372.37124 TWMS J. Appl. Eng. Math. 6, No. 2, 264-277 (2016). MSC: 37M05 65L12 65L20 65L05 65L06 92D25 26A33 PDF BibTeX XML Cite \textit{S. Zibaei} and \textit{M. Namjoo}, TWMS J. Appl. Eng. Math. 6, No. 2, 264--277 (2016; Zbl 1372.37124) OpenURL
Tran, Dinh T.; van der Kamp, Peter H.; Quispel, G. R. W. Poisson brackets of mappings obtained as \((q,-p)\) reductions of lattice equations. (English) Zbl 1371.39012 Regul. Chaotic Dyn. 21, No. 6, 682-696 (2016). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A12 39A14 39A20 37K10 PDF BibTeX XML Cite \textit{D. T. Tran} et al., Regul. Chaotic Dyn. 21, No. 6, 682--696 (2016; Zbl 1371.39012) Full Text: DOI arXiv OpenURL
Hieu, Le Trung New criteria for global exponential stability of linear time-varying Volterra difference equations. (English) Zbl 1399.39025 Math. Slovaca 66, No. 6, 1345-1354 (2016). MSC: 39A30 PDF BibTeX XML Cite \textit{L. T. Hieu}, Math. Slovaca 66, No. 6, 1345--1354 (2016; Zbl 1399.39025) Full Text: DOI OpenURL
Omurov, Taalaibek; Ryspaev, Amantur; Omurov, Maksat Multidimensional inverse problem with Goursat type conditions. (Russian. English summary) Zbl 1364.65296 Differ. Uravn. Protsessy Upr. 2016, No. 4, 1-13 (2016). MSC: 65R20 45B05 45D05 65R32 PDF BibTeX XML Cite \textit{T. Omurov} et al., Differ. Uravn. Protsessy Upr. 2016, No. 4, 1--13 (2016; Zbl 1364.65296) Full Text: Link OpenURL
Migda, Małgorzata; Migda, Janusz Bounded solutions of nonlinear discrete Volterra equations. (English) Zbl 1399.39006 Math. Slovaca 66, No. 5, 1169-1178 (2016). Reviewer: Josef Diblík (Brno) MSC: 39A10 39A06 39A22 PDF BibTeX XML Cite \textit{M. Migda} and \textit{J. Migda}, Math. Slovaca 66, No. 5, 1169--1178 (2016; Zbl 1399.39006) Full Text: DOI OpenURL
Liao, Huaying; Zhou, Zheng Four positive periodic solutions for a discrete Lotka-Volterra cooperative system with harvesting terms. (Chinese. English summary) Zbl 1363.39017 Acta Math. Appl. Sin. 39, No. 3, 441-451 (2016). MSC: 39A23 39A12 92D25 39A22 PDF BibTeX XML Cite \textit{H. Liao} and \textit{Z. Zhou}, Acta Math. Appl. Sin. 39, No. 3, 441--451 (2016; Zbl 1363.39017) OpenURL
Liu, Haidong; Meng, Fanwei Some new generalized Volterra-Fredholm type discrete fractional sum inequalities and their applications. (English) Zbl 1347.26045 J. Inequal. Appl. 2016, Paper No. 213, 16 p. (2016). MSC: 26D15 PDF BibTeX XML Cite \textit{H. Liu} and \textit{F. Meng}, J. Inequal. Appl. 2016, Paper No. 213, 16 p. (2016; Zbl 1347.26045) Full Text: DOI OpenURL
Kudu, Mustafa; Amirali, Ilhame; Amiraliyev, Gabil M. A finite-difference method for a singularly perturbed delay integro-differential equation. (English) Zbl 1346.65076 J. Comput. Appl. Math. 308, 379-390 (2016). MSC: 65R20 45D05 45A05 45J05 PDF BibTeX XML Cite \textit{M. Kudu} et al., J. Comput. Appl. Math. 308, 379--390 (2016; Zbl 1346.65076) Full Text: DOI OpenURL
Chen, Hongbin; Gan, Siqing; Xu, Da; Liu, Qiwen A second-order BDF compact difference scheme for fractional-order Volterra equation. (English) Zbl 1347.65193 Int. J. Comput. Math. 93, No. 7, 1140-1154 (2016). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 65R20 45D05 26A33 PDF BibTeX XML Cite \textit{H. Chen} et al., Int. J. Comput. Math. 93, No. 7, 1140--1154 (2016; Zbl 1347.65193) Full Text: DOI OpenURL
Migda, Janusz; Migda, Małgorzata Asymptotic behavior of solutions of discrete Volterra equations. (English) Zbl 1359.39004 Opusc. Math. 36, No. 2, 265-278 (2016). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 39A12 39A10 39A22 45D05 45G10 39A23 PDF BibTeX XML Cite \textit{J. Migda} and \textit{M. Migda}, Opusc. Math. 36, No. 2, 265--278 (2016; Zbl 1359.39004) Full Text: DOI OpenURL
Kublik, Catherine; Raffoul, Youssef Lyapunov functionals that lead to exponential stability and instability in finite delay Volterra difference equations. (English) Zbl 1337.39004 Acta Math. Vietnam. 41, No. 1, 77-89 (2016). Reviewer: Peter P. Zabreĭko (Minsk) MSC: 39A30 39A06 PDF BibTeX XML Cite \textit{C. Kublik} and \textit{Y. Raffoul}, Acta Math. Vietnam. 41, No. 1, 77--89 (2016; Zbl 1337.39004) Full Text: DOI OpenURL
Karaa, Samir; Pani, Amiya K. A priori error estimates for finite volume element approximations to second order linear hyperbolic integro-differential equations. (English) Zbl 1499.65459 Int. J. Numer. Anal. Model. 12, No. 3, 401-429 (2015). MSC: 65M08 65M60 65M06 65N08 65N30 35R09 45K05 PDF BibTeX XML Cite \textit{S. Karaa} and \textit{A. K. Pani}, Int. J. Numer. Anal. Model. 12, No. 3, 401--429 (2015; Zbl 1499.65459) Full Text: arXiv Link OpenURL
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen Hybrid approaches for multiple-species stochastic reaction-diffusion models. (English) Zbl 1352.65019 J. Comput. Phys. 299, 429-445 (2015). MSC: 65C30 65M06 65M75 92B05 35R60 60J28 PDF BibTeX XML Cite \textit{F. Spill} et al., J. Comput. Phys. 299, 429--445 (2015; Zbl 1352.65019) Full Text: DOI arXiv OpenURL
Migda, Małgorzata; Ružičková, Miroslava; Schmeidel, Ewa Boundedness and stability of discrete Volterra equations. (English) Zbl 1343.39008 Adv. Difference Equ. 2015, Paper No. 47, 11 p. (2015). MSC: 39A10 39A22 39A30 PDF BibTeX XML Cite \textit{M. Migda} et al., Adv. Difference Equ. 2015, Paper No. 47, 11 p. (2015; Zbl 1343.39008) Full Text: DOI OpenURL
Yankson, Ernest; Essel, Emmanuel K. Stability in delay Volterra difference equations of neutral type. (English) Zbl 1335.39028 Proyecciones 34, No. 3, 229-241 (2015). MSC: 39A30 39A70 39A22 PDF BibTeX XML Cite \textit{E. Yankson} and \textit{E. K. Essel}, Proyecciones 34, No. 3, 229--241 (2015; Zbl 1335.39028) Full Text: DOI OpenURL
Elsadany, A. A.; Matouk, A. E. Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization. (English) Zbl 1327.34084 J. Appl. Math. Comput. 49, No. 1-2, 269-283 (2015). MSC: 34C60 34A08 39A12 39A28 39A33 PDF BibTeX XML Cite \textit{A. A. Elsadany} and \textit{A. E. Matouk}, J. Appl. Math. Comput. 49, No. 1--2, 269--283 (2015; Zbl 1327.34084) Full Text: DOI OpenURL
Lubuma, Jean M.-S.; Terefe, Yibeltal A. A nonstandard Volterra difference equation for the SIS epidemiological model. (English) Zbl 1358.37123 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 109, No. 2, 597-602 (2015). MSC: 37N25 37N30 65C20 92B05 45D05 PDF BibTeX XML Cite \textit{J. M. S. Lubuma} and \textit{Y. A. Terefe}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 109, No. 2, 597--602 (2015; Zbl 1358.37123) Full Text: DOI Link OpenURL
Kakizaki, Sonomi; Fukuda, Akiko; Yamamoto, Yusaku; Iwasaki, Masashi; Ishiwata, Emiko; Nakamura, Yoshimasa Conserved quantities of the integrable discrete hungry systems. (English) Zbl 1317.37073 Discrete Contin. Dyn. Syst., Ser. S 8, No. 5, 889-899 (2015). MSC: 37K10 39A99 PDF BibTeX XML Cite \textit{S. Kakizaki} et al., Discrete Contin. Dyn. Syst., Ser. S 8, No. 5, 889--899 (2015; Zbl 1317.37073) Full Text: DOI OpenURL
Lobanova, M. S.; Tsalyuk, Z. B. Asymptotics of solutions of Volterra integral equations with difference kernel. (English. Russian original) Zbl 1320.45008 Math. Notes 97, No. 3, 396-401 (2015); translation from Mat. Zametki 97, No. 3, 421-427 (2015). Reviewer: Ilia V. Boikov (Penza) MSC: 45M05 45D05 PDF BibTeX XML Cite \textit{M. S. Lobanova} and \textit{Z. B. Tsalyuk}, Math. Notes 97, No. 3, 396--401 (2015; Zbl 1320.45008); translation from Mat. Zametki 97, No. 3, 421--427 (2015) Full Text: DOI OpenURL
Shevchuk, V. A.; Havrys’, O. P. Choice of iterative method for solving nonlinear nonstationary heat conduction problem for a half-space under radiative cooling. (Ukrainian, English) Zbl 1349.74102 Mat. Metody Fiz.-Mekh. Polya 57, No. 4, 179-185 (2014); translation in J. Math. Sci., New York 220, No. 2, 226-234 (2017). Reviewer: R. K. Azimov (Andizhan) MSC: 74F05 74S20 PDF BibTeX XML Cite \textit{V. A. Shevchuk} and \textit{O. P. Havrys'}, Mat. Metody Fiz.-Mekh. Polya 57, No. 4, 179--185 (2014; Zbl 1349.74102); translation in J. Math. Sci., New York 220, No. 2, 226--234 (2017) Full Text: DOI OpenURL
Bezandry, Paul H. On the existence of weighted pseudo almost automorphic solutions of nonlinear stochastic Volterra functional difference equations. (English) Zbl 1386.39006 Int. J. Evol. Equ. 9, No. 1, 121-135 (2014). MSC: 39A10 60G07 34F05 39A50 PDF BibTeX XML Cite \textit{P. H. Bezandry}, Int. J. Evol. Equ. 9, No. 1, 121--135 (2014; Zbl 1386.39006) OpenURL
Shobanadevi, N.; Mohan, J. Jagan Stability of linear Nabla fractional difference equations. (English) Zbl 1312.39022 Proc. Jangjeon Math. Soc. 17, No. 4, 651-657 (2014). Reviewer: Ondřej Došlý (Brno) MSC: 39A30 26A33 39A06 39A22 PDF BibTeX XML Cite \textit{N. Shobanadevi} and \textit{J. J. Mohan}, Proc. Jangjeon Math. Soc. 17, No. 4, 651--657 (2014; Zbl 1312.39022) OpenURL
Schmeidel, Ewa; Gajda, Karol; Gronek, Tomasz On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type. (English) Zbl 1304.39015 Discrete Contin. Dyn. Syst., Ser. B 19, No. 8, 2681-2690 (2014). MSC: 39A22 39A23 39A21 PDF BibTeX XML Cite \textit{E. Schmeidel} et al., Discrete Contin. Dyn. Syst., Ser. B 19, No. 8, 2681--2690 (2014; Zbl 1304.39015) Full Text: DOI OpenURL
Turkyilmazoglu, Mustafa A convergence condition of the homotopy analysis method. (English) Zbl 1301.65115 Liao, Shijun (ed.), Advances in the homotopy analysis method. Hackensack, NJ: World Scientific (ISBN 978-981-4551-24-3/hbk; 978-981-4551-26-7/ebook). 181-257 (2014). MSC: 65M99 65H05 45G10 45J05 65L03 65L10 34B15 34A08 65M12 65M15 PDF BibTeX XML Cite \textit{M. Turkyilmazoglu}, in: Advances in the homotopy analysis method. Hackensack, NJ: World Scientific. 181--257 (2014; Zbl 1301.65115) Full Text: arXiv OpenURL
Cuevas, Claudio; Choquehuanca, Mario; Soto, Herme Asymptotic analysis for Volterra difference equations. (English) Zbl 1304.39013 Asymptotic Anal. 88, No. 3, 125-164 (2014). Reviewer: Oleg Anashkin (Simferopol) MSC: 39A22 45D05 39A12 39A10 PDF BibTeX XML Cite \textit{C. Cuevas} et al., Asymptotic Anal. 88, No. 3, 125--164 (2014; Zbl 1304.39013) Full Text: DOI OpenURL
Castro, Airton; Cuevas, Claudio; Dantas, Filipe; Soto, Herme About the behavior of solutions for Volterra difference equations with infinite delay. (English) Zbl 1291.39020 J. Comput. Appl. Math. 255, 44-59 (2014). MSC: 39A13 39A12 PDF BibTeX XML Cite \textit{A. Castro} et al., J. Comput. Appl. Math. 255, 44--59 (2014; Zbl 1291.39020) Full Text: DOI OpenURL
Agarwal, Ravi P.; Cuevas, Claudio; Lizama, Carlos Regularity of difference equations on Banach spaces. (English) Zbl 1306.39001 Cham: Springer (ISBN 978-3-319-06446-8/hbk; 978-3-319-06447-5/ebook). xv, 208 p. (2014). Reviewer: Narahari Parhi (Bhubaneswar) MSC: 39A05 39-02 39A06 39A60 39A22 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Regularity of difference equations on Banach spaces. Cham: Springer (2014; Zbl 1306.39001) Full Text: DOI OpenURL
Hashem, H. H. G.; Zaki, M. S. Carathéodory theorem for quadratic integral equations of Erdély-Kober type. (English) Zbl 1488.45008 J. Fract. Calc. Appl. 4, No. 1, 56-72 (2013). MSC: 45D05 26A33 60G22 33E30 PDF BibTeX XML Cite \textit{H. H. G. Hashem} and \textit{M. S. Zaki}, J. Fract. Calc. Appl. 4, No. 1, 56--72 (2013; Zbl 1488.45008) Full Text: Link OpenURL
Zheng, Kelong; Wang, Hong; Guo, Chunxiang On nonlinear discrete weakly singular inequalities and applications to Volterra-type difference equations. (English) Zbl 1375.34023 Adv. Difference Equ. 2013, Paper No. 239, 13 p. (2013). MSC: 34A34 39A12 45J05 PDF BibTeX XML Cite \textit{K. Zheng} et al., Adv. Difference Equ. 2013, Paper No. 239, 13 p. (2013; Zbl 1375.34023) Full Text: DOI OpenURL
Baev, A. V. Mathematical modelling of waves in layered media nearby a caustic. (Russian. English summary) Zbl 1357.65111 Mat. Model. 25, No. 12, 83-102 (2013). MSC: 65M06 35A08 76Q05 PDF BibTeX XML Cite \textit{A. V. Baev}, Mat. Model. 25, No. 12, 83--102 (2013; Zbl 1357.65111) Full Text: DOI MNR OpenURL
Nigmatulin, Ravil Asymptotic behavior of solutions of a nonlinear Volterra difference equation. (English) Zbl 1399.39019 Int. Electron. J. Pure Appl. Math. 6, No. 3, 123-125 (2013). MSC: 39A22 PDF BibTeX XML Cite \textit{R. Nigmatulin}, Int. Electron. J. Pure Appl. Math. 6, No. 3, 123--125 (2013; Zbl 1399.39019) Full Text: DOI Link OpenURL
Stenger, Frank; Hall, Richard B. Sinc methods for computing solutions to viscoelastic and related problems. (English) Zbl 1334.65211 Can. Appl. Math. Q. 21, No. 1, 95-120 (2013). MSC: 65R20 45D05 65M38 35K20 35A22 PDF BibTeX XML Cite \textit{F. Stenger} and \textit{R. B. Hall}, Can. Appl. Math. Q. 21, No. 1, 95--120 (2013; Zbl 1334.65211) OpenURL
Migda, Małgorzata; Morchało, Jarosław Asymptotic properties of solutions of difference equations with several delays and Volterra summation equations. (English) Zbl 1329.39001 Appl. Math. Comput. 220, 365-373 (2013). MSC: 39A06 PDF BibTeX XML Cite \textit{M. Migda} and \textit{J. Morchało}, Appl. Math. Comput. 220, 365--373 (2013; Zbl 1329.39001) Full Text: DOI OpenURL
Agarwal, Ravi P.; Cuevas, Claudio; Dantas, Filipe Almost automorphy profile of solutions for difference equations of Volterra type. (English) Zbl 1302.39008 J. Appl. Math. Comput. 42, No. 1-2, 1-18 (2013). Reviewer: Oleg Anashkin (Simferopol) MSC: 39A12 39A10 45D05 43A60 39A60 45G10 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., J. Appl. Math. Comput. 42, No. 1--2, 1--18 (2013; Zbl 1302.39008) Full Text: DOI OpenURL
Baev, A. V. Mathematical simulation of acoustic wave refraction near a caustic. (Russian, English) Zbl 1299.76230 Zh. Vychisl. Mat. Mat. Fiz. 53, No. 7, 1124-1138 (2013); translation in Comput. Math. Math. Phys. 53, No. 7, 947 -961 (2013). MSC: 76Q05 76M20 45D05 35J08 PDF BibTeX XML Cite \textit{A. V. Baev}, Zh. Vychisl. Mat. Mat. Fiz. 53, No. 7, 1124--1138 (2013; Zbl 1299.76230); translation in Comput. Math. Math. Phys. 53, No. 7, 947 -961 (2013) Full Text: DOI OpenURL
Cuevas, Claudio; Dantas, Filipe; Choquehuanca, Mario; Soto, Herme Image-boundedness properties for Volterra difference equations. (English) Zbl 1320.39012 Appl. Math. Comput. 219, No. 12, 6986-6999 (2013). Reviewer: Narcisa C. Apreutesei (Iaşi) MSC: 39A22 39A10 PDF BibTeX XML Cite \textit{C. Cuevas} et al., Appl. Math. Comput. 219, No. 12, 6986--6999 (2013; Zbl 1320.39012) Full Text: DOI OpenURL
Sun, Jian-Qing; Chang, Xiang-Ke; He, Yi; Hu, Xing-Biao An extended multistep Shanks transformation and convergence acceleration algorithm with their convergence and stability analysis. (English) Zbl 1287.65059 Numer. Math. 125, No. 4, 785-809 (2013). Reviewer: Michael M. Pahirya (Mukachevo) MSC: 65L05 65B05 65L12 34A34 92D25 65L20 PDF BibTeX XML Cite \textit{J.-Q. Sun} et al., Numer. Math. 125, No. 4, 785--809 (2013; Zbl 1287.65059) Full Text: DOI OpenURL
Adivar, Murat; Koyuncuoğlu, H. Can; Raffoul, Youssef N. Periodic and asymptotically periodic solutions of systems of nonlinear difference equations with infinite delay. (English) Zbl 1278.39020 J. Difference Equ. Appl. 19, No. 12, 1927-1939 (2013). MSC: 39A23 39A24 34A34 34A12 PDF BibTeX XML Cite \textit{M. Adivar} et al., J. Difference Equ. Appl. 19, No. 12, 1927--1939 (2013; Zbl 1278.39020) Full Text: DOI arXiv OpenURL
Bezandry, Paul H. On the existence of almost automorphic solutions of nonlinear stochastic Volterra difference equations. (English) Zbl 1274.39004 Afr. Diaspora J. Math. 15, No. 1, 14-24 (2013). MSC: 39A10 60G07 34F05 PDF BibTeX XML Cite \textit{P. H. Bezandry}, Afr. Diaspora J. Math. 15, No. 1, 14--24 (2013; Zbl 1274.39004) Full Text: Euclid OpenURL
Mehdiyeva, Galina; Imanova, Mehriban; Ibrahimov, Vagif On a research of hybrid methods. (English) Zbl 1352.65236 Dimov, Ivan (ed.) et al., Numerical analysis and its applications. 5th international conference, NAA 2012, Lozenetz, Bulgaria, June 15–20, 2012. Revised selected papers. Berlin: Springer (ISBN 978-3-642-41514-2/pbk). Lecture Notes in Computer Science 8236, 395-402 (2013). MSC: 65M06 PDF BibTeX XML Cite \textit{G. Mehdiyeva} et al., Lect. Notes Comput. Sci. 8236, 395--402 (2013; Zbl 1352.65236) Full Text: DOI OpenURL
Gronek, Tomasz; Schmeidel, Ewa Existence of bounded solution of Volterra difference equations via Darbo’s fixed-point theorem. (English) Zbl 1281.39001 J. Difference Equ. Appl. 19, No. 10, 1645-1653 (2013). Reviewer: Ioannis P. Stavroulakis (Ioannina) MSC: 39A06 39A22 39A23 PDF BibTeX XML Cite \textit{T. Gronek} and \textit{E. Schmeidel}, J. Difference Equ. Appl. 19, No. 10, 1645--1653 (2013; Zbl 1281.39001) Full Text: DOI OpenURL
Nguyen Van Minh On the asymptotic behaviour of Volterra difference equations. (English) Zbl 1320.39020 J. Difference Equ. Appl. 19, No. 8, 1317-1330 (2013). Reviewer: Alexandra Rodkina (Kingston/Jamaica) MSC: 39A30 39A12 39A14 PDF BibTeX XML Cite \textit{Nguyen Van Minh}, J. Difference Equ. Appl. 19, No. 8, 1317--1330 (2013; Zbl 1320.39020) Full Text: DOI arXiv OpenURL