Yıldız, Şevval; Bilazeroğlu, Şeyma; Merdan, Hüseyin Stability and bifurcation analyses of a discrete Lotka-Volterra type predator-prey system with refuge effect. (English) Zbl 07630793 J. Comput. Appl. Math. 422, Article ID 114910, 28 p. (2023). MSC: 92D25 39A30 39A28 PDF BibTeX XML Cite \textit{Ş. Yıldız} et al., J. Comput. Appl. Math. 422, Article ID 114910, 28 p. (2023; Zbl 07630793) Full Text: DOI OpenURL
Zhou, Baoquan; Dai, Yucong Stationary distribution, extinction, density function and periodicity of an \(n\)-species competition system with infinite distributed delays and nonlinear perturbations. (English) Zbl 07599017 Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 294-346 (2023). MSC: 37H10 37N25 60H10 35Q84 92B05 92D25 PDF BibTeX XML Cite \textit{B. Zhou} and \textit{Y. Dai}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 1, 294--346 (2023; Zbl 07599017) Full Text: DOI OpenURL
Khuddush, Mahammad; Prasad, K. Rajendra Permanence and stability of multi-species nonautonomous Lotka-Volterra competitive systems with delays and feedback controls on time scales. (English) Zbl 07626833 Khayyam J. Math. 7, No. 2, 241-256 (2021). MSC: 92D25 39A24 39A30 PDF BibTeX XML Cite \textit{M. Khuddush} and \textit{K. R. Prasad}, Khayyam J. Math. 7, No. 2, 241--256 (2021; Zbl 07626833) Full Text: DOI OpenURL
Avcı, Derya; Eroğlu, Beyza Billur İskender Optimal control of the Cattaneo-Hristov heat diffusion model. (English) Zbl 1481.74605 Acta Mech. 232, No. 9, 3529-3538 (2021). MSC: 74P10 74F05 74G65 74S40 74S20 80M50 PDF BibTeX XML Cite \textit{D. Avcı} and \textit{B. B. İ. Eroğlu}, Acta Mech. 232, No. 9, 3529--3538 (2021; Zbl 1481.74605) Full Text: DOI OpenURL
Negreanu, M.; Vargas, A. M. Continuous and discrete periodic asymptotic behavior of solutions to a competitive chemotaxis PDEs system. (English) Zbl 1456.35036 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021). MSC: 35B40 35K51 35K59 92C17 92D25 35B10 65M06 PDF BibTeX XML Cite \textit{M. Negreanu} and \textit{A. M. Vargas}, Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105592, 21 p. (2021; Zbl 1456.35036) Full Text: DOI OpenURL
Namjoo, Mehran; Zibaei, Sadegh A NSFD scheme for the solving fractional-order competitive prey-predator system. (English) Zbl 1483.92006 Thai J. Math. 18, No. 4, 1933-1945 (2020). MSC: 92-08 92D25 65L12 65L20 PDF BibTeX XML Cite \textit{M. Namjoo} and \textit{S. Zibaei}, Thai J. Math. 18, No. 4, 1933--1945 (2020; Zbl 1483.92006) Full Text: Link OpenURL
Simonov, Pëtr Mikhaĭlovich On the stability of a system of two linear hybrid functional differential systems with aftereffect. (Russian. English summary) Zbl 1483.34100 Vestn. Ross. Univ., Mat. 25, No. 131, 299-306 (2020). MSC: 34K20 34K06 34K34 PDF BibTeX XML Cite \textit{P. M. Simonov}, Vestn. Ross. Univ., Mat. 25, No. 131, 299--306 (2020; Zbl 1483.34100) Full Text: DOI MNR OpenURL
Baev, A. V.; Gavrilov, S. V. The inverse scattering problem in a nonstationary medium. (English. Russian original) Zbl 1429.35164 Comput. Math. Model. 30, No. 3, 218-229 (2019); translation from Prikl. Mat. Inf. 60, 38-50 (2019). MSC: 35P25 35R30 35L05 65M06 PDF BibTeX XML Cite \textit{A. V. Baev} and \textit{S. V. Gavrilov}, Comput. Math. Model. 30, No. 3, 218--229 (2019; Zbl 1429.35164); translation from Prikl. Mat. Inf. 60, 38--50 (2019) Full Text: DOI OpenURL
Zuo, Wenjie; Jiang, Daqing; Sun, Xinguo; Hayat, Tasawar; Alsaedi, Ahmed Long-time behaviors of a stochastic cooperative Lotka-Volterra system with distributed delay. (English) Zbl 07550404 Physica A 506, 542-559 (2018). MSC: 82-XX 37H10 92D25 93D05 PDF BibTeX XML Cite \textit{W. Zuo} et al., Physica A 506, 542--559 (2018; Zbl 07550404) Full Text: DOI OpenURL
Xu, Li; Liu, Jiayi; Zhang, Guang Pattern formation and parameter inversion for a discrete Lotka-Volterra cooperative system. (English) Zbl 1391.39012 Chaos Solitons Fractals 110, 226-231 (2018). MSC: 39A12 39A28 37M05 PDF BibTeX XML Cite \textit{L. Xu} et al., Chaos Solitons Fractals 110, 226--231 (2018; Zbl 1391.39012) Full Text: DOI OpenURL
Lu, Guichen; Lu, Zhengyi Non-permanence for three-species Lotka-Volterra cooperative difference systems. (English) Zbl 1444.37077 Adv. Difference Equ. 2017, Paper No. 152, 14 p. (2017). MSC: 37N25 39A60 92D25 PDF BibTeX XML Cite \textit{G. Lu} and \textit{Z. Lu}, Adv. Difference Equ. 2017, Paper No. 152, 14 p. (2017; Zbl 1444.37077) Full Text: DOI OpenURL
Wan, Andy T. S.; Bihlo, Alexander; Nave, Jean-Christophe Conservative methods for dynamical systems. (English) Zbl 1375.65104 SIAM J. Numer. Anal. 55, No. 5, 2255-2285 (2017). MSC: 65L12 34A34 65L05 65P10 37M15 65L20 70F05 PDF BibTeX XML Cite \textit{A. T. S. Wan} et al., SIAM J. Numer. Anal. 55, No. 5, 2255--2285 (2017; Zbl 1375.65104) Full Text: DOI arXiv OpenURL
Pao, C. V.; He, Taiping Numerical methods for coupled systems of quasilinear elliptic equations with nonlinear boundary conditions. (English) Zbl 1463.65354 J. Appl. Anal. Comput. 6, No. 2, 543-581 (2016). MSC: 65N22 65N06 65N12 35J62 PDF BibTeX XML Cite \textit{C. V. Pao} and \textit{T. He}, J. Appl. Anal. Comput. 6, No. 2, 543--581 (2016; Zbl 1463.65354) Full Text: DOI OpenURL
Zibaei, S.; Namjoo, M. Solving fractional-order competitive Lotka-Volterra model by NSFD schemes. (English) Zbl 1372.37124 TWMS J. Appl. Eng. Math. 6, No. 2, 264-277 (2016). MSC: 37M05 65L12 65L20 65L05 65L06 92D25 26A33 PDF BibTeX XML Cite \textit{S. Zibaei} and \textit{M. Namjoo}, TWMS J. Appl. Eng. Math. 6, No. 2, 264--277 (2016; Zbl 1372.37124) OpenURL
Omurov, Taalaibek; Ryspaev, Amantur; Omurov, Maksat Multidimensional inverse problem with Goursat type conditions. (Russian. English summary) Zbl 1364.65296 Differ. Uravn. Protsessy Upr. 2016, No. 4, 1-13 (2016). MSC: 65R20 45B05 45D05 65R32 PDF BibTeX XML Cite \textit{T. Omurov} et al., Differ. Uravn. Protsessy Upr. 2016, No. 4, 1--13 (2016; Zbl 1364.65296) Full Text: Link OpenURL
Liao, Huaying; Zhou, Zheng Four positive periodic solutions for a discrete Lotka-Volterra cooperative system with harvesting terms. (Chinese. English summary) Zbl 1363.39017 Acta Math. Appl. Sin. 39, No. 3, 441-451 (2016). MSC: 39A23 39A12 92D25 39A22 PDF BibTeX XML Cite \textit{H. Liao} and \textit{Z. Zhou}, Acta Math. Appl. Sin. 39, No. 3, 441--451 (2016; Zbl 1363.39017) OpenURL
Boglaev, Igor Numerical methods for systems of nonlinear integro-parabolic equations of Volterra type. (English) Zbl 1349.65269 J. Integral Equations Appl. 28, No. 3, 309-342 (2016). MSC: 65M06 65M12 65M22 65R20 PDF BibTeX XML Cite \textit{I. Boglaev}, J. Integral Equations Appl. 28, No. 3, 309--342 (2016; Zbl 1349.65269) Full Text: DOI Euclid OpenURL
Zibaei, S.; Namjoo, M. A nonstandard finite difference scheme for solving three-species food chain with fractional-order Lotka-Volterra model. (English) Zbl 1343.65097 Iran. J. Numer. Anal. Optim. 6, No. 1, 53-78 (2016). MSC: 65L12 34A08 92D25 PDF BibTeX XML Cite \textit{S. Zibaei} and \textit{M. Namjoo}, Iran. J. Numer. Anal. Optim. 6, No. 1, 53--78 (2016; Zbl 1343.65097) Full Text: DOI OpenURL
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen Hybrid approaches for multiple-species stochastic reaction-diffusion models. (English) Zbl 1352.65019 J. Comput. Phys. 299, 429-445 (2015). MSC: 65C30 65M06 65M75 92B05 35R60 60J28 PDF BibTeX XML Cite \textit{F. Spill} et al., J. Comput. Phys. 299, 429--445 (2015; Zbl 1352.65019) Full Text: DOI arXiv OpenURL
Elsadany, A. A.; Matouk, A. E. Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization. (English) Zbl 1327.34084 J. Appl. Math. Comput. 49, No. 1-2, 269-283 (2015). MSC: 34C60 34A08 39A12 39A28 39A33 PDF BibTeX XML Cite \textit{A. A. Elsadany} and \textit{A. E. Matouk}, J. Appl. Math. Comput. 49, No. 1--2, 269--283 (2015; Zbl 1327.34084) Full Text: DOI OpenURL
Kakizaki, Sonomi; Fukuda, Akiko; Yamamoto, Yusaku; Iwasaki, Masashi; Ishiwata, Emiko; Nakamura, Yoshimasa Conserved quantities of the integrable discrete hungry systems. (English) Zbl 1317.37073 Discrete Contin. Dyn. Syst., Ser. S 8, No. 5, 889-899 (2015). MSC: 37K10 39A99 PDF BibTeX XML Cite \textit{S. Kakizaki} et al., Discrete Contin. Dyn. Syst., Ser. S 8, No. 5, 889--899 (2015; Zbl 1317.37073) Full Text: DOI OpenURL
Bian, Jicheng; Fan, Zhiqiang; Xu, Jiabo; Fan, Xiaolin Permanence of a two species Lotka-Volterra discrete system with infinite delay. (Chinese. English summary) Zbl 1313.92046 Pure Appl. Math. 30, No. 2, 166-172 (2014). MSC: 92D25 92D40 39A30 PDF BibTeX XML Cite \textit{J. Bian} et al., Pure Appl. Math. 30, No. 2, 166--172 (2014; Zbl 1313.92046) Full Text: DOI OpenURL
Adivar, Murat; Koyuncuoğlu, H. Can; Raffoul, Youssef N. Periodic and asymptotically periodic solutions of systems of nonlinear difference equations with infinite delay. (English) Zbl 1278.39020 J. Difference Equ. Appl. 19, No. 12, 1927-1939 (2013). MSC: 39A23 39A24 34A34 34A12 PDF BibTeX XML Cite \textit{M. Adivar} et al., J. Difference Equ. Appl. 19, No. 12, 1927--1939 (2013; Zbl 1278.39020) Full Text: DOI arXiv OpenURL
Anh, Trinh Tuan Positive periodic solutions of discrete Lotka-Volterra cooperative systems with delays. (English) Zbl 1303.39008 Acta Math. Vietnam. 38, No. 3, 461-470 (2013). Reviewer: Oleg Anashkin (Simferopol) MSC: 39A23 39A10 92D25 39A22 PDF BibTeX XML Cite \textit{T. T. Anh}, Acta Math. Vietnam. 38, No. 3, 461--470 (2013; Zbl 1303.39008) Full Text: DOI OpenURL
Chistyakov, V. F. On the solvability and numerical methods for solution of linear integro-algebraic equations. (English. Russian original) Zbl 1281.65158 Sib. Math. J. 54, No. 4, 746-758 (2013); translation from Sib. Mat. Zh. 54, No. 4, 932-946 (2013). Reviewer: Josef Kofroň (Praha) MSC: 65R20 45F05 45D05 PDF BibTeX XML Cite \textit{V. F. Chistyakov}, Sib. Math. J. 54, No. 4, 746--758 (2013; Zbl 1281.65158); translation from Sib. Mat. Zh. 54, No. 4, 932--946 (2013) Full Text: DOI OpenURL
Babalic, Corina N.; Carstea, A. S. On various integrable discretizations of a general two-component Volterra system. (English) Zbl 1266.39005 J. Phys. A, Math. Theor. 46, No. 14, Article ID 145205, 12 p. (2013). MSC: 39A12 37J35 39A10 PDF BibTeX XML Cite \textit{C. N. Babalic} and \textit{A. S. Carstea}, J. Phys. A, Math. Theor. 46, No. 14, Article ID 145205, 12 p. (2013; Zbl 1266.39005) Full Text: DOI arXiv OpenURL
Roeger, Lih-Ing Wu; Jun, Glenn Lahodny Dynamically consistent discrete Lotka-Volterra competition systems. (English) Zbl 1264.39006 J. Difference Equ. Appl. 19, No. 2, 191-200 (2013). Reviewer: Bilender P. Allahverdiev (Isparta) MSC: 39A12 65L12 34A45 39A22 39A20 39A30 92D25 PDF BibTeX XML Cite \textit{L.-I. W. Roeger} and \textit{G. L. Jun}, J. Difference Equ. Appl. 19, No. 2, 191--200 (2013; Zbl 1264.39006) Full Text: DOI OpenURL
Ryu, Dae Hee; Kim, Hyeock Jin; Goo, Yoon Hoe \(h\)-stability of the nonlinear perturbed difference systems via \(n_{\infty}\)-similarity. (English) Zbl 1325.39001 J. Appl. Math. Inform. 31, No. 1-2, 277-284 (2013). Reviewer: Fengqin Zhang (Yuncheng) MSC: 39A10 39A30 PDF BibTeX XML Cite \textit{D. H. Ryu} et al., J. Appl. Math. Inform. 31, No. 1--2, 277--284 (2013; Zbl 1325.39001) Full Text: DOI Link OpenURL
Chistyakova, E. V. Regularizing properties of difference schemes for singular integral-differential equations. (English) Zbl 1256.65105 Appl. Numer. Math. 62, No. 10, 1302-1311 (2012). Reviewer: Ivan Secrieru (Chişinău) MSC: 65R20 45J05 45G05 45D05 PDF BibTeX XML Cite \textit{E. V. Chistyakova}, Appl. Numer. Math. 62, No. 10, 1302--1311 (2012; Zbl 1256.65105) Full Text: DOI OpenURL
Brezinski, Claude; He, Yi; Hu, Xing-Biao; Redivo-Zaglia, Michela; Sun, Jian-Qing Multistep \(\varepsilon\)-algorithm, Shanks’ transformation, and the Lotka-Volterra system by Hirota’s method. (English) Zbl 1421.65002 Math. Comput. 81, No. 279, 1527-1549 (2012). MSC: 65B05 39A14 PDF BibTeX XML Cite \textit{C. Brezinski} et al., Math. Comput. 81, No. 279, 1527--1549 (2012; Zbl 1421.65002) Full Text: DOI arXiv OpenURL
Nan, Zhijie; Chen, Weijun; Luo, Mingxing; Li, Lin Periodic solution of discrete Lotka-Volterra system with delay and diffusion. (English) Zbl 1274.34266 Acta Univ. Apulensis, Math. Inform. 28, 87-100 (2011). MSC: 34N05 39A23 92D25 PDF BibTeX XML Cite \textit{Z. Nan} et al., Acta Univ. Apulensis, Math. Inform. 28, 87--100 (2011; Zbl 1274.34266) OpenURL
Xu, Jiabo; Teng, Zhidong; Jiang, Haijun Permanence and global attractivity for discrete nonautonomous two-species Lotka-Volterra competitive system with delays and feedback controls. (English) Zbl 1299.92056 Period. Math. Hung. 63, No. 1, 19-45 (2011). MSC: 92D25 39A30 PDF BibTeX XML Cite \textit{J. Xu} et al., Period. Math. Hung. 63, No. 1, 19--45 (2011; Zbl 1299.92056) Full Text: DOI OpenURL
Moaddy, K.; Hashim, I.; Alomari, A. K.; Momani, S. A new hybrid non-standard finite difference-Adomian scheme for solution of nonlinear equations. (English) Zbl 1229.65114 Sains Malays. 40, No. 5, 515-519 (2011). MSC: 65L05 65L12 65H10 34A34 92D25 PDF BibTeX XML Cite \textit{K. Moaddy} et al., Sains Malays. 40, No. 5, 515--519 (2011; Zbl 1229.65114) OpenURL
Li, Zhong; Chen, Fengde; He, Mengxin Almost periodic solutions of a discrete Lotka-Volterra competition system with delays. (English) Zbl 1222.39006 Nonlinear Anal., Real World Appl. 12, No. 4, 2344-2355 (2011). Reviewer: Claudio Cuevas (Pernambuco) MSC: 39A12 39A10 92D25 39A24 39A30 PDF BibTeX XML Cite \textit{Z. Li} et al., Nonlinear Anal., Real World Appl. 12, No. 4, 2344--2355 (2011; Zbl 1222.39006) Full Text: DOI OpenURL
Diblík, Josef; Schmeidel, Ewa; Růžičková, Miroslava Asymptotically periodic solutions of Volterra system of difference equations. (English) Zbl 1202.39013 Comput. Math. Appl. 59, No. 8, 2854-2867 (2010). Reviewer: Hui-Sheng Ding (Jiangxi) MSC: 39A23 39A30 39A06 PDF BibTeX XML Cite \textit{J. Diblík} et al., Comput. Math. Appl. 59, No. 8, 2854--2867 (2010; Zbl 1202.39013) Full Text: DOI OpenURL
Teng, Zhidong; Zhang, Yu; Gao, Shujing Permanence criteria for general delayed discrete nonautonomous \(n\)-species Kolmogorov systems and its applications. (English) Zbl 1189.39017 Comput. Math. Appl. 59, No. 2, 812-828 (2010). MSC: 39A22 39A30 92D25 PDF BibTeX XML Cite \textit{Z. Teng} et al., Comput. Math. Appl. 59, No. 2, 812--828 (2010; Zbl 1189.39017) Full Text: DOI OpenURL
Gorodnij, M. F.; Lukash, K. V. On the properties of solutions of a two-parameter discrete Volterra system. (Ukrainian. English summary) Zbl 1199.39043 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2010, No. 2, 7-10 (2010). MSC: 39A50 PDF BibTeX XML Cite \textit{M. F. Gorodnij} and \textit{K. V. Lukash}, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2010, No. 2, 7--10 (2010; Zbl 1199.39043) OpenURL
Zhang, Liang; Li, Hong-Xu; Zhang, Xiao-Bing Periodic solutions of competition Lotka-Volterra dynamic system on time scales. (English) Zbl 1186.34129 Comput. Math. Appl. 57, No. 7, 1204-1211 (2009). MSC: 34N05 37N25 92D25 34C25 34C60 39A10 PDF BibTeX XML Cite \textit{L. Zhang} et al., Comput. Math. Appl. 57, No. 7, 1204--1211 (2009; Zbl 1186.34129) Full Text: DOI OpenURL
Itokazu, Tomomi; Hamaya, Yoshihiro Almost periodic solutions of prey-predator discrete models with delay. (English) Zbl 1177.39018 Adv. Difference Equ. 2009, Article ID 976865, 19 p. (2009). MSC: 39A24 92D25 39A12 39A30 PDF BibTeX XML Cite \textit{T. Itokazu} and \textit{Y. Hamaya}, Adv. Difference Equ. 2009, Article ID 976865, 19 p. (2009; Zbl 1177.39018) Full Text: DOI EuDML OpenURL
Diblík, Josef; Schmeidel, Ewa; Růžičková, Miroslava Existence of asymptotically periodic solutions of system of Volterra difference equations. (English) Zbl 1180.39022 J. Difference Equ. Appl. 15, No. 11-12, 1165-1177 (2009). Reviewer: Fozi Dannan (Damascus) MSC: 39A23 39A10 PDF BibTeX XML Cite \textit{J. Diblík} et al., J. Difference Equ. Appl. 15, No. 11--12, 1165--1177 (2009; Zbl 1180.39022) Full Text: DOI OpenURL
Murakami, Satoru Stabilities with respect to a weight function in Volterra difference equations. (English) Zbl 1179.39022 Elaydi, Saber (ed.) et al., Advances in discrete dynamical systems. Proceedings of the 11th international conference on difference equations and applications (ICDEA 06), Kyoto, Japan, July 24–28, 2006. Tokyo: Mathematical Society of Japan (ISBN 978-4-931469-49-5/hbk). Advanced Studies in Pure Mathematics 53, 179-187 (2009). MSC: 39A30 39A06 PDF BibTeX XML Cite \textit{S. Murakami}, Adv. Stud. Pure Math. 53, 179--187 (2009; Zbl 1179.39022) OpenURL
Hoppensteadt, Frank Multi-scale methods, computer simulations, and data mining: difference equations and renewal equations. (English) Zbl 1176.65006 Blackmore, Denis (ed.) et al., Frontiers of applied and computational mathematics. Dedicated to Daljit Singh Ahluwalia on his 75th birthday. Papers based on the presentations at the 5th annual frontiers in applied and computational mathematics conference (FACM ’08), Newark, NJ, USA, 19–21 May 2008. Hackensack, NJ: World Scientific (ISBN 978-981-283-528-4/hbk). 3-14 (2008). MSC: 65C30 60H20 60H25 45G15 45R05 65Q10 39A50 PDF BibTeX XML Cite \textit{F. Hoppensteadt}, in: Frontiers of applied and computational mathematics. Dedicated to Daljit Singh Ahluwalia on his 75th birthday. Papers based on the presentations at the 5th annual frontiers in applied and computational mathematics conference (FACM '08), Newark, NJ, USA, 19--21 May 2008. Hackensack, NJ: World Scientific. 3--14 (2009; Zbl 1176.65006) OpenURL
Niu, Chengying; Chen, Xiaoxing Almost periodic sequence solutions of a discrete Lotka-Volterra competitive system with feedback control. (English) Zbl 1172.39014 Nonlinear Anal., Real World Appl. 10, No. 5, 3152-3161 (2009). Reviewer: Dan-Mircea Borş (Iaşi) MSC: 39A11 39A12 93D15 PDF BibTeX XML Cite \textit{C. Niu} and \textit{X. Chen}, Nonlinear Anal., Real World Appl. 10, No. 5, 3152--3161 (2009; Zbl 1172.39014) Full Text: DOI OpenURL
Ngoc, Pham Huu Anh; Naito, Toshiki; Shin, Jong Son; Murakami, Satoru Stability and robust stability of positive linear Volterra difference equations. (English) Zbl 1160.93379 Int. J. Robust Nonlinear Control 19, No. 5, 552-568 (2009). MSC: 93D09 93C05 93D20 39A10 PDF BibTeX XML Cite \textit{P. H. A. Ngoc} et al., Int. J. Robust Nonlinear Control 19, No. 5, 552--568 (2009; Zbl 1160.93379) Full Text: DOI OpenURL
Pao, C. V.; Wang, Yuan-Ming Numerical solutions of a three-competition Lotka-Volterra system. (English) Zbl 1168.65035 Appl. Math. Comput. 204, No. 1, 423-440 (2008). Reviewer: Ziwen Jiang (Shandong) MSC: 65L05 34A34 65L12 65L20 92D25 PDF BibTeX XML Cite \textit{C. V. Pao} and \textit{Y.-M. Wang}, Appl. Math. Comput. 204, No. 1, 423--440 (2008; Zbl 1168.65035) Full Text: DOI OpenURL
Roeger, Lih-Ing W. Periodic solutions preserved by nonstandard finite-difference schemes for the Lotka-Volterra system: a different approach. (English) Zbl 1148.39012 J. Difference Equ. Appl. 14, No. 5, 481-493 (2008). Reviewer: Stefan Balint (Timişoara) MSC: 39A11 39A12 92D25 PDF BibTeX XML Cite \textit{L.-I. W. Roeger}, J. Difference Equ. Appl. 14, No. 5, 481--493 (2008; Zbl 1148.39012) Full Text: DOI OpenURL
Liao, Xinyuan; Ouyang, Zigen; Zhou, Shengfan Permanence of species in nonautonomous discrete Lotka-Volterra competitive system with delays and feedback controls. (English) Zbl 1143.39005 J. Comput. Appl. Math. 211, No. 1, 1-10 (2008). Reviewer: Martin Rasmussen (London) MSC: 39A11 92D25 39A12 PDF BibTeX XML Cite \textit{X. Liao} et al., J. Comput. Appl. Math. 211, No. 1, 1--10 (2008; Zbl 1143.39005) Full Text: DOI OpenURL
Shih, Shagi-Di; Chow, Shue-Sum Equivalence of \(n\)-point Gauss-Chebyshev rule and \(4n\)-point midpoint rule in computing the period of a Lotka-Volterra system. (English) Zbl 1130.41010 Adv. Comput. Math. 28, No. 1, 63-79 (2008). Reviewer: Adhemar Bultheel (Leuven) MSC: 41A55 34A34 33E30 92D25 34C15 PDF BibTeX XML Cite \textit{S.-D. Shih} and \textit{S.-S. Chow}, Adv. Comput. Math. 28, No. 1, 63--79 (2008; Zbl 1130.41010) Full Text: DOI OpenURL
Ma, Huichan; Rehim, Mehbuba Existence of periodic solutions of discrete Lotka-Volterra systems with delays. (Chinese. English summary) Zbl 1164.39314 J. Xinjiang Univ., Nat. Sci. 24, No. 1, 49-54 (2007). MSC: 39A11 92D25 PDF BibTeX XML Cite \textit{H. Ma} and \textit{M. Rehim}, J. Xinjiang Univ., Nat. Sci. 24, No. 1, 49--54 (2007; Zbl 1164.39314) OpenURL
Xamxinur, Abdurahman; Teng, Zhidong Existence of periodic solutions for \(n\)-species Lotka-Volterra type discrete competitive systems. (English) Zbl 1164.39322 J. Xinjiang Univ., Nat. Sci. 24, No. 1, 1-6 (2007). MSC: 39A11 92D25 PDF BibTeX XML Cite \textit{A. Xamxinur} and \textit{Z. Teng}, J. Xinjiang Univ., Nat. Sci. 24, No. 1, 1--6 (2007; Zbl 1164.39322) OpenURL
Iwasaki, Masashi; Nakamura, Yoshimasa Center manifold approach to discrete integrable systems related to eigenvalues and singular values. (English) Zbl 1135.37027 Hokkaido Math. J. 36, No. 4, 759-775 (2007). MSC: 37K10 39A11 65F15 PDF BibTeX XML Cite \textit{M. Iwasaki} and \textit{Y. Nakamura}, Hokkaido Math. J. 36, No. 4, 759--775 (2007; Zbl 1135.37027) Full Text: DOI OpenURL
Choi, Sung Kyu; Goo, Yoon Hoe; Koo, Namjip Boundedness of discrete Volterra systems. (English) Zbl 1141.39004 Bull. Korean Math. Soc. 44, No. 4, 663-675 (2007). Reviewer: Rodica Luca Tudorache (Iaşi) MSC: 39A11 39A12 PDF BibTeX XML Cite \textit{S. K. Choi} et al., Bull. Korean Math. Soc. 44, No. 4, 663--675 (2007; Zbl 1141.39004) Full Text: DOI OpenURL
Choi, Sung Kyu; Goo, Yoon Hoe; Koo, Nam Jip Asymptotic behavior of nonlinear Volterra difference systems. (English) Zbl 1136.39004 Bull. Korean Math. Soc. 44, No. 1, 177-184 (2007). Reviewer: Zhibo Huang (Guangzhou) MSC: 39A11 PDF BibTeX XML Cite \textit{S. K. Choi} et al., Bull. Korean Math. Soc. 44, No. 1, 177--184 (2007; Zbl 1136.39004) Full Text: DOI OpenURL
Li, Yongkun Positive periodic solutions of discrete Lotka-Volterra competition systems with state dependent and distributed delays. (English) Zbl 1125.39006 Appl. Math. Comput. 190, No. 1, 526-531 (2007). Reviewer: Christian Pötzsche (München) MSC: 39A14 39A12 92D25 PDF BibTeX XML Cite \textit{Y. Li}, Appl. Math. Comput. 190, No. 1, 526--531 (2007; Zbl 1125.39006) Full Text: DOI OpenURL
Krivine, Hubert; Lesne, Annick; Treiner, Jacques Discrete-time and continuous-time modelling: some bridges and gaps. (English) Zbl 1116.65096 Math. Struct. Comput. Sci. 17, No. 2, 261-276 (2007). MSC: 65L12 39A12 34A34 92D25 65P10 37M15 65L05 70F15 PDF BibTeX XML Cite \textit{H. Krivine} et al., Math. Struct. Comput. Sci. 17, No. 2, 261--276 (2007; Zbl 1116.65096) Full Text: DOI OpenURL
Luca-Tudorache, Rodica Nonlinear evolution problems in Hilbert spaces. (Probleme neliniare de evoluţie în spaţii Hilbert.) (Romanian) Zbl 1135.35001 Iaşi: Editura Performantica (ISBN 978-973-730-359-2/pbk). 148 p. (2007). Reviewer: Georgeta Teodoru (Iaşi) MSC: 35-02 35L50 35L55 35D05 34B10 34G20 39A10 39A11 45K05 47J35 47H05 47N20 PDF BibTeX XML Cite \textit{R. Luca-Tudorache}, Probleme neliniare de evoluţie în spaţii Hilbert (Romanian). Iaşi: Editura Performantica (2007; Zbl 1135.35001) OpenURL
Liao, Xinyuan; Zhou, Shengfan; Chen, Yuming Permanence for a discrete time Lotka-Volterra type food-chain model with delays. (English) Zbl 1120.92046 Appl. Math. Comput. 186, No. 1, 279-285 (2007). MSC: 92D40 39A11 PDF BibTeX XML Cite \textit{X. Liao} et al., Appl. Math. Comput. 186, No. 1, 279--285 (2007; Zbl 1120.92046) Full Text: DOI OpenURL
Fang, Na; Chen, Xiaoxing Global stability of a nonlinear discrete competition system. (Chinese. English summary) Zbl 1116.39002 J. Fuzhou Univ., Nat. Sci. 34, No. 6, 790-793, 830 (2006). MSC: 39A11 39A12 92D25 PDF BibTeX XML Cite \textit{N. Fang} and \textit{X. Chen}, J. Fuzhou Univ., Nat. Sci. 34, No. 6, 790--793, 830 (2006; Zbl 1116.39002) OpenURL
Roeger, Lih-Ing W. Nonstandard finite-difference schemes for the Lotka-Volterra systems: generalization of Mickens’s method. (English) Zbl 1119.65075 J. Difference Equ. Appl. 12, No. 9, 937-948 (2006). Reviewer: R. Militaru (Craiova) MSC: 65L12 34A34 65L05 92D25 65P10 37M15 34C25 PDF BibTeX XML Cite \textit{L.-I. W. Roeger}, J. Difference Equ. Appl. 12, No. 9, 937--948 (2006; Zbl 1119.65075) Full Text: DOI OpenURL
Choi, Sung Kyu; Koo, Nam Jip Asymptotic property of linear Volterra difference systems. (English) Zbl 1105.39003 J. Math. Anal. Appl. 321, No. 1, 260-272 (2006). Reviewer: Qingkai Kong (DeKalb) MSC: 39A11 PDF BibTeX XML Cite \textit{S. K. Choi} and \textit{N. J. Koo}, J. Math. Anal. Appl. 321, No. 1, 260--272 (2006; Zbl 1105.39003) Full Text: DOI OpenURL
Kulenović, M. R. S.; Merino, Orlando A global attractivity result for maps with invariant boxes. (English) Zbl 1092.37014 Discrete Contin. Dyn. Syst., Ser. B 6, No. 1, 97-110 (2006). MSC: 37C10 39A11 39A20 37C70 PDF BibTeX XML Cite \textit{M. R. S. Kulenović} and \textit{O. Merino}, Discrete Contin. Dyn. Syst., Ser. B 6, No. 1, 97--110 (2006; Zbl 1092.37014) Full Text: DOI OpenURL
Liao, Xin-Yuan; Cheng, Sui Sun Convergent and divergent solutions of a discrete nonautonomous Lotka-Volterra model. (English) Zbl 1103.39012 Tamkang J. Math. 36, No. 4, 337-344 (2005). Reviewer: Martin Rasmussen (Augsburg) MSC: 39A11 92D25 PDF BibTeX XML Cite \textit{X.-Y. Liao} and \textit{S. S. Cheng}, Tamkang J. Math. 36, No. 4, 337--344 (2005; Zbl 1103.39012) OpenURL
Li, Yongkun; Zhu, Lifei Existence of periodic solutions of discrete Lotka-Volterra systems with delays. (English) Zbl 1087.39013 Bull. Inst. Math., Acad. Sin. 33, No. 4, 369-380 (2005). Reviewer: Yuming Chen (Waterloo) MSC: 39A11 92D25 PDF BibTeX XML Cite \textit{Y. Li} and \textit{L. Zhu}, Bull. Inst. Math., Acad. Sin. 33, No. 4, 369--380 (2005; Zbl 1087.39013) OpenURL
Matsunaga, Hideaki A note on asymptotic stability of delay difference systems. (English) Zbl 1082.39007 J. Inequal. Appl. 2005, No. 2, 119-125 (2005). Reviewer: Victor I. Tkachenko (Kyïv) MSC: 39A11 39A12 34K20 PDF BibTeX XML Cite \textit{H. Matsunaga}, J. Inequal. Appl. 2005, No. 2, 119--125 (2005; Zbl 1082.39007) Full Text: DOI EuDML OpenURL
Pao, C. V. Global attractor of coupled difference equations and applications to Lotka-Volterra systems. (English) Zbl 1081.39004 Adv. Difference Equ. 2005, No. 1, 57-79 (2005). Reviewer: Victor I. Tkachenko (Kyïv) MSC: 39A11 39A12 PDF BibTeX XML Cite \textit{C. V. Pao}, Adv. Difference Equ. 2005, No. 1, 57--79 (2005; Zbl 1081.39004) Full Text: DOI EuDML OpenURL
Kolmanovskii, V. Boundedness in average for Volterra nonlinear difference equations. (English) Zbl 1073.39004 Funct. Differ. Equ. 12, No. 3-4, 295-301 (2005). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A11 39A12 PDF BibTeX XML Cite \textit{V. Kolmanovskii}, Funct. Differ. Equ. 12, No. 3--4, 295--301 (2005; Zbl 1073.39004) OpenURL
Kabanikhin, S. I.; Satybaev, A. D.; Shishlenin, M. A. Direct methods of solving multidimensional inverse hyperbolic problems. (English) Zbl 1069.65105 Inverse and Ill-Posed Problems Series. Utrecht: VSP (ISBN 90-6764-416-1/hbk). viii, 179 p. (2005). Reviewer: Dinh Nho Hao (Brussels) MSC: 65M32 65-02 35L15 35L70 35R30 65M06 65M12 PDF BibTeX XML Cite \textit{S. I. Kabanikhin} et al., Direct methods of solving multidimensional inverse hyperbolic problems. Utrecht: VSP (2005; Zbl 1069.65105) OpenURL
Bibik, Yu. V.; Popov, S. P.; Sarancha, D. A. Numerical solution of the Bogoyavlenskii kinetic equation and the Lotka-Volterra system with diffusion. (Russian, English) Zbl 1130.65085 Zh. Vychisl. Mat. Mat. Fiz. 44, No. 5, 904-916 (2004); translation in Comput. Math. Math. Phys. 44, No. 5, 856-867 (2004). Reviewer: Elena Glukhova (Moskva) MSC: 65M06 35Q51 92D25 35K50 35K55 PDF BibTeX XML Cite \textit{Yu. V. Bibik} et al., Zh. Vychisl. Mat. Mat. Fiz. 44, No. 5, 904--916 (2004; Zbl 1130.65085); translation in Comput. Math. Math. Phys. 44, No. 5, 856--867 (2004) OpenURL
Zeng, X. Y.; Shi, B.; Gai, M. J. A discrete periodic Lotka-Volterra system with delays. (English) Zbl 1067.39024 Comput. Math. Appl. 47, No. 4-5, 491-500 (2004). Reviewer: Khalil Ezzinbi (Marrakech) MSC: 39A11 39A12 92D25 PDF BibTeX XML Cite \textit{X. Y. Zeng} et al., Comput. Math. Appl. 47, No. 4--5, 491--500 (2004; Zbl 1067.39024) Full Text: DOI OpenURL
Mounim, Abdellatif Serghini; de Dormale, Bernard M. A note on Mickens’ finite-difference scheme for the Lotka-Volterra system. (English) Zbl 1057.65047 Appl. Numer. Math. 51, No. 2-3, 341-344 (2004). MSC: 65L12 34A34 65L05 92D25 PDF BibTeX XML Cite \textit{A. S. Mounim} and \textit{B. M. de Dormale}, Appl. Numer. Math. 51, No. 2--3, 341--344 (2004; Zbl 1057.65047) Full Text: DOI OpenURL
Jiang, Liqun; Zhou, Zhan Permanence of a nonautonomous \(n\)-species Lotka-Volterra competitive difference system with delays. (English) Zbl 1042.92025 Math. Sci. Res. J. 8, No. 1, 36-46 (2004). MSC: 92D25 39A11 PDF BibTeX XML Cite \textit{L. Jiang} and \textit{Z. Zhou}, Math. Sci. Res. J. 8, No. 1, 36--46 (2004; Zbl 1042.92025) OpenURL
Song, Yihong; Baker, Christopher T. H. Perturbation of Volterra difference equations. (English) Zbl 1049.39011 J. Difference Equ. Appl. 10, No. 4, 379-397 (2004). Reviewer: Fozi Dannan (Doha) MSC: 39A11 PDF BibTeX XML Cite \textit{Y. Song} and \textit{C. T. H. Baker}, J. Difference Equ. Appl. 10, No. 4, 379--397 (2004; Zbl 1049.39011) Full Text: DOI OpenURL
Gorodnij, M. F. Boundedness of solutions to some Volterra systems in a finite dimensional space. (Ukrainian) Zbl 1075.39004 Nelinijni Kolyvannya 6, No. 1, 34-41 (2003). Reviewer: L. N. Chernetskaja (Kyïv) MSC: 39A11 PDF BibTeX XML Cite \textit{M. F. Gorodnij}, Neliniĭni Kolyvannya 6, No. 1, 34--41 (2003; Zbl 1075.39004) OpenURL
Tsalyuk, Z. B.; Tsalyuk, M. V. Asymptotics of the resolvent of the Volterra equation with a nonintegrable difference kernel. (English. Russian original) Zbl 1070.45011 Differ. Equ. 39, No. 6, 892-895 (2003); translation from Differ. Uravn. 39, No. 6, 844-847 (2003). MSC: 45M05 45D05 45F15 PDF BibTeX XML Cite \textit{Z. B. Tsalyuk} and \textit{M. V. Tsalyuk}, Differ. Equ. 39, No. 6, 892--895 (2003; Zbl 1070.45011); translation from Differ. Uravn. 39, No. 6, 844--847 (2003) Full Text: DOI OpenURL
Galescu, Gabriela; Talpalaru, Pavel On \(\ell_p\)-stability in variation of difference equations of Volterra type. (English) Zbl 1063.39005 An. Științ. Univ. Al. I. Cuza Iași, Ser. Nouă, Mat. 49, No. 1, 77-94 (2003). MSC: 39A11 PDF BibTeX XML Cite \textit{G. Galescu} and \textit{P. Talpalaru}, An. Științ. Univ. Al. I. Cuza Iași, Ser. Nouă, Mat. 49, No. 1, 77--94 (2003; Zbl 1063.39005) OpenURL
Islam, Muhammad N.; Raffoul, Youssef N. Exponential stability in nonlinear difference equations. (English) Zbl 1055.39011 J. Difference Equ. Appl. 9, No. 9, 819-825 (2003). Reviewer: Wan-Tong Li (Lanzhou) MSC: 39A11 PDF BibTeX XML Cite \textit{M. N. Islam} and \textit{Y. N. Raffoul}, J. Difference Equ. Appl. 9, No. 9, 819--825 (2003; Zbl 1055.39011) Full Text: DOI OpenURL
Eloe, P. W.; Islam, M. N.; Raffoul, Y. N. Uniform asymptotic stability in nonlinear Volterra discrete systems. (English) Zbl 1051.39003 Comput. Math. Appl. 45, No. 6-9, 1033-1039 (2003). Reviewer: Nguyen Van Minh (Carrollton) MSC: 39A11 39A12 PDF BibTeX XML Cite \textit{P. W. Eloe} et al., Comput. Math. Appl. 45, No. 6--9, 1033--1039 (2003; Zbl 1051.39003) Full Text: DOI OpenURL
Pao, C. V. Global attractor of a coupled finite difference reaction diffusion system with delays. (English) Zbl 1048.35010 J. Math. Anal. Appl. 288, No. 1, 251-273 (2003). Reviewer: A. Cichocka (Katowice) MSC: 35B41 35K57 39A11 PDF BibTeX XML Cite \textit{C. V. Pao}, J. Math. Anal. Appl. 288, No. 1, 251--273 (2003; Zbl 1048.35010) Full Text: DOI OpenURL
Mickens, Ronald E. A nonstandard finite-difference scheme for the Lotka–Volterra system. (English) Zbl 1025.65047 Appl. Numer. Math. 45, No. 2-3, 309-314 (2003). MSC: 65L12 34A34 65L05 92D25 PDF BibTeX XML Cite \textit{R. E. Mickens}, Appl. Numer. Math. 45, No. 2--3, 309--314 (2003; Zbl 1025.65047) Full Text: DOI OpenURL
Chen, Yuming; Zhou, Zhan Stable periodic solution of a discrete periodic Lotka-Volterra competition system. (English) Zbl 1019.39004 J. Math. Anal. Appl. 277, No. 1, 358-366 (2003). Reviewer: Dobiesław Bobrowski (Poznań) MSC: 39A11 PDF BibTeX XML Cite \textit{Y. Chen} and \textit{Z. Zhou}, J. Math. Anal. Appl. 277, No. 1, 358--366 (2003; Zbl 1019.39004) Full Text: DOI OpenURL
Gorodnij, M. F. Bounded solutions of nonlinear Volterra system. (Ukrainian) Zbl 1098.39501 Nelinijni Kolyvannya 5, No. 2, 149-155 (2002). Reviewer: V. M. Musaev (Baku) MSC: 39A10 PDF BibTeX XML Cite \textit{M. F. Gorodnij}, Neliniĭni Kolyvannya 5, No. 2, 149--155 (2002; Zbl 1098.39501) OpenURL
Gai, Mingjiu; Shi, Bao; Yang, Shujie The existence of positive periodic solution for a Lotka-Volterra difference system. (English) Zbl 1016.39003 Ann. Differ. Equations 18, No. 4, 323-329 (2002). Reviewer: Nguyen Van Minh (Hanoi) MSC: 39A11 92D25 PDF BibTeX XML Cite \textit{M. Gai} et al., Ann. Differ. Equations 18, No. 4, 323--329 (2002; Zbl 1016.39003) OpenURL
Fan, Meng; Agarwal, Sheba Periodic solutions of nonautonomous discrete predator-prey system of Lotka-Volterra type. (English) Zbl 1022.39015 Appl. Anal. 81, No. 4, 801-812 (2002). Reviewer: Lothar Berg (Rostock) MSC: 39A11 92D25 PDF BibTeX XML Cite \textit{M. Fan} and \textit{S. Agarwal}, Appl. Anal. 81, No. 4, 801--812 (2002; Zbl 1022.39015) Full Text: DOI OpenURL
Cuevas, Claudio; Vidal, Claudio Discrete dichotomies and asymptotic behavior for abstract retarded functional difference equations in phase space. (English) Zbl 1019.39008 J. Difference Equ. Appl. 8, No. 7, 603-640 (2002). Reviewer: Victor I.Tkachenko (Kyïv) MSC: 39A11 39A12 34D09 PDF BibTeX XML Cite \textit{C. Cuevas} and \textit{C. Vidal}, J. Difference Equ. Appl. 8, No. 7, 603--640 (2002; Zbl 1019.39008) Full Text: DOI OpenURL
Khandaker, Touhid M.; Raffoul, Youssef N. Stability properties of linear Volterra discrete systems with nonlinear perturbation. (English) Zbl 1023.34045 J. Difference Equ. Appl. 8, No. 10, 857-874 (2002). Reviewer: Peter Y.H.Pang (Singapore) MSC: 34D20 39A11 39A10 39A12 40A05 PDF BibTeX XML Cite \textit{T. M. Khandaker} and \textit{Y. N. Raffoul}, J. Difference Equ. Appl. 8, No. 10, 857--874 (2002; Zbl 1023.34045) Full Text: DOI OpenURL
Choi, Sung Kyu; Koo, Nam Jip; Goo, Yoon Hoe Asymptotic property of nonlinear Volterra difference systems. (English) Zbl 1032.39001 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 51, No. 2, 321-337 (2002). Reviewer: Nicolae Cotfas (Bucureşti) MSC: 39A11 PDF BibTeX XML Cite \textit{S. K. Choi} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 51, No. 2, 321--337 (2002; Zbl 1032.39001) Full Text: DOI OpenURL
Saito, Yasuhisa; Hara, Tadayuki; Ma, Wanbiao Harmless delays for permanence and impersistence of a Lotka-Volterra discrete predator-prey system. (English) Zbl 1005.39013 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 50, No. 5, 703-715 (2002). Reviewer: Dobiesław Bobrowski (Poznań) MSC: 39A11 92D25 39B05 PDF BibTeX XML Cite \textit{Y. Saito} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 50, No. 5, 703--715 (2002; Zbl 1005.39013) Full Text: DOI OpenURL
Choi, Sung Kyu; Koo, Nam Jip; Goo, Yoon Hoe \(h\)-stability of perturbed Volterra difference systems. (English) Zbl 1001.39005 Bull. Korean Math. Soc. 39, No. 1, 53-62 (2002). Reviewer: Dobiesław Bobrowski (Poznań) MSC: 39A10 39A11 PDF BibTeX XML Cite \textit{S. K. Choi} et al., Bull. Korean Math. Soc. 39, No. 1, 53--62 (2002; Zbl 1001.39005) Full Text: DOI OpenURL
Cuevas, C.; Pinto, M. Asymptotic properties of solutions to nonautonomous Volterra difference systems with infinite delay. (English) Zbl 1002.39007 Comput. Math. Appl. 42, No. 3-5, 671-685 (2001). Reviewer: Wang-Tong Li (Lanzhou) MSC: 39A11 PDF BibTeX XML Cite \textit{C. Cuevas} and \textit{M. Pinto}, Comput. Math. Appl. 42, No. 3--5, 671--685 (2001; Zbl 1002.39007) Full Text: DOI OpenURL
Islam, M. N.; Raffoul, Y. N. Uniform asymptotic stability in linear Volterra difference equations. (English) Zbl 0997.39002 Panam. Math. J. 11, No. 1, 61-73 (2001). MSC: 39A11 PDF BibTeX XML Cite \textit{M. N. Islam} and \textit{Y. N. Raffoul}, Panam. Math. J. 11, No. 1, 61--73 (2001; Zbl 0997.39002) OpenURL
Choi, Sung Kyu; Koo, Nam Jip Stability in variation for nonlinear Volterra difference systems. (English) Zbl 0979.39005 Bull. Korean Math. Soc. 38, No. 1, 101-111 (2001). Reviewer: I.P.Stavroulakis (Ioannina) MSC: 39A11 39A10 PDF BibTeX XML Cite \textit{S. K. Choi} and \textit{N. J. Koo}, Bull. Korean Math. Soc. 38, No. 1, 101--111 (2001; Zbl 0979.39005) OpenURL
Garey, L. E.; Shaw, R. E. Solving banded and near symmetric systems. (English) Zbl 1026.65018 Appl. Math. Comput. 115, No. 2-3, 133-143 (2000). MSC: 65F05 65F50 65R20 45J05 45G10 PDF BibTeX XML Cite \textit{L. E. Garey} and \textit{R. E. Shaw}, Appl. Math. Comput. 115, No. 2--3, 133--143 (2000; Zbl 1026.65018) Full Text: DOI OpenURL
Kolmanovskij, V. B.; Kosareva, N. P.; Shajkhet, L. E. A method for constructing Lyapunov functionals. (English. Russian original) Zbl 0983.93062 Differ. Equations 35, No. 11, 1573-1586 (1999); translation from Differ. Uravn. 35, No. 11, 1553-1565 (1999). Reviewer: Denis Khusainov (Kyïv) MSC: 93D30 39A11 93D20 PDF BibTeX XML Cite \textit{V. B. Kolmanovskij} et al., Differ. Equations 35, No. 11, 1573--1586 (1999; Zbl 0983.93062); translation from Differ. Uravn. 35, No. 11, 1553--1565 (1999) OpenURL
Veselov, A. P.; Penskoi, A. V. Algebraic-geometric Poisson brackets for difference operators and Volterra systems. (English. Russian original) Zbl 0995.37055 Dokl. Math. 59, No. 3, 391-394 (1999); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 366, No. 3, 299-303 (1999). MSC: 37K10 37J35 37K20 PDF BibTeX XML Cite \textit{A. P. Veselov} and \textit{A. V. Penskoi}, Dokl. Math. 59, No. 3, 299--303 (1999; Zbl 0995.37055); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 366, No. 3, 299--303 (1999) OpenURL
Elaydi, Saber; Murakami, Satoru; Kamiyama, Etsuyo Asymptotic equivalence for difference equations with infinite delay. (English) Zbl 0923.39004 J. Difference Equ. Appl. 5, No. 1, 1-23 (1999). Reviewer: R.P.Agarwal (Lucknow) MSC: 39A11 PDF BibTeX XML Cite \textit{S. Elaydi} et al., J. Difference Equ. Appl. 5, No. 1, 1--23 (1999; Zbl 0923.39004) Full Text: DOI OpenURL
Allen, Linda J. S.; Allen, Edward J.; Atkinson, David N. Integrodifference equations applied to plant dispersal, competition, and control. (English) Zbl 0915.45004 Ruan, Shigui (ed.) et al., Differential equations with applications to biology. Proceedings of the international conference, Halifax, Canada, July 25–29, 1997. Providence, RI: American Mathematical Society. Fields Inst. Commun. 21, 15-30 (1999). MSC: 45G15 92D25 65R20 PDF BibTeX XML Cite \textit{L. J. S. Allen} et al., Fields Inst. Commun. 21, 15--30 (1999; Zbl 0915.45004) OpenURL
Shaikhet, Leonid E. Stability of systems of stochastic linear difference equations with varying delays. (English) Zbl 0938.93059 Theory Stoch. Process. 4(20), No. 1-2, 258-273 (1998). Reviewer: Yu.V.Kozachenko (Kyïv) MSC: 93E15 93D15 93C55 PDF BibTeX XML Cite \textit{L. E. Shaikhet}, Theory Stoch. Process. 4(20), No. 1--2, 258--273 (1998; Zbl 0938.93059) OpenURL
Popov, A. M. Helmholtz potentiality conditions for systems of difference-differential equations. (English. Russian original) Zbl 0929.35167 Math. Notes 64, No. 3, 377-381 (1998); translation from Mat. Zametki 64, No. 3, 437-442 (1998). Reviewer: Drumi Bainov (Sofia) MSC: 35R10 PDF BibTeX XML Cite \textit{A. M. Popov}, Math. Notes 64, No. 3, 377--381 (1998; Zbl 0929.35167); translation from Mat. Zametki 64, No. 3, 437--442 (1998) Full Text: DOI OpenURL
Olesiak, Zbigniew S.; Pyryev, Yuriǐ A. A model of thermoelastic dynamic contact in conditions of frictional heat and wear. (English) Zbl 0919.73304 Mech. Teor. Stosow. 36, No. 2, 305-320 (1998). MSC: 74A55 74M15 74S20 80A20 PDF BibTeX XML Cite \textit{Z. S. Olesiak} and \textit{Y. A. Pyryev}, Mech. Teor. Stosow. 36, No. 2, 305--320 (1998; Zbl 0919.73304) OpenURL
Kupershmidt, B. A. Infinitely-precise space-time discretizations of the equation \(u_ t+uu_ x=0\). (English) Zbl 0861.65075 Fokas, A. S. (ed.) et al., Algebraic aspects of integrable systems: in memory of Irene Dorfman. Boston, MA: Birkhäuser. Prog. Nonlinear Differ. Equ. Appl. 26, 205-216 (1997). Reviewer: S.Jiang (Bonn) MSC: 65M06 35Q53 35L60 PDF BibTeX XML Cite \textit{B. A. Kupershmidt}, Prog. Nonlinear Differ. Equ. Appl. 26, 205--216 (1997; Zbl 0861.65075) OpenURL