Bouach, Abderrahim; Haddad, Tahar; Thibault, Lionel On the discretization of truncated integro-differential sweeping process and optimal control. (English) Zbl 07528369 J. Optim. Theory Appl. 193, No. 1-3, 785-830 (2022). MSC: 49J40 47J20 47J22 58E35 74M15 74M10 74G25 PDF BibTeX XML Cite \textit{A. Bouach} et al., J. Optim. Theory Appl. 193, No. 1--3, 785--830 (2022; Zbl 07528369) Full Text: DOI OpenURL
Mohamed, Amany Saad Shifted Jacobi collocation method for Volterra-Fredholm integral equation. (English) Zbl 07527952 Comput. Methods Differ. Equ. 10, No. 2, 408-418 (2022). MSC: 65R20 65M70 33C45 41A25 PDF BibTeX XML Cite \textit{A. S. Mohamed}, Comput. Methods Differ. Equ. 10, No. 2, 408--418 (2022; Zbl 07527952) Full Text: DOI OpenURL
Seny, Ouedraogo; Loufouilou, Justin Mouyedo; Joseph, Bonazebi Yindoula; Pare, Youssouf Solving nonlinear fractional Volterra integral equations of second kind by the Adomian method. (English) Zbl 07527455 Adv. Appl. Discrete Math. 29, No. 1, 97-110 (2022). MSC: 97I50 44Axx 40C10 45D05 PDF BibTeX XML Cite \textit{O. Seny} et al., Adv. Appl. Discrete Math. 29, No. 1, 97--110 (2022; Zbl 07527455) Full Text: DOI OpenURL
Karczewska, Anna; Szczeciński, Maciej Martingale solution of stochastic hybrid Korteweg-de Vries-Burgers equation. (English) Zbl 07527265 Mem. Differ. Equ. Math. Phys. 85, 103-118 (2022). MSC: 93B05 93C25 45D05 47H08 47H10 PDF BibTeX XML Cite \textit{A. Karczewska} and \textit{M. Szczeciński}, Mem. Differ. Equ. Math. Phys. 85, 103--118 (2022; Zbl 07527265) Full Text: Link OpenURL
Tynda, Aleksandr Nikolaevich; Noĭyagdam, Samad; Sidorov, Denis Nikolaevich Polynomial spline collocation method for solving weakly regular Volterra integral equations of the first kind. (English) Zbl 07524585 Izv. Irkutsk. Gos. Univ., Ser. Mat. 39, 62-79 (2022). MSC: 65R20 45D05 45H05 65D07 PDF BibTeX XML Cite \textit{A. N. Tynda} et al., Izv. Irkutsk. Gos. Univ., Ser. Mat. 39, 62--79 (2022; Zbl 07524585) Full Text: DOI Link OpenURL
Dang, Trong Duc; Bui, Duy Thanh; Luu, Thang Xuan A non-homogeneous Cauchy problem for an elliptic equation with non-constant coefficient. (English) Zbl 07518235 Appl. Anal. 101, No. 6, 2342-2371 (2022). MSC: 35J61 45D05 65J20 65R30 PDF BibTeX XML Cite \textit{T. D. Dang} et al., Appl. Anal. 101, No. 6, 2342--2371 (2022; Zbl 07518235) Full Text: DOI OpenURL
Ramazanov, A.-R. K.; Ramazanov, A. K.; Magomedova, V. G. On the dynamic solution of the Volterra integral equation in the form of rational spline functions. (English. Russian original) Zbl 07518147 Math. Notes 111, No. 4, 595-603 (2022); translation from Mat. Zametki 111, No. 4, 581-591 (2022). MSC: 65Dxx 65Lxx 65Rxx PDF BibTeX XML Cite \textit{A. R. K. Ramazanov} et al., Math. Notes 111, No. 4, 595--603 (2022; Zbl 07518147); translation from Mat. Zametki 111, No. 4, 581--591 (2022) Full Text: DOI OpenURL
Wu, Qinghua; Hou, Weiwen Efficient BBFM-collocation for weakly singular oscillatory Volterra integral equations of the second kind. (English) Zbl 07513123 Int. J. Comput. Math. 99, No. 5, 1022-1040 (2022). MSC: 65D32 65D30 PDF BibTeX XML Cite \textit{Q. Wu} and \textit{W. Hou}, Int. J. Comput. Math. 99, No. 5, 1022--1040 (2022; Zbl 07513123) Full Text: DOI OpenURL
Li, Zonghao; Zeng, Caibin Center manifolds for ill-posed stochastic evolution equations. (English) Zbl 07506978 Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2483-2499 (2022). MSC: 37H05 37L10 47D62 45D05 47D06 PDF BibTeX XML Cite \textit{Z. Li} and \textit{C. Zeng}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 5, 2483--2499 (2022; Zbl 07506978) Full Text: DOI OpenURL
Aissaoui, M. Z.; Bounaya, M. C.; Guebbai, H. Analysis of a nonlinear Volterra-Fredholm integro-differential equation. (English) Zbl 07506080 Quaest. Math. 45, No. 2, 307-325 (2022). MSC: 47G20 34K05 47H10 PDF BibTeX XML Cite \textit{M. Z. Aissaoui} et al., Quaest. Math. 45, No. 2, 307--325 (2022; Zbl 07506080) Full Text: DOI OpenURL
Liu, Ling; Ma, Junjie Collocation boundary value methods for auto-convolution Volterra integral equations. (English) Zbl 07505508 Appl. Numer. Math. 177, 1-17 (2022). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{L. Liu} and \textit{J. Ma}, Appl. Numer. Math. 177, 1--17 (2022; Zbl 07505508) Full Text: DOI OpenURL
Pham Huu Anh Ngoc; Le Trung Hieu On uniform asymptotic stability of nonlinear Volterra integro-differential equations. (English) Zbl 07505165 Int. J. Control 95, No. 3, 729-735 (2022). MSC: 93D20 93C15 45J05 PDF BibTeX XML Cite \textit{Pham Huu Anh Ngoc} and \textit{Le Trung Hieu}, Int. J. Control 95, No. 3, 729--735 (2022; Zbl 07505165) Full Text: DOI OpenURL
Taiwo, O. A.; Etuk, M. O.; Nwaeze, E.; Ogunniran, M. O. Enhanced moving least square method for the solution of Volterra integro-differential equation: an interpolating polynomial. (English) Zbl 1483.65233 J. Egypt. Math. Soc. 30, Paper No. 3, 20 p. (2022). MSC: 65R20 45D05 45J05 65D05 PDF BibTeX XML Cite \textit{O. A. Taiwo} et al., J. Egypt. Math. Soc. 30, Paper No. 3, 20 p. (2022; Zbl 1483.65233) Full Text: DOI OpenURL
Cakir, Musa; Gunes, Baransel Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations. (English) Zbl 07501799 Georgian Math. J. 29, No. 2, 193-203 (2022). MSC: 65L05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{M. Cakir} and \textit{B. Gunes}, Georgian Math. J. 29, No. 2, 193--203 (2022; Zbl 07501799) Full Text: DOI OpenURL
Kesseböhmer, Marc; Niemann, Aljoscha Spectral dimensions of Kreĭn-Feller operators and \(L^q\)-spectra. (English) Zbl 07496418 Adv. Math. 399, Article ID 108253, 53 p. (2022). MSC: 47-XX 35P20 35J05 28A80 42B35 45D05 PDF BibTeX XML Cite \textit{M. Kesseböhmer} and \textit{A. Niemann}, Adv. Math. 399, Article ID 108253, 53 p. (2022; Zbl 07496418) Full Text: DOI OpenURL
Alimov, Sh. A.; Komilov, N. M. Determining the thermal mode setting parameters based on output data. (English. Russian original) Zbl 07495297 Differ. Equ. 58, No. 1, 21-35 (2022); translation from Differ. Uravn. 58, No. 1, 23-36 (2022). MSC: 80A19 35K05 45D05 65N25 93B15 PDF BibTeX XML Cite \textit{Sh. A. Alimov} and \textit{N. M. Komilov}, Differ. Equ. 58, No. 1, 21--35 (2022; Zbl 07495297); translation from Differ. Uravn. 58, No. 1, 23--36 (2022) Full Text: DOI OpenURL
Bulatov, M. V.; Markova, E. V. Collocation-variational approaches to the solution to Volterra integral equations of the first kind. (English. Russian original) Zbl 07491038 Comput. Math. Math. Phys. 62, No. 1, 98-105 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 1, 105-112 (2022). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{M. V. Bulatov} and \textit{E. V. Markova}, Comput. Math. Math. Phys. 62, No. 1, 98--105 (2022; Zbl 07491038); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 1, 105--112 (2022) Full Text: DOI OpenURL
Sumin, V. I.; Sumin, M. I. Regularization of the classical optimality conditions in optimal control problems for linear distributed systems of Volterra type. (English. Russian original) Zbl 07491035 Comput. Math. Math. Phys. 62, No. 1, 42-65 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 1, 45-70 (2022). MSC: 49J21 49K21 39B05 39B42 PDF BibTeX XML Cite \textit{V. I. Sumin} and \textit{M. I. Sumin}, Comput. Math. Math. Phys. 62, No. 1, 42--65 (2022; Zbl 07491035); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 1, 45--70 (2022) Full Text: DOI OpenURL
Borah, Jayanta; Bora, Swaroop Nandan Existence of mild solution for mixed Volterra-Fredholm integro fractional differential equation with non-instantaneous impulses. (English) Zbl 07491027 Differ. Equ. Dyn. Syst. 30, No. 1, 185-196 (2022). Reviewer: Ahmed M. A. El-Sayed (Alexandria) MSC: 45D05 45B05 26A33 47N20 47H10 PDF BibTeX XML Cite \textit{J. Borah} and \textit{S. N. Bora}, Differ. Equ. Dyn. Syst. 30, No. 1, 185--196 (2022; Zbl 07491027) Full Text: DOI OpenURL
Belhireche, Hanane; Guebbai, Hamza On the mixed nonlinear integro-differential equations with weakly singular kernel. (English) Zbl 07490204 Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022). MSC: 45D05 45B05 65R20 PDF BibTeX XML Cite \textit{H. Belhireche} and \textit{H. Guebbai}, Comput. Appl. Math. 41, No. 1, Paper No. 36, 17 p. (2022; Zbl 07490204) Full Text: DOI OpenURL
Abed, Ayoob M.; Younis, Muhammed F.; Hamoud, Ahmed A. Numerical solutions of nonlinear Volterra-Fredholm integro-differential equations by using MADM and VIM. (English) Zbl 07487983 Nonlinear Funct. Anal. Appl. 27, No. 1, 189-201 (2022). MSC: 49M27 65K10 45J05 65R20 PDF BibTeX XML Cite \textit{A. M. Abed} et al., Nonlinear Funct. Anal. Appl. 27, No. 1, 189--201 (2022; Zbl 07487983) Full Text: Link OpenURL
Raslan, K. R.; Ali, Khalid K.; Ahmed, Reda Gamal; Al-Jeaid, Hind K.; Abd-Elall Ibrahim, Amira Study of nonlocal boundary value problem for the Fredholm-Volterra integro-differential equation. (English) Zbl 07487575 J. Funct. Spaces 2022, Article ID 4773005, 16 p. (2022). MSC: 45D05 45B05 45L05 65R20 PDF BibTeX XML Cite \textit{K. R. Raslan} et al., J. Funct. Spaces 2022, Article ID 4773005, 16 p. (2022; Zbl 07487575) Full Text: DOI OpenURL
Vabishchevich, P. N. Numerical solution of the Cauchy problem for Volterra integrodifferential equations with difference kernels. (English) Zbl 07483309 Appl. Numer. Math. 174, 177-190 (2022). MSC: 65R20 45D05 45K05 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, Appl. Numer. Math. 174, 177--190 (2022; Zbl 07483309) Full Text: DOI arXiv OpenURL
Ramazanov, Murat; Jenaliyev, Muvasharkhan; Gulmanov, Nurtay Solution of the boundary value problem of heat conduction in a cone. (English) Zbl 07478502 Opusc. Math. 42, No. 1, 75-91 (2022). MSC: 35K20 45D05 PDF BibTeX XML Cite \textit{M. Ramazanov} et al., Opusc. Math. 42, No. 1, 75--91 (2022; Zbl 07478502) Full Text: DOI OpenURL
Webb, J. R. L. Compactness of nonlinear integral operators with discontinuous and with singular kernels. (English) Zbl 07473008 J. Math. Anal. Appl. 509, No. 2, Article ID 126000, 17 p. (2022). MSC: 47-XX PDF BibTeX XML Cite \textit{J. R. L. Webb}, J. Math. Anal. Appl. 509, No. 2, Article ID 126000, 17 p. (2022; Zbl 07473008) Full Text: DOI OpenURL
Behera, S.; Saha Ray, S. An efficient numerical method based on Euler wavelets for solving fractional order pantograph Volterra delay-integro-differential equations. (English) Zbl 07472412 J. Comput. Appl. Math. 406, Article ID 113825, 23 p. (2022). MSC: 65T60 65R20 26A33 PDF BibTeX XML Cite \textit{S. Behera} and \textit{S. Saha Ray}, J. Comput. Appl. Math. 406, Article ID 113825, 23 p. (2022; Zbl 07472412) Full Text: DOI OpenURL
Guo, Li; Gustavson, Richard; Li, Yunnan An algebraic study of Volterra integral equations and their operator linearity. (English) Zbl 07459411 J. Algebra 595, 398-433 (2022). Reviewer: Loïc Foissy (Calais) MSC: 16W99 12H05 45N05 17B38 45D05 45P05 16S10 05C05 PDF BibTeX XML Cite \textit{L. Guo} et al., J. Algebra 595, 398--433 (2022; Zbl 07459411) Full Text: DOI arXiv OpenURL
Sumit; Kumar, Sunil; Vigo-Aguiar, Jesus Analysis of a nonlinear singularly perturbed Volterra integro-differential equation. (English) Zbl 1481.65271 J. Comput. Appl. Math. 404, Article ID 113410, 13 p. (2022). MSC: 65R20 45J05 45D05 65L11 65L50 PDF BibTeX XML Cite \textit{Sumit} et al., J. Comput. Appl. Math. 404, Article ID 113410, 13 p. (2022; Zbl 1481.65271) Full Text: DOI OpenURL
Das, Pratibhamoy; Rana, Subrata; Ramos, Higinio On the approximate solutions of a class of fractional order nonlinear Volterra integro-differential initial value problems and boundary value problems of first kind and their convergence analysis. (English) Zbl 1481.65265 J. Comput. Appl. Math. 404, Article ID 113116, 15 p. (2022). MSC: 65R20 45J05 45D05 26A33 PDF BibTeX XML Cite \textit{P. Das} et al., J. Comput. Appl. Math. 404, Article ID 113116, 15 p. (2022; Zbl 1481.65265) Full Text: DOI OpenURL
Usta, Fuat; Akyiğit, Mahmut; Say, Fatih; Ansari, Khursheed J. Bernstein operator method for approximate solution of singularly perturbed Volterra integral equations. (English) Zbl 07442671 J. Math. Anal. Appl. 507, No. 2, Article ID 125828, 14 p. (2022). MSC: 41Axx 45Dxx 65Rxx PDF BibTeX XML Cite \textit{F. Usta} et al., J. Math. Anal. Appl. 507, No. 2, Article ID 125828, 14 p. (2022; Zbl 07442671) Full Text: DOI OpenURL
Zeinali, Masoumeh; Bahrami, Fariba; Shahmorad, Sedaghat Recursive higher order fuzzy transform method for numerical solution of Volterra integral equation with singular and nonsingular kernels. (English) Zbl 1481.65272 J. Comput. Appl. Math. 403, Article ID 113854, 18 p. (2022). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{M. Zeinali} et al., J. Comput. Appl. Math. 403, Article ID 113854, 18 p. (2022; Zbl 1481.65272) Full Text: DOI OpenURL
Lan, Kunquan Linear first order Riemann-Liouville fractional differential and perturbed Abel’s integral equations. (English) Zbl 07429251 J. Differ. Equations 306, 28-59 (2022). Reviewer: Neville Ford (Chester) MSC: 34A08 26A33 34A12 45D05 PDF BibTeX XML Cite \textit{K. Lan}, J. Differ. Equations 306, 28--59 (2022; Zbl 07429251) Full Text: DOI OpenURL
Chen, Hao; Ma, Junjie Solving the third-kind Volterra integral equation via the boundary value technique: Lagrange polynomial versus fractional interpolation. (English) Zbl 07428137 Appl. Math. Comput. 414, Article ID 126685, 12 p. (2022). MSC: 65Rxx 45Dxx 65Lxx PDF BibTeX XML Cite \textit{H. Chen} and \textit{J. Ma}, Appl. Math. Comput. 414, Article ID 126685, 12 p. (2022; Zbl 07428137) Full Text: DOI OpenURL
Deng, Ting; Huang, Jin; Wen, Xiaoxia; Liu, Hongyan Discrete collocation method for solving two-dimensional linear and nonlinear fuzzy Volterra integral equations. (English) Zbl 1482.65234 Appl. Numer. Math. 171, 389-407 (2022). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{T. Deng} et al., Appl. Numer. Math. 171, 389--407 (2022; Zbl 1482.65234) Full Text: DOI OpenURL
Mittal, Avinash Kumar Error analysis and approximation of Jacobi pseudospectral method for the integer and fractional order integro-differential equation. (English) Zbl 1482.65241 Appl. Numer. Math. 171, 249-268 (2022). MSC: 65R20 65M70 34K37 45D05 45K05 65M12 65M15 PDF BibTeX XML Cite \textit{A. K. Mittal}, Appl. Numer. Math. 171, 249--268 (2022; Zbl 1482.65241) Full Text: DOI OpenURL
Kumar, Vivek; Mohan, Manil T.; Kumar Giri, Ankik On a generalized stochastic Burgers’ equation perturbed by Volterra noise. (English) Zbl 1481.60119 J. Math. Anal. Appl. 506, No. 1, Article ID 125638, 26 p. (2022). MSC: 60H15 35R60 47H10 PDF BibTeX XML Cite \textit{V. Kumar} et al., J. Math. Anal. Appl. 506, No. 1, Article ID 125638, 26 p. (2022; Zbl 1481.60119) Full Text: DOI OpenURL
Santra, S.; Mohapatra, J. A novel finite difference technique with error estimate for time fractional partial integro-differential equation of Volterra type. (English) Zbl 07396405 J. Comput. Appl. Math. 400, Article ID 113746, 13 p. (2022). MSC: 65-XX 35R09 45K05 45D05 26A33 PDF BibTeX XML Cite \textit{S. Santra} and \textit{J. Mohapatra}, J. Comput. Appl. Math. 400, Article ID 113746, 13 p. (2022; Zbl 07396405) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Sharif, Abdulrahman A.; Ghadle, Kirtiwant P. Existence and stability of solutions for a nonlinear fractional Volterra-Fredholm integro-differential equation in Banach spaces. (English) Zbl 07527971 J. Mahani Math. Res. Cent. 10, No. 1, 79-93 (2021). MSC: 58C30 45J05 26A33 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., J. Mahani Math. Res. Cent. 10, No. 1, 79--93 (2021; Zbl 07527971) Full Text: DOI OpenURL
Panda, Abhilipsa; Mohapatra, Jugal; Reddy, Narahari Raji A comparative study on the numerical solution for singularly perturbed Volterra integro-differential equations. (English) Zbl 07522919 Comput. Math. Model. 32, No. 3, 364-375 (2021). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{A. Panda} et al., Comput. Math. Model. 32, No. 3, 364--375 (2021; Zbl 07522919) Full Text: DOI OpenURL
El-Paoumy, Mahdy Shibl; Alqawba, Mohammed; Radwan, Taha A transient analysis to the \(M(\tau)/M (\tau)/k\) queue with time-dependent parameters. (English) Zbl 07517505 Open Math. 19, 1476-1485 (2021). MSC: 60K20 60K25 60K30 68M20 90B22 PDF BibTeX XML Cite \textit{M. S. El-Paoumy} et al., Open Math. 19, 1476--1485 (2021; Zbl 07517505) Full Text: DOI OpenURL
Suechoei, Apassara; Sa Ngiamsunthorn, Parinya Extremal solutions of \(\varphi\)-Caputo fractional evolution equations involving integral kernels. (English) Zbl 07515995 AIMS Math. 6, No. 5, 4734-4757 (2021). MSC: 34K30 34K37 35R11 45J05 PDF BibTeX XML Cite \textit{A. Suechoei} and \textit{P. Sa Ngiamsunthorn}, AIMS Math. 6, No. 5, 4734--4757 (2021; Zbl 07515995) Full Text: DOI OpenURL
Gholidahneh, Abdolsattar; Sedghi, Shaban; Ege, Ozgur; Mitrovic, Zoran D.; de la Sen, Manuel The Meir-Keeler type contractions in extended modular \(b\)-metric spaces with an application. (English) Zbl 07514477 AIMS Math. 6, No. 2, 1781-1799 (2021). MSC: 47H10 45D05 47H09 47S40 54H25 PDF BibTeX XML Cite \textit{A. Gholidahneh} et al., AIMS Math. 6, No. 2, 1781--1799 (2021; Zbl 07514477) Full Text: DOI OpenURL
Mosa, Gamal A.; Abdou, Mohamed A.; Rahby, Ahmed S. Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag. (English) Zbl 07513706 AIMS Math. 6, No. 8, 8525-8543 (2021); correction ibid. 7, No. 1, 258-259 (2022). MSC: 65R20 45G10 46B07 PDF BibTeX XML Cite \textit{G. A. Mosa} et al., AIMS Math. 6, No. 8, 8525--8543 (2021; Zbl 07513706) Full Text: DOI OpenURL
Hamoud, Ahmed A. Uniqueness and stability results for Caputo fractional Volterra-Fredholm integro-differential equations. (English) Zbl 07510954 J. Sib. Fed. Univ., Math. Phys. 14, No. 3, 313-325 (2021). MSC: 26Axx 34Axx 45Jxx PDF BibTeX XML Cite \textit{A. A. Hamoud}, J. Sib. Fed. Univ., Math. Phys. 14, No. 3, 313--325 (2021; Zbl 07510954) Full Text: DOI MNR OpenURL
Zarifzoda, S. K.; Yuldashev, T. K.; Djumakhon, I. Volterra-type integro-differential equations with two-point singular differential operator. (English) Zbl 07503359 Lobachevskii J. Math. 42, No. 15, 3784-3792 (2021). Reviewer: Sergiu Aizicovici (Verona) MSC: 45D05 45J05 PDF BibTeX XML Cite \textit{S. K. Zarifzoda} et al., Lobachevskii J. Math. 42, No. 15, 3784--3792 (2021; Zbl 07503359) Full Text: DOI OpenURL
Iskandarov, Samandar Estimate and asymptotic smallness of solutions of a weakly nonlinear implicit Volterra integro-differential equation of the first order on the semiaxis. (English) Zbl 07503346 Lobachevskii J. Math. 42, No. 15, 3645-3651 (2021). MSC: 45D05 45M05 PDF BibTeX XML Cite \textit{S. Iskandarov}, Lobachevskii J. Math. 42, No. 15, 3645--3651 (2021; Zbl 07503346) Full Text: DOI OpenURL
Islomov, Bozor Islomovich; Kholbekov, Zhurat Abdinabievich On a nonlocal boundary-value problem for a loaded parabolic-hyperbolic equation with three lines of degeneracy. (Russian. English summary) Zbl 07499951 Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 25, No. 3, 407-422 (2021). MSC: 35M10 PDF BibTeX XML Cite \textit{B. I. Islomov} and \textit{Z. A. Kholbekov}, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki 25, No. 3, 407--422 (2021; Zbl 07499951) Full Text: DOI MNR OpenURL
Shahsavaran, A. Application of Newton-Cotes quadrature rule for nonlinear Hammerstein integral equations. (English) Zbl 07498488 Iran. J. Numer. Anal. Optim. 11, No. 2, 385-399 (2021). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{A. Shahsavaran}, Iran. J. Numer. Anal. Optim. 11, No. 2, 385--399 (2021; Zbl 07498488) Full Text: DOI OpenURL
Mohamed, A. S. Spectral solutions with error analysis of Volterra-Fredholm integral equation via generalized Lucas collocation method. (English) Zbl 07489957 Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 178, 11 p. (2021). MSC: 34K40 65N35 11B39 PDF BibTeX XML Cite \textit{A. S. Mohamed}, Int. J. Appl. Comput. Math. 7, No. 5, Paper No. 178, 11 p. (2021; Zbl 07489957) Full Text: DOI OpenURL
Erfanian, Majid; Zeidabadi, Hamed Solving of nonlinear Volterra integro-differential equations in the complex plane with periodic quasi-wavelets. (English) Zbl 07489844 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 221, 13 p. (2021). MSC: 65L60 44A45 45B05 65R20 PDF BibTeX XML Cite \textit{M. Erfanian} and \textit{H. Zeidabadi}, Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 221, 13 p. (2021; Zbl 07489844) Full Text: DOI OpenURL
Vu, Ho; Dong, Le Si Existence and uniqueness of solution for two-dimensional fuzzy Volterra-Fredholm integral equation. (English) Zbl 07489163 Thai J. Math. 19, No. 4, 1355-1365 (2021). MSC: 45D05 45B05 47H10 26E50 PDF BibTeX XML Cite \textit{H. Vu} and \textit{L. S. Dong}, Thai J. Math. 19, No. 4, 1355--1365 (2021; Zbl 07489163) Full Text: Link OpenURL
Zeghdane, Rebiha Numerical approach for solving nonlinear stochastic Itô-Volterra integral equations using shifted Legendre polynomials. (English) Zbl 1482.65014 Int. J. Dyn. Syst. Differ. Equ. 11, No. 1, 69-88 (2021). MSC: 65C30 65R20 45D05 45R05 33C45 PDF BibTeX XML Cite \textit{R. Zeghdane}, Int. J. Dyn. Syst. Differ. Equ. 11, No. 1, 69--88 (2021; Zbl 1482.65014) Full Text: DOI OpenURL
Appleby, John A. D. Mean square characterisation of a stochastic Volterra integrodifferential equation with delay. (English) Zbl 1482.34194 Int. J. Dyn. Syst. Differ. Equ. 11, No. 3-4, 194-226 (2021). MSC: 34K50 45R05 45M05 PDF BibTeX XML Cite \textit{J. A. D. Appleby}, Int. J. Dyn. Syst. Differ. Equ. 11, No. 3--4, 194--226 (2021; Zbl 1482.34194) Full Text: DOI OpenURL
Sidorov, N. A.; Sidorov, D. N. Nonlinear Volterra equations with loads and bifurcation parameters: existence theorems and construction of solutions. (English. Russian original) Zbl 07488188 Differ. Equ. 57, No. 12, 1640-1651 (2021); translation from Differ. Uravn. 57, No. 12, 1654-1664 (2021). MSC: 45D05 45M05 37G10 PDF BibTeX XML Cite \textit{N. A. Sidorov} and \textit{D. N. Sidorov}, Differ. Equ. 57, No. 12, 1640--1651 (2021; Zbl 07488188); translation from Differ. Uravn. 57, No. 12, 1654--1664 (2021) Full Text: DOI OpenURL
Agayeva, Nurlana A. Determination of the influence of fluid withdrawal from the transport line and connections to it on the hydrodynamics of fluid motion in the reservoir-pipeline system. (English) Zbl 07487985 Trans. A. Razmadze Math. Inst. 175, No. 3, 301-312 (2021). MSC: 76S05 76T30 86A05 PDF BibTeX XML Cite \textit{N. A. Agayeva}, Trans. A. Razmadze Math. Inst. 175, No. 3, 301--312 (2021; Zbl 07487985) Full Text: Link OpenURL
Ghomanjani, Fateme A new approach for Volterra functional integral equations with non-vanishing delays and fractional Bagley-Torvik equation. (English) Zbl 1482.65237 Proyecciones 40, No. 4, 885-903 (2021). MSC: 65R20 26A33 45D05 90C90 PDF BibTeX XML Cite \textit{F. Ghomanjani}, Proyecciones 40, No. 4, 885--903 (2021; Zbl 1482.65237) Full Text: DOI OpenURL
Shokri, J.; Pishbin, S. Study of fourth-order boundary value problem based on Volterra-Fredholm equation: numerical treatment. (English) Zbl 07484738 Inverse Probl. Sci. Eng. 29, No. 13, 2862-2876 (2021). MSC: 46E20 34B05 65L10 PDF BibTeX XML Cite \textit{J. Shokri} and \textit{S. Pishbin}, Inverse Probl. Sci. Eng. 29, No. 13, 2862--2876 (2021; Zbl 07484738) Full Text: DOI OpenURL
Sumin, Vladimir Iosifovich; Sumin, Mikhail Iosifovich Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems. (Russian. English summary) Zbl 1483.49029 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 31, No. 2, 265-284 (2021). MSC: 49K20 39B22 49N15 47A52 PDF BibTeX XML Cite \textit{V. I. Sumin} and \textit{M. I. Sumin}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 31, No. 2, 265--284 (2021; Zbl 1483.49029) Full Text: DOI MNR OpenURL
Ramazanov, Murat Ibraevich; Gul’manov, Nurtaĭ Kudaĭbergenovich On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain. (Russian. English summary) Zbl 07482124 Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki 31, No. 2, 241-252 (2021). MSC: 45D05 45E10 PDF BibTeX XML Cite \textit{M. I. Ramazanov} and \textit{N. K. Gul'manov}, Vestn. Udmurt. Univ., Mat. Mekh. Komp'yut. Nauki 31, No. 2, 241--252 (2021; Zbl 07482124) Full Text: DOI MNR OpenURL
Adewumi, A. O.; Adetona, R. A.; Ogundare, B. S. On closed-form solutions to integro-differential equations. (English) Zbl 07477953 J. Numer. Math. Stoch. 12, No. 1, 28-44 (2021). MSC: 45D05 45G10 65D99 65L05 PDF BibTeX XML Cite \textit{A. O. Adewumi} et al., J. Numer. Math. Stoch. 12, No. 1, 28--44 (2021; Zbl 07477953) Full Text: Link OpenURL
Dibu, A. S.; Jacob, M. J. On the Gerber-Shiu function of a MAP risk model with possible delayed phase-type by-claims. (English) Zbl 1482.91062 Int. J. Math. Oper. Res. 20, No. 1, 60-84 (2021). MSC: 91B05 PDF BibTeX XML Cite \textit{A. S. Dibu} and \textit{M. J. Jacob}, Int. J. Math. Oper. Res. 20, No. 1, 60--84 (2021; Zbl 1482.91062) Full Text: DOI OpenURL
Anjum, Naveed; He, Chun-Hui; He, Ji-Huan Two-scale fractal theory for the population dynamics. (English) Zbl 1481.92098 Fractals 29, No. 7, Article ID 2150182, 10 p. (2021). MSC: 92D25 28A80 PDF BibTeX XML Cite \textit{N. Anjum} et al., Fractals 29, No. 7, Article ID 2150182, 10 p. (2021; Zbl 1481.92098) Full Text: DOI OpenURL
Khan, Yasir Maclaurin series method for fractal differential-difference models arising in coupled nonlinear optical waveguides. (English) Zbl 1481.78012 Fractals 29, No. 1, Article ID 2150004, 7 p. (2021). MSC: 78A50 78A40 28A80 45D05 39A36 PDF BibTeX XML Cite \textit{Y. Khan}, Fractals 29, No. 1, Article ID 2150004, 7 p. (2021; Zbl 1481.78012) Full Text: DOI OpenURL
Ali, Amjad; Shah, Kamal; Alrabaiah, Hussam; Shah, Zahir; Ur Rahman, Ghaus; Islam, Saeed Computational modeling and theoretical analysis of nonlinear fractional order prey-predator system. (English) Zbl 07465334 Fractals 29, No. 1, Article ID 2150001, 14 p. (2021). MSC: 34C60 34A08 92D25 37C60 34A45 44A10 47N20 PDF BibTeX XML Cite \textit{A. Ali} et al., Fractals 29, No. 1, Article ID 2150001, 14 p. (2021; Zbl 07465334) Full Text: DOI OpenURL
Ege, Ozgur; Ayadi, Souad; Park, Choonkil Ulam-Hyers stabilities of a differential equation and a weakly singular Volterra integral equation. (English) Zbl 07464998 J. Inequal. Appl. 2021, Paper No. 19, 12 p. (2021). MSC: 47H10 54H25 39B72 PDF BibTeX XML Cite \textit{O. Ege} et al., J. Inequal. Appl. 2021, Paper No. 19, 12 p. (2021; Zbl 07464998) Full Text: DOI OpenURL
Chernov, A. V. Differential games in a Banach space on a fixed chain. (English. Russian original) Zbl 1480.91040 Autom. Remote Control 82, No. 11, 2006-2023 (2021); translation from Mat. Teor. Igr Prilozh. 12, No. 3, 89-118 (2020). MSC: 91A23 91A24 PDF BibTeX XML Cite \textit{A. V. Chernov}, Autom. Remote Control 82, No. 11, 2006--2023 (2021; Zbl 1480.91040); translation from Mat. Teor. Igr Prilozh. 12, No. 3, 89--118 (2020) Full Text: DOI OpenURL
Hamoud, Ahmed A.; Khandagale, Amol D.; Ghadle, Kirtiwant P. Existence and uniqueness of solutions for nonlinear mixed Volterra-Fredholm integro-differential equations. (English) Zbl 1481.65267 J. Adv. Math. Stud. 14, No. 3, 378-389 (2021). MSC: 65R20 45J05 PDF BibTeX XML Cite \textit{A. A. Hamoud} et al., J. Adv. Math. Stud. 14, No. 3, 378--389 (2021; Zbl 1481.65267) Full Text: Link OpenURL
Assari, P.; Asadi-Mehregan, F.; Dehghan, M. A meshless local Galerkin integral equation method for solving a type of Darboux problems based on radial basis functions. (English) Zbl 1480.65328 ANZIAM J. 63, No. 4, 469-492 (2021). MSC: 65N30 65R20 45D05 45G10 65D12 65N15 PDF BibTeX XML Cite \textit{P. Assari} et al., ANZIAM J. 63, No. 4, 469--492 (2021; Zbl 1480.65328) Full Text: DOI OpenURL
Abtahi, Seiyed Hadi; Rahimi, Hamidreza; Mosleh, Maryam Solving fuzzy Volterra-Fredholm integral equation by fuzzy artificial neural network. (English) Zbl 07455687 Math. Found. Comput. 4, No. 3, 209-219 (2021). MSC: 45D05 26E50 65R20 68T99 PDF BibTeX XML Cite \textit{S. H. Abtahi} et al., Math. Found. Comput. 4, No. 3, 209--219 (2021; Zbl 07455687) Full Text: DOI OpenURL
Guidotti, Patrick; Merino, Sandro On the maximal parameter range of global stability for a nonlocal thermostat model. (English) Zbl 1480.35037 J. Evol. Equ. 21, No. 3, 3205-3241 (2021). MSC: 35B40 35B35 35B41 35K60 93D15 PDF BibTeX XML Cite \textit{P. Guidotti} and \textit{S. Merino}, J. Evol. Equ. 21, No. 3, 3205--3241 (2021; Zbl 1480.35037) Full Text: DOI arXiv OpenURL
Negarchi, Neda; Zolfegharifar, Sayyed Yaghoub Solving the optimal control of Volterra-Fredholm integro-differential equation via Müntz polynomials. (English) Zbl 07451179 Jordan J. Math. Stat. 14, No. 3, 453-466 (2021). MSC: 34H05 45A05 45J05 PDF BibTeX XML Cite \textit{N. Negarchi} and \textit{S. Y. Zolfegharifar}, Jordan J. Math. Stat. 14, No. 3, 453--466 (2021; Zbl 07451179) Full Text: DOI OpenURL
Ramazanov, M. I.; Jenaliyev, M. T.; Tanin, A. O. Two-dimensional boundary value problem of heat conduction in a cone with special boundary conditions. (English) Zbl 1480.35096 Lobachevskii J. Math. 42, No. 12, 2913-2925 (2021). MSC: 35C15 35K60 PDF BibTeX XML Cite \textit{M. I. Ramazanov} et al., Lobachevskii J. Math. 42, No. 12, 2913--2925 (2021; Zbl 1480.35096) Full Text: DOI OpenURL
Kosmakova, M. T.; Ramazanov, M. I.; Kasymova, L. Zh. To solving the heat equation with fractional load. (English) Zbl 1480.35393 Lobachevskii J. Math. 42, No. 12, 2854-2866 (2021). MSC: 35R11 35K20 PDF BibTeX XML Cite \textit{M. T. Kosmakova} et al., Lobachevskii J. Math. 42, No. 12, 2854--2866 (2021; Zbl 1480.35393) Full Text: DOI OpenURL
Zatula, N. I.; Zatula, D. V. Approximation of density of potentials for the viscoelastic bodies with inclusions bounded by a piecewise smooth contours. (English) Zbl 07450254 Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2021, No. 1, 39-42 (2021). MSC: 74D05 45D05 PDF BibTeX XML Cite \textit{N. I. Zatula} and \textit{D. V. Zatula}, Visn., Ser. Fiz.-Mat. Nauky, Kyïv. Univ. Im. Tarasa Shevchenka 2021, No. 1, 39--42 (2021; Zbl 07450254) Full Text: DOI OpenURL
Lienert, Matthias; Nöth, Markus Existence of relativistic dynamics for two directly interacting Dirac particles in \(1+3\) dimensions. (English) Zbl 1483.81078 Rev. Math. Phys. 33, No. 7, Article ID 2150023, 27 p. (2021). MSC: 81Q40 45E99 45P05 81V25 81R20 51B20 83F05 PDF BibTeX XML Cite \textit{M. Lienert} and \textit{M. Nöth}, Rev. Math. Phys. 33, No. 7, Article ID 2150023, 27 p. (2021; Zbl 1483.81078) Full Text: DOI arXiv OpenURL
Wen, Haiyang; Shu, Shi; Wen, Liping Splitting one-leg \(\theta\)-method for composite stiff Volterra functional differential equations. (Chinese. English summary) Zbl 07448837 Nat. Sci. J. Xiangtan Univ. 43, No. 1, 13-21 (2021). MSC: 65L03 65L04 65L20 PDF BibTeX XML Cite \textit{H. Wen} et al., Nat. Sci. J. Xiangtan Univ. 43, No. 1, 13--21 (2021; Zbl 07448837) Full Text: DOI OpenURL
Mureşan, Anton S.; Mureşan, Viorica Implicit functional differential equations with linear modification of the argument, via weakly Picard operator theory. (English) Zbl 07445721 Carpathian J. Math. 37, No. 2, 227-234 (2021). MSC: 34K12 47H10 47H09 45D05 PDF BibTeX XML Cite \textit{A. S. Mureşan} and \textit{V. Mureşan}, Carpathian J. Math. 37, No. 2, 227--234 (2021; Zbl 07445721) Full Text: DOI OpenURL
Ilea, Veronica; Otrocol, Diana Functional differential equations with maxima, via step by step contraction principle. (English) Zbl 1478.34072 Carpathian J. Math. 37, No. 2, 195-202 (2021). MSC: 34K05 34K38 34K12 45D05 45G10 47N20 PDF BibTeX XML Cite \textit{V. Ilea} and \textit{D. Otrocol}, Carpathian J. Math. 37, No. 2, 195--202 (2021; Zbl 1478.34072) Full Text: DOI Link OpenURL
Nemer, Ahlem; Kaboul, Hanane; Mokhtari, Zouhir An adapted integration method for Volterra integral equation of the second kind with weakly singular kernel. (English) Zbl 07442635 J. Appl. Anal. 27, No. 2, 289-297 (2021). MSC: 65D05 45D05 45F05 PDF BibTeX XML Cite \textit{A. Nemer} et al., J. Appl. Anal. 27, No. 2, 289--297 (2021; Zbl 07442635) Full Text: DOI OpenURL
Khajehnasiri, Amir Ahmad; Ezzati, R.; Afshar Kermani, M. Solving systems of fractional two-dimensional nonlinear partial Volterra integral equations by using Haar wavelets. (English) Zbl 07442631 J. Appl. Anal. 27, No. 2, 239-257 (2021). MSC: 45D05 26A33 42C40 PDF BibTeX XML Cite \textit{A. A. Khajehnasiri} et al., J. Appl. Anal. 27, No. 2, 239--257 (2021; Zbl 07442631) Full Text: DOI OpenURL
Hamaguchi, Yushi Infinite horizon backward stochastic Volterra integral equations and discounted control problems. (English) Zbl 07442547 ESAIM, Control Optim. Calc. Var. 27, Paper No. 101, 47 p. (2021). MSC: 60H20 45G05 49K45 49N15 PDF BibTeX XML Cite \textit{Y. Hamaguchi}, ESAIM, Control Optim. Calc. Var. 27, Paper No. 101, 47 p. (2021; Zbl 07442547) Full Text: DOI arXiv OpenURL
Wijnand, Marc; d’Andréa-Novel, Brigitte; Rosier, Lionel Finite-time stabilization of an overhead crane with a flexible cable submitted to an affine tension. (English) Zbl 1478.93608 ESAIM, Control Optim. Calc. Var. 27, Paper No. 94, 30 p. (2021). MSC: 93D40 93C20 93C15 93B52 PDF BibTeX XML Cite \textit{M. Wijnand} et al., ESAIM, Control Optim. Calc. Var. 27, Paper No. 94, 30 p. (2021; Zbl 1478.93608) Full Text: DOI arXiv OpenURL
Xie, Xizhuang; Niu, Lin Global stability in a three-species Lotka-Volterra cooperation model with seasonal succession. (English) Zbl 1483.34070 Math. Methods Appl. Sci. 44, No. 18, 14807-14822 (2021). MSC: 34C60 34C25 34D20 34D23 37C60 92D25 47N20 34C05 PDF BibTeX XML Cite \textit{X. Xie} and \textit{L. Niu}, Math. Methods Appl. Sci. 44, No. 18, 14807--14822 (2021; Zbl 1483.34070) Full Text: DOI OpenURL
Yaghoobnia, A. R.; Khodabin, M.; Ezzati, R. Numerical solution of stochastic Itô-Volterra integral equations based on Bernstein multi-scaling polynomials. (English) Zbl 07439138 Appl. Math., Ser. B (Engl. Ed.) 36, No. 3, 317-329 (2021). MSC: 65C30 60H20 60Gxx 45Dxx PDF BibTeX XML Cite \textit{A. R. Yaghoobnia} et al., Appl. Math., Ser. B (Engl. Ed.) 36, No. 3, 317--329 (2021; Zbl 07439138) Full Text: DOI OpenURL
Özdemir, İsmet An existence theorem for some nonlinear Volterra-Fredholm integral equations in the space of continuous tempered functions. (English) Zbl 1477.45003 Numer. Funct. Anal. Optim. 42, No. 11, 1287-1307 (2021). MSC: 45G10 45B05 45D05 47H08 47H10 PDF BibTeX XML Cite \textit{İ. Özdemir}, Numer. Funct. Anal. Optim. 42, No. 11, 1287--1307 (2021; Zbl 1477.45003) Full Text: DOI OpenURL
Wen, Xiaoxia; Huang, Jin A Haar wavelet method for linear and nonlinear stochastic Itô-Volterra integral equation driven by a fractional Brownian motion. (English) Zbl 1482.60089 Stochastic Anal. Appl. 39, No. 5, 926-943 (2021). MSC: 60H20 60G22 PDF BibTeX XML Cite \textit{X. Wen} and \textit{J. Huang}, Stochastic Anal. Appl. 39, No. 5, 926--943 (2021; Zbl 1482.60089) Full Text: DOI OpenURL
Peixe, Telmo Permanence in polymatrix replicators. (English) Zbl 1473.34036 J. Dyn. Games 8, No. 1, 21-34 (2021). MSC: 34D05 34D20 37B25 37C75 37N25 37N40 91A22 PDF BibTeX XML Cite \textit{T. Peixe}, J. Dyn. Games 8, No. 1, 21--34 (2021; Zbl 1473.34036) Full Text: DOI OpenURL
Bohner, Martin; Tunç, Osman; Tunç, Cemil Qualitative analysis of Caputo fractional integro-differential equations with constant delays. (English) Zbl 1476.34112 Comput. Appl. Math. 40, No. 6, Paper No. 214, 17 p. (2021). MSC: 34D05 34K20 45J05 PDF BibTeX XML Cite \textit{M. Bohner} et al., Comput. Appl. Math. 40, No. 6, Paper No. 214, 17 p. (2021; Zbl 1476.34112) Full Text: DOI OpenURL
Hu, Lin; Chan, Aining; Bao, Xuezhong Numerical analysis of the balanced methods for stochastic Volterra integro-differential equations. (English) Zbl 1476.60108 Comput. Appl. Math. 40, No. 6, Paper No. 203, 18 p. (2021). MSC: 60H35 65C20 65L20 PDF BibTeX XML Cite \textit{L. Hu} et al., Comput. Appl. Math. 40, No. 6, Paper No. 203, 18 p. (2021; Zbl 1476.60108) Full Text: DOI OpenURL
Behera, S.; Saha Ray, S. Euler wavelets method for solving fractional-order linear Volterra-Fredholm integro-differential equations with weakly singular kernels. (English) Zbl 1476.65335 Comput. Appl. Math. 40, No. 6, Paper No. 192, 30 p. (2021). MSC: 65R20 65T60 26A33 45B05 45D05 PDF BibTeX XML Cite \textit{S. Behera} and \textit{S. Saha Ray}, Comput. Appl. Math. 40, No. 6, Paper No. 192, 30 p. (2021; Zbl 1476.65335) Full Text: DOI OpenURL
Azimi, Ruhangiz; Pourgholi, Reza; Tahmasbi, Ali Application of tau approach for solving integro-differential equations with a weakly singular kernel. (English) Zbl 1473.65354 Iran. J. Math. Sci. Inform. 16, No. 1, 145-168 (2021). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{R. Azimi} et al., Iran. J. Math. Sci. Inform. 16, No. 1, 145--168 (2021; Zbl 1473.65354) Full Text: Link OpenURL
Hamaguchi, Yushi Extended backward stochastic Volterra integral equations and their applications to time-inconsistent stochastic recursive control problems. (English) Zbl 1478.93732 Math. Control Relat. Fields 11, No. 2, 433-478 (2021). MSC: 93E20 60H20 PDF BibTeX XML Cite \textit{Y. Hamaguchi}, Math. Control Relat. Fields 11, No. 2, 433--478 (2021; Zbl 1478.93732) Full Text: DOI arXiv OpenURL
Saha Ray, S.; Singh, P. Numerical solution of stochastic Itô-Volterra integral equation by using shifted Jacobi operational matrix method. (English) Zbl 07425965 Appl. Math. Comput. 410, Article ID 126440, 16 p. (2021). MSC: 60H20 45D05 PDF BibTeX XML Cite \textit{S. Saha Ray} and \textit{P. Singh}, Appl. Math. Comput. 410, Article ID 126440, 16 p. (2021; Zbl 07425965) Full Text: DOI OpenURL
Doan, Thai Son; Kloeden, Peter E. Semi-dynamical systems generated by autonomous Caputo fractional differential equations. (English) Zbl 07425507 Vietnam J. Math. 49, No. 4, 1305-1315 (2021). Reviewer: Stig-Olof Londen (Aalto) MSC: 34A08 26A33 45D05 PDF BibTeX XML Cite \textit{T. S. Doan} and \textit{P. E. Kloeden}, Vietnam J. Math. 49, No. 4, 1305--1315 (2021; Zbl 07425507) Full Text: DOI arXiv OpenURL
Egidi, Nadaniela; Maponi, Pierluigi A spectral method for the solution of boundary value problems. (English) Zbl 07424992 Appl. Math. Comput. 409, Article ID 125812, 12 p. (2021). MSC: 65Lxx 34Bxx 35Jxx 65Dxx 45Dxx PDF BibTeX XML Cite \textit{N. Egidi} and \textit{P. Maponi}, Appl. Math. Comput. 409, Article ID 125812, 12 p. (2021; Zbl 07424992) Full Text: DOI OpenURL
Cormier, Quentin; Tanré, Etienne; Veltz, Romain Hopf bifurcation in a mean-field model of spiking neurons. (English) Zbl 1481.60201 Electron. J. Probab. 26, Paper No. 121, 40 p. (2021). MSC: 60K35 45D05 60H10 92C20 PDF BibTeX XML Cite \textit{Q. Cormier} et al., Electron. J. Probab. 26, Paper No. 121, 40 p. (2021; Zbl 1481.60201) Full Text: DOI arXiv OpenURL
Agram, Nacira; Djehiche, Boualem On a class of reflected backward stochastic Volterra integral equations and related time-inconsistent optimal stopping problems. (English) Zbl 1475.60127 Syst. Control Lett. 155, Article ID 104989, 9 p. (2021). MSC: 60H20 45D05 45G10 60G40 PDF BibTeX XML Cite \textit{N. Agram} and \textit{B. Djehiche}, Syst. Control Lett. 155, Article ID 104989, 9 p. (2021; Zbl 1475.60127) Full Text: DOI arXiv OpenURL
Amangaliyeva, Meiramkul; Jenaliyev, Muvasharkhan; Iskakov, Sagyndyk; Ramazanov, Murat On a boundary value problem for the heat equation and a singular integral equation associated with it. (English) Zbl 07423481 Appl. Math. Comput. 399, Article ID 126009, 15 p. (2021). MSC: 35K05 45D05 45Exx 45P05 PDF BibTeX XML Cite \textit{M. Amangaliyeva} et al., Appl. Math. Comput. 399, Article ID 126009, 15 p. (2021; Zbl 07423481) Full Text: DOI OpenURL
Matinfar, Mashallah; Taghizadeh, Elham; Pourabd, Masoumeh Application of moving least squares algorithm for solving systems of Volterra integral equations. (English) Zbl 07412237 Int. J. Nonlinear Sci. Numer. Simul. 22, No. 3-4, 255-265 (2021). MSC: 45D05 45F05 65D15 PDF BibTeX XML Cite \textit{M. Matinfar} et al., Int. J. Nonlinear Sci. Numer. Simul. 22, No. 3--4, 255--265 (2021; Zbl 07412237) Full Text: DOI OpenURL
Wang, Xiu-Bin; Han, Bo The nonlinear steepest descent approach for long time behavior of the two-component coupled Sasa-Satsuma equation with a \(5 \times 5\) Lax pair. (English) Zbl 1479.35729 Taiwanese J. Math. 25, No. 2, 381-407 (2021). MSC: 35Q51 35Q53 35Q15 35Q55 35C08 35A22 37K35 35B40 78A60 68W30 74J35 45D05 45C05 PDF BibTeX XML Cite \textit{X.-B. Wang} and \textit{B. Han}, Taiwanese J. Math. 25, No. 2, 381--407 (2021; Zbl 1479.35729) Full Text: DOI arXiv OpenURL