Allouch, Chafik Fast and accurate solvers for weakly singular Volterra integral equations in weighted spaces. (English) Zbl 07756749 J. Comput. Appl. Math. 438, Article ID 115535, 19 p. (2024). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{C. Allouch}, J. Comput. Appl. Math. 438, Article ID 115535, 19 p. (2024; Zbl 07756749) Full Text: DOI
Wen, Jiao; Huang, Chengming Multistep Runge-Kutta methods for Volterra integro-differential equations. (English) Zbl 07738643 J. Comput. Appl. Math. 436, Article ID 115384, 19 p. (2024). MSC: 65L03 65R20 65L06 PDF BibTeX XML Cite \textit{J. Wen} and \textit{C. Huang}, J. Comput. Appl. Math. 436, Article ID 115384, 19 p. (2024; Zbl 07738643) Full Text: DOI
Chakir, Yassine; Safouhi, Hassan Numerical solution of two-dimensional weakly singular Volterra integral equations of the first kind via bivariate rational approximants. (English) Zbl 07738638 J. Comput. Appl. Math. 436, Article ID 115378, 17 p. (2024). MSC: 65Rxx 45Dxx 41Axx PDF BibTeX XML Cite \textit{Y. Chakir} and \textit{H. Safouhi}, J. Comput. Appl. Math. 436, Article ID 115378, 17 p. (2024; Zbl 07738638) Full Text: DOI
Amirali, Ilhame; Acar, Hülya Stability inequalities and numerical solution for neutral Volterra delay integro-differential equation. (English) Zbl 1522.65252 J. Comput. Appl. Math. 436, Article ID 115343, 11 p. (2024). MSC: 65R20 45D05 45J05 PDF BibTeX XML Cite \textit{I. Amirali} and \textit{H. Acar}, J. Comput. Appl. Math. 436, Article ID 115343, 11 p. (2024; Zbl 1522.65252) Full Text: DOI
Mittal, A. K. Two-dimensional Jacobi pseudospectral quadrature solutions of two-dimensional fractional Volterra integral equations. (English) Zbl 07771806 Calcolo 60, No. 4, Paper No. 50, 21 p. (2023). Reviewer: Marius Ghergu (Dublin) MSC: 65N35 35L65 45D05 65R20 65H10 65D30 65D05 65N15 26A33 35R11 PDF BibTeX XML Cite \textit{A. K. Mittal}, Calcolo 60, No. 4, Paper No. 50, 21 p. (2023; Zbl 07771806) Full Text: DOI
Darania, P.; Pishbin, S.; Ebadi, A. Convergence analysis of multi-step collocation method to solve generalized auto-convolution Volterra integral equations. (Russian. English summary) Zbl 07771102 Sib. Zh. Vychisl. Mat. 26, No. 2, 149-160 (2023). MSC: 65R20 65Q20 45D05 PDF BibTeX XML Cite \textit{P. Darania} et al., Sib. Zh. Vychisl. Mat. 26, No. 2, 149--160 (2023; Zbl 07771102) Full Text: DOI MNR
Hess, Markus The stochastic Leibniz formula for Volterra integrals under enlarged filtrations. (English) Zbl 07769910 Stoch. Models 39, No. 4, 823-850 (2023). MSC: 60H05 60H20 60G20 60G44 60H10 60G51 60G57 PDF BibTeX XML Cite \textit{M. Hess}, Stoch. Models 39, No. 4, 823--850 (2023; Zbl 07769910) Full Text: DOI
Kherchouche, Khedidja; Bellour, Azzeddine; Lima, Pedro Numerical solution of nonlinear third-kind Volterra integral equations using an iterative collocation method. (English) Zbl 07761281 Int. J. Comput. Math. 100, No. 11, 2063-2076 (2023). MSC: 45E99 45G05 65R20 PDF BibTeX XML Cite \textit{K. Kherchouche} et al., Int. J. Comput. Math. 100, No. 11, 2063--2076 (2023; Zbl 07761281) Full Text: DOI
Akhavan, S.; Roohollahi, A. Using 2D and 1D block-pulse functions simultaneously for solving the barbashin integro-differential equations. (English) Zbl 07761275 Int. J. Comput. Math. 100, No. 10, 1957-1970 (2023). MSC: 65-XX 45-XX PDF BibTeX XML Cite \textit{S. Akhavan} and \textit{A. Roohollahi}, Int. J. Comput. Math. 100, No. 10, 1957--1970 (2023; Zbl 07761275) Full Text: DOI
Zarifzoda, S. K.; Yuldashev, T. K. Some classes of first-order integro-differential equations and their conjugate equations. (English) Zbl 07759429 Lobachevskii J. Math. 44, No. 7, 2994-3003 (2023). MSC: 45J05 45G05 45D05 45H05 PDF BibTeX XML Cite \textit{S. K. Zarifzoda} and \textit{T. K. Yuldashev}, Lobachevskii J. Math. 44, No. 7, 2994--3003 (2023; Zbl 07759429) Full Text: DOI
Kadirkulov, B. J.; Jalilov, M. A. On a boundary value problem for a third-order equation of parabolic-hyperbolic type with a fractional order operator. (English) Zbl 07759404 Lobachevskii J. Math. 44, No. 7, 2725-2737 (2023). MSC: 35M12 35R11 PDF BibTeX XML Cite \textit{B. J. Kadirkulov} and \textit{M. A. Jalilov}, Lobachevskii J. Math. 44, No. 7, 2725--2737 (2023; Zbl 07759404) Full Text: DOI
Guo, Yuling; Wang, Zhongqing A fast time-stepping method based on the \(hp\)-version spectral collocation method for the nonlinear fractional delay differential equation. (English) Zbl 07758876 Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107424, 15 p. (2023). MSC: 65L60 34K37 45D05 65L70 PDF BibTeX XML Cite \textit{Y. Guo} and \textit{Z. Wang}, Commun. Nonlinear Sci. Numer. Simul. 126, Article ID 107424, 15 p. (2023; Zbl 07758876) Full Text: DOI
Ruhil, Santosh; Malik, Muslim Inverse problem for the Atangana-Baleanu fractional differential equation. (English) Zbl 07757071 J. Inverse Ill-Posed Probl. 31, No. 5, 763-779 (2023). MSC: 34A55 34A08 34G10 26A33 45D05 PDF BibTeX XML Cite \textit{S. Ruhil} and \textit{M. Malik}, J. Inverse Ill-Posed Probl. 31, No. 5, 763--779 (2023; Zbl 07757071) Full Text: DOI
Pepe, G.; Paifelman, E.; Carcaterra, A. Feedback Volterra control of integro-differential equations. (English) Zbl 07750964 Int. J. Control 96, No. 11, 2651-2670 (2023). MSC: 93B52 45D05 49N35 PDF BibTeX XML Cite \textit{G. Pepe} et al., Int. J. Control 96, No. 11, 2651--2670 (2023; Zbl 07750964) Full Text: DOI
Panda, Abhilipsa; Mohapatra, Jugal On the convergence analysis of efficient numerical schemes for singularly perturbed second order Volterra integro-differential equations. (English) Zbl 1522.65260 J. Appl. Math. Comput. 69, No. 4, 3509-3532 (2023). MSC: 65R20 45J05 45D05 65L11 65L12 65L20 PDF BibTeX XML Cite \textit{A. Panda} and \textit{J. Mohapatra}, J. Appl. Math. Comput. 69, No. 4, 3509--3532 (2023; Zbl 1522.65260) Full Text: DOI
Dai, Xuefei; Niu, Jing; Xu, Yanxin An efficient Numerical algorithm for solving nonlinear Volterra integral equations in the reproducing kernel space. (English) Zbl 07746745 J. Appl. Math. Comput. 69, No. 4, 3131-3149 (2023). MSC: 33F05 65R20 PDF BibTeX XML Cite \textit{X. Dai} et al., J. Appl. Math. Comput. 69, No. 4, 3131--3149 (2023; Zbl 07746745) Full Text: DOI
Fahim, K.; Hausenblas, E.; Kovács, M. Some approximation results for mild solutions of stochastic fractional order evolution equations driven by Gaussian noise. (English) Zbl 07742934 Stoch. Partial Differ. Equ., Anal. Comput. 11, No. 3, 1044-1088 (2023). MSC: 45R05 45D05 45L05 60H20 60G22 65R20 PDF BibTeX XML Cite \textit{K. Fahim} et al., Stoch. Partial Differ. Equ., Anal. Comput. 11, No. 3, 1044--1088 (2023; Zbl 07742934) Full Text: DOI arXiv
Iskandarov, S.; Khalilov, A. On the method of Lyapunov functionals for a linear first-order Volterra integrodifferential equation with delay on the semiaxis. (English. Russian original) Zbl 07741296 Mosc. Univ. Math. Bull. 78, No. 3, 150-152 (2023); translation from Vestn. Mosk. Univ., Ser. I 78, No. 3, 62-64 (2023). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45J05 45D05 45M05 PDF BibTeX XML Cite \textit{S. Iskandarov} and \textit{A. Khalilov}, Mosc. Univ. Math. Bull. 78, No. 3, 150--152 (2023; Zbl 07741296); translation from Vestn. Mosk. Univ., Ser. I 78, No. 3, 62--64 (2023) Full Text: DOI
Appleby, John A. D.; Lawless, Emmet Solution space characterisation of perturbed linear Volterra integrodifferential convolution equations: the \(L^p\) case. (English) Zbl 07741243 Appl. Math. Lett. 146, Article ID 108825, 7 p. (2023). Reviewer: Leonid Berezansky (Be’er Sheva) MSC: 45D05 45A05 45J05 45M10 PDF BibTeX XML Cite \textit{J. A. D. Appleby} and \textit{E. Lawless}, Appl. Math. Lett. 146, Article ID 108825, 7 p. (2023; Zbl 07741243) Full Text: DOI arXiv
Wang, Zewen; Hu, Xiaoying; Hu, Bin A collocation method based on roots of Chebyshev polynomial for solving Volterra integral equations of the second kind. (English) Zbl 07741232 Appl. Math. Lett. 146, Article ID 108804, 8 p. (2023). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{Z. Wang} et al., Appl. Math. Lett. 146, Article ID 108804, 8 p. (2023; Zbl 07741232) Full Text: DOI
Han, Shuo; Lin, Ping; Yong, Jiongmin Causal state feedback representation for linear quadratic optimal control problems of singular Volterra integral equations. (English) Zbl 07740180 Math. Control Relat. Fields 13, No. 4, 1282-1317 (2023). Reviewer: Ti-Jun Xiao (Fudan) MSC: 45D05 45G05 45B05 49N10 49N35 93B52 34A08 26A33 PDF BibTeX XML Cite \textit{S. Han} et al., Math. Control Relat. Fields 13, No. 4, 1282--1317 (2023; Zbl 07740180) Full Text: DOI arXiv
Ebrahimzadeh, Asiyeh; Beik, Samaneh Panjeh Ali Robust bivariate polynomials scheme with convergence analysis for two-dimensional nonlinear optimal control problem. (English) Zbl 1522.65182 Math. Sci., Springer 17, No. 3, 325-335 (2023). MSC: 65M70 45G05 49M37 49M41 93C23 PDF BibTeX XML Cite \textit{A. Ebrahimzadeh} and \textit{S. P. A. Beik}, Math. Sci., Springer 17, No. 3, 325--335 (2023; Zbl 1522.65182) Full Text: DOI
Li, Bin; Kang, Hongchao; Chen, Songliang; Ren, Shanjing On the approximation of highly oscillatory Volterra integral equations of the first kind via Laplace transform. (English) Zbl 07736762 Math. Comput. Simul. 214, 92-113 (2023). MSC: 45-XX 65-XX PDF BibTeX XML Cite \textit{B. Li} et al., Math. Comput. Simul. 214, 92--113 (2023; Zbl 07736762) Full Text: DOI
Jaiswal, Aishwarya; Kumar, Shashikant; Kumar, Sunil A priori and a posteriori error analysis for a system of singularly perturbed Volterra integro-differential equations. (English) Zbl 07735394 Comput. Appl. Math. 42, No. 6, Paper No. 278, 16 p. (2023). MSC: 65L11 65L12 65L20 65L70 65R20 PDF BibTeX XML Cite \textit{A. Jaiswal} et al., Comput. Appl. Math. 42, No. 6, Paper No. 278, 16 p. (2023; Zbl 07735394) Full Text: DOI
Ghosh, Bappa; Mohapatra, Jugal Analysis of finite difference schemes for Volterra integro-differential equations involving arbitrary order derivatives. (English) Zbl 1518.65146 J. Appl. Math. Comput. 69, No. 2, 1865-1886 (2023). MSC: 65R20 45J05 45D05 26A33 PDF BibTeX XML Cite \textit{B. Ghosh} and \textit{J. Mohapatra}, J. Appl. Math. Comput. 69, No. 2, 1865--1886 (2023; Zbl 1518.65146) Full Text: DOI
Wang, Hanxiao; Yong, Jiongmin; Zhou, Chao Linear-quadratic optimal controls for stochastic Volterra integral equations: causal state feedback and path-dependent Riccati equations. (English) Zbl 1520.93617 SIAM J. Control Optim. 61, No. 4, 2595-2629 (2023). MSC: 93E20 49N10 60H20 45D05 PDF BibTeX XML Cite \textit{H. Wang} et al., SIAM J. Control Optim. 61, No. 4, 2595--2629 (2023; Zbl 1520.93617) Full Text: DOI arXiv
Llibre, Jaume; Valls, Claudia Dynamics of a class of \(3\)-dimensional Lotka-Volterra systems. (English) Zbl 07731192 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 4, 303-307 (2023). Reviewer: Eduard Musafirov (Grodno) MSC: 34C60 92D25 34A05 34C05 34C25 PDF BibTeX XML Cite \textit{J. Llibre} and \textit{C. Valls}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 4, 303--307 (2023; Zbl 07731192) Full Text: Link Link
Asadi-Mehregan, Fatemeh; Assari, Pouria; Dehghan, Mehdi On the numerical solution of a population growth model of a species living in a closed system based on the moving least squares scheme. (English) Zbl 07727805 Int. J. Comput. Math. 100, No. 8, 1757-1778 (2023). MSC: 45J05 45L05 92-08 92D25 PDF BibTeX XML Cite \textit{F. Asadi-Mehregan} et al., Int. J. Comput. Math. 100, No. 8, 1757--1778 (2023; Zbl 07727805) Full Text: DOI
Bekkouche, Mohammed Moumen; Ahmed, Abdelaziz Azeb; Yazid, Fares; Djeradi, Fatima Siham Analytical and numerical study of a nonlinear Volterra integro-differential equation with the Caputo-Fabrizio fractional derivative. (English) Zbl 07727703 Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2177-2193 (2023). MSC: 26A33 45D05 65L03 47G20 47Gxx PDF BibTeX XML Cite \textit{M. M. Bekkouche} et al., Discrete Contin. Dyn. Syst., Ser. S 16, No. 8, 2177--2193 (2023; Zbl 07727703) Full Text: DOI
Tidke, Haribhau L.; Patil, Gajanan S. Existence of solutions for nonlinear Volterra Fredholm integrodifferential equation of higher order via \(S\)-iteration method. (English) Zbl 07727257 Adv. Differ. Equ. Control Process. 30, No. 3, 237-276 (2023). MSC: 34A12 45B05 37C25 45D05 39B12 PDF BibTeX XML Cite \textit{H. L. Tidke} and \textit{G. S. Patil}, Adv. Differ. Equ. Control Process. 30, No. 3, 237--276 (2023; Zbl 07727257) Full Text: DOI
Liao, Yige; Liu, Li-Bin; Ye, Limin; Liu, Tangwei Uniform convergence analysis of the BDF2 scheme on Bakhvalov-type meshes for a singularly perturbed Volterra integro-differential equation. (English) Zbl 07727123 Appl. Math. Lett. 145, Article ID 108755, 7 p. (2023). MSC: 65Lxx 65Mxx 65Rxx PDF BibTeX XML Cite \textit{Y. Liao} et al., Appl. Math. Lett. 145, Article ID 108755, 7 p. (2023; Zbl 07727123) Full Text: DOI
Kaye, Jason; Strand, Hugo U. R. A fast time domain solver for the equilibrium Dyson equation. (English) Zbl 07726221 Adv. Comput. Math. 49, No. 4, Paper No. 63, 26 p. (2023). MSC: 65R20 45D05 45J05 81V70 PDF BibTeX XML Cite \textit{J. Kaye} and \textit{H. U. R. Strand}, Adv. Comput. Math. 49, No. 4, Paper No. 63, 26 p. (2023; Zbl 07726221) Full Text: DOI arXiv
Baev, Andrey On the uniqueness of solutions in inverse problems for Burgers’ equation under a transverse diffusion. (English) Zbl 1520.80002 J. Inverse Ill-Posed Probl. 31, No. 4, 595-609 (2023). MSC: 80A23 44A10 34B24 34L10 45D05 35Q79 35Q53 35Q41 35R30 PDF BibTeX XML Cite \textit{A. Baev}, J. Inverse Ill-Posed Probl. 31, No. 4, 595--609 (2023; Zbl 1520.80002) Full Text: DOI
Graef, John R.; Tunç, Cemil; Şengun, Merve; Tunç, Osman The stability of nonlinear delay integro-differential equations in the sense of Hyers-Ulam. (English) Zbl 1522.45007 Nonauton. Dyn. Syst. 10, Article ID 20220169, 12 p. (2023). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45J05 45D05 45M10 PDF BibTeX XML Cite \textit{J. R. Graef} et al., Nonauton. Dyn. Syst. 10, Article ID 20220169, 12 p. (2023; Zbl 1522.45007) Full Text: DOI
Schneider, Ryan; Gharibnejad, Heman; Schneider, Barry I. ITVOLT: an iterative solver for the time-dependent Schrödinger equation. (English) Zbl 1522.65007 Comput. Phys. Commun. 291, Article ID 108780, 13 p. (2023). MSC: 65-04 35Q41 35J10 65R20 45D05 65M99 PDF BibTeX XML Cite \textit{R. Schneider} et al., Comput. Phys. Commun. 291, Article ID 108780, 13 p. (2023; Zbl 1522.65007) Full Text: DOI arXiv
Baranetskij, Ya. O.; Demkiv, I. I.; Solomko, A. V. Inverse problems of determining an unknown depending on time coefficient for a parabolic equation with involution and periodicity conditions. (English) Zbl 1520.35169 Carpathian Math. Publ. 15, No. 1, 5-19 (2023). MSC: 35R30 34K10 34K29 35K20 45D05 PDF BibTeX XML Cite \textit{Ya. O. Baranetskij} et al., Carpathian Math. Publ. 15, No. 1, 5--19 (2023; Zbl 1520.35169) Full Text: DOI
Bobodzhanov, A. A.; Kalimbetov, B. T.; Safonov, V. F. Singularly perturbed integro-differential systems with kernels depending on solutions of differential equations. (English. Russian original) Zbl 1522.45005 Differ. Equ. 59, No. 5, 707-719 (2023); translation from Differ. Uravn. 59, No. 5, 693-704 (2023). Reviewer: Luis Filipe Pinheiro de Castro (Aveiro) MSC: 45J05 45D05 45P05 45M05 PDF BibTeX XML Cite \textit{A. A. Bobodzhanov} et al., Differ. Equ. 59, No. 5, 707--719 (2023; Zbl 1522.45005); translation from Differ. Uravn. 59, No. 5, 693--704 (2023) Full Text: DOI
Tunç, O.; Korkmaz, E. New results on the qualitative analysis of solutions of VIDEs by the Lyapunov-Razumikhin technique. (English) Zbl 1519.45006 Ukr. Math. J. 74, No. 11, 1764-1779 (2023) and Ukr. Mat. Zh. 74, No. 11, 1544-1557 (2022). MSC: 45J05 45M10 45D05 34K20 PDF BibTeX XML Cite \textit{O. Tunç} and \textit{E. Korkmaz}, Ukr. Math. J. 74, No. 11, 1764--1779 (2023; Zbl 1519.45006) Full Text: DOI
Dung, Nguyen Tien; Son, Ta Cong Lipschitz continuity in the Hurst index of the solutions of fractional stochastic Volterra integro-differential equations. (English) Zbl 1515.60243 Stochastic Anal. Appl. 41, No. 4, 693-712 (2023). MSC: 60H20 60G22 60H07 PDF BibTeX XML Cite \textit{N. T. Dung} and \textit{T. C. Son}, Stochastic Anal. Appl. 41, No. 4, 693--712 (2023; Zbl 1515.60243) Full Text: DOI
Wang, Jianyu; Fang, Chunhua; Zhang, GuiFeng Effective collocation methods to solve Volterra integral equations with weakly singular highly oscillatory Fourier or Airy kernels. (English) Zbl 07716407 Int. J. Comput. Math. 100, No. 7, 1532-1551 (2023). MSC: 65R20 PDF BibTeX XML Cite \textit{J. Wang} et al., Int. J. Comput. Math. 100, No. 7, 1532--1551 (2023; Zbl 07716407) Full Text: DOI
Song, Yucheng; Fang, Tingting; Ding, Jiu; Jin, Congming Solving linear Volterra integral equations with a piecewise linear maximum entropy method. (English) Zbl 1518.45004 J. Integral Equations Appl. 35, No. 1, 119-129 (2023). MSC: 45D05 65R20 PDF BibTeX XML Cite \textit{Y. Song} et al., J. Integral Equations Appl. 35, No. 1, 119--129 (2023; Zbl 1518.45004) Full Text: DOI Link
Mi, Jian; Huang, Jin Collocation method for solving two-dimensional nonlinear Volterra-Fredholm integral equations with convergence analysis. (English) Zbl 1521.65147 J. Comput. Appl. Math. 428, Article ID 115188, 16 p. (2023). MSC: 65R20 45B05 45D05 PDF BibTeX XML Cite \textit{J. Mi} and \textit{J. Huang}, J. Comput. Appl. Math. 428, Article ID 115188, 16 p. (2023; Zbl 1521.65147) Full Text: DOI
Solodusha, S. V. On a system of linear Volterra integral equations with variable integration limits. (English) Zbl 07710960 Lobachevskii J. Math. 44, No. 3, 1229-1235 (2023). MSC: 45D05 45F05 PDF BibTeX XML Cite \textit{S. V. Solodusha}, Lobachevskii J. Math. 44, No. 3, 1229--1235 (2023; Zbl 07710960) Full Text: DOI
Vlasov, V. V.; Rautian, N. A. Spectral properties of the generator of a semigroup generated by the Volterra integro-differential equation. (English. Russian original) Zbl 1518.45002 Differ. Equ. 59, No. 2, 283-288 (2023); translation from Differ. Uravn. 59, No. 2, 275-279 (2023). MSC: 45C05 45J05 45D05 47A11 PDF BibTeX XML Cite \textit{V. V. Vlasov} and \textit{N. A. Rautian}, Differ. Equ. 59, No. 2, 283--288 (2023; Zbl 1518.45002); translation from Differ. Uravn. 59, No. 2, 275--279 (2023) Full Text: DOI
Momenzade, N.; Vahidi, A. R.; Babolian, E. A numerical method for solving stochastic Volterra-Fredholm integral equation. (English) Zbl 07709518 Iran. J. Math. Sci. Inform. 18, No. 1, 145-164 (2023). MSC: 65C30 60H35 60H05 PDF BibTeX XML Cite \textit{N. Momenzade} et al., Iran. J. Math. Sci. Inform. 18, No. 1, 145--164 (2023; Zbl 07709518) Full Text: Link
Rostami, Yaser An effective computational approach based on Hermite wavelet Galerkin for solving parabolic Volterra partial integro differential equations and its convergence analysis. (English) Zbl 1514.65203 Math. Model. Anal. 28, No. 1, 163-179 (2023). MSC: 65R20 35R09 45D05 45K05 65T60 PDF BibTeX XML Cite \textit{Y. Rostami}, Math. Model. Anal. 28, No. 1, 163--179 (2023; Zbl 1514.65203) Full Text: DOI
Ismaael, Fawzi Muttar An investigation on the existence and uniqueness analysis of the fractional nonlinear integro-differential equations. (English) Zbl 1522.45008 Nonlinear Funct. Anal. Appl. 28, No. 1, 237-249 (2023). Reviewer: Kai Diethelm (Schweinfurt) MSC: 45J05 26A33 45B05 45D05 47H10 47N20 PDF BibTeX XML Cite \textit{F. M. Ismaael}, Nonlinear Funct. Anal. Appl. 28, No. 1, 237--249 (2023; Zbl 1522.45008) Full Text: Link
Ostaszewska, Urszula; Schmeidel, Ewa; Zdanowicz, Małgorzata Exponential stability of integro-differential Volterra equation on time scales. (English) Zbl 1519.45001 Tatra Mt. Math. Publ. 84, 77-86 (2023). MSC: 45D05 45J05 34N05 PDF BibTeX XML Cite \textit{U. Ostaszewska} et al., Tatra Mt. Math. Publ. 84, 77--86 (2023; Zbl 1519.45001) Full Text: DOI
Toranj-Simin, M.; Hadizadeh, M. A priori mesh grading in collocation solution of noncompact Volterra integral equations with diagonal singularity. (English) Zbl 07705611 Int. J. Comput. Math. 100, No. 5, 1078-1093 (2023). MSC: 65R20 45A05 45P05 PDF BibTeX XML Cite \textit{M. Toranj-Simin} and \textit{M. Hadizadeh}, Int. J. Comput. Math. 100, No. 5, 1078--1093 (2023; Zbl 07705611) Full Text: DOI
Pishbin, S.; Ebadi, A. High-order convergence of multistep collocation methods for nonstandard Volterra integral equations. (English) Zbl 07705597 Int. J. Comput. Math. 100, No. 4, 824-837 (2023). MSC: 65R20 45G10 PDF BibTeX XML Cite \textit{S. Pishbin} and \textit{A. Ebadi}, Int. J. Comput. Math. 100, No. 4, 824--837 (2023; Zbl 07705597) Full Text: DOI
Xiang, Shuhuang; Zhang, Qingyang Asymptotics on the Fredholm integral equation with a highly oscillatory and weakly singular kernel. (English) Zbl 07704202 Appl. Math. Comput. 456, Article ID 128112, 17 p. (2023). MSC: 65Rxx 65Nxx 45Dxx PDF BibTeX XML Cite \textit{S. Xiang} and \textit{Q. Zhang}, Appl. Math. Comput. 456, Article ID 128112, 17 p. (2023; Zbl 07704202) Full Text: DOI
Yuan, Wenping; Liang, Hui; Chen, Yanping On the convergence of piecewise polynomial collocation methods for variable-order space-fractional diffusion equations. (English) Zbl 07703832 Math. Comput. Simul. 209, 102-117 (2023). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{W. Yuan} et al., Math. Comput. Simul. 209, 102--117 (2023; Zbl 07703832) Full Text: DOI
Jain, Riya; Pani, Amiya K.; Yadav, Sangita HDG method for linear parabolic integro-differential equations. (English) Zbl 07701072 Appl. Math. Comput. 450, Article ID 127987, 15 p. (2023). MSC: 65Rxx 65Mxx 45Kxx PDF BibTeX XML Cite \textit{R. Jain} et al., Appl. Math. Comput. 450, Article ID 127987, 15 p. (2023; Zbl 07701072) Full Text: DOI
Eidinejad, Zahra; Saadati, Reza; Allahviranloo, Tofigh; Li, Chenkuan A novel stability study on Volterra integral equations with delay (VIE-D) using the fuzzy minimum optimal controller in matrix-valued fuzzy Banach spaces. (English) Zbl 07700522 Comput. Appl. Math. 42, No. 5, Paper No. 215, 20 p. (2023). MSC: 45M10 45D05 33C05 PDF BibTeX XML Cite \textit{Z. Eidinejad} et al., Comput. Appl. Math. 42, No. 5, Paper No. 215, 20 p. (2023; Zbl 07700522) Full Text: DOI
Fang, Qingxiang; Liu, Xiaoping A comment on: “Attractivity for functional Volterra integral equations of convolution type”. (English) Zbl 1514.65202 J. Comput. Appl. Math. 425, Article ID 115059, 4 p. (2023). MSC: 65R20 47H10 45D05 45G10 PDF BibTeX XML Cite \textit{Q. Fang} and \textit{X. Liu}, J. Comput. Appl. Math. 425, Article ID 115059, 4 p. (2023; Zbl 1514.65202) Full Text: DOI
Wang, Yuxuan; Wang, Tongke; Gao, Guang-hua Series solution and Chebyshev collocation method for the initial value problem of Emden-Fowler equation. (English) Zbl 07699190 Int. J. Comput. Math. 100, No. 2, 233-252 (2023). MSC: 65-XX 41A58 65L05 65R20 PDF BibTeX XML Cite \textit{Y. Wang} et al., Int. J. Comput. Math. 100, No. 2, 233--252 (2023; Zbl 07699190) Full Text: DOI
Noeiaghdam, Samad; Sidorov, Denis; Dreglea, Aliona A novel numerical optimality technique to find the optimal results of Volterra integral equation of the second kind with discontinuous kernel. (English) Zbl 1516.65153 Appl. Numer. Math. 186, 202-212 (2023). MSC: 65R20 45D05 65Y15 PDF BibTeX XML Cite \textit{S. Noeiaghdam} et al., Appl. Numer. Math. 186, 202--212 (2023; Zbl 1516.65153) Full Text: DOI
Ma, Zheng; Huang, Chengming Fractional collocation method for third-kind Volterra integral equations with nonsmooth solutions. (English) Zbl 1516.65152 J. Sci. Comput. 95, No. 1, Paper No. 26, 16 p. (2023). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{Z. Ma} and \textit{C. Huang}, J. Sci. Comput. 95, No. 1, Paper No. 26, 16 p. (2023; Zbl 1516.65152) Full Text: DOI
Bayer, Christian; Breneis, Simon Markovian approximations of stochastic Volterra equations with the fractional kernel. (English) Zbl 1518.91311 Quant. Finance 23, No. 1, 53-70 (2023). MSC: 91G60 65C30 60G22 PDF BibTeX XML Cite \textit{C. Bayer} and \textit{S. Breneis}, Quant. Finance 23, No. 1, 53--70 (2023; Zbl 1518.91311) Full Text: DOI arXiv
Kong, Desong; Xiang, Shuhuang; Wu, Hongyu An efficient numerical method for Volterra integral equation of the second kind with a weakly singular kernel. (English) Zbl 1512.65306 J. Comput. Appl. Math. 427, Article ID 115101, 15 p. (2023). MSC: 65R20 45D05 45E10 PDF BibTeX XML Cite \textit{D. Kong} et al., J. Comput. Appl. Math. 427, Article ID 115101, 15 p. (2023; Zbl 1512.65306) Full Text: DOI
Prömel, David J.; Scheffels, David Stochastic Volterra equations with Hölder diffusion coefficients. (English) Zbl 07697545 Stochastic Processes Appl. 161, 291-315 (2023). MSC: 60H20 45D05 PDF BibTeX XML Cite \textit{D. J. Prömel} and \textit{D. Scheffels}, Stochastic Processes Appl. 161, 291--315 (2023; Zbl 07697545) Full Text: DOI arXiv
Yazdani, Salamn; Hadizadeh, Mahmoud; Fakoor, Vahid An asymptotic computational method for the nonlinear weakly singular integral models in option pricing. (English) Zbl 07695075 J. Math. Model. 11, No. 1, 171-185 (2023). MSC: 65R20 45M05 45D05 91G20 PDF BibTeX XML Cite \textit{S. Yazdani} et al., J. Math. Model. 11, No. 1, 171--185 (2023; Zbl 07695075) Full Text: DOI
Ziyaee, Fahimeh; Tari, Abolfazl An LN-stable method to solve the fractional partial integro-differential equations. (English) Zbl 07695073 J. Math. Model. 11, No. 1, 133-156 (2023). MSC: 65R20 26A33 35R11 45D05 PDF BibTeX XML Cite \textit{F. Ziyaee} and \textit{A. Tari}, J. Math. Model. 11, No. 1, 133--156 (2023; Zbl 07695073) Full Text: DOI
Mary, S. Joe Christin; Tamilselvan, Ayyadurai Second order spline method for fractional Bagley-Torvik equation with variable coefficients and Robin boundary conditions. (English) Zbl 07695072 J. Math. Model. 11, No. 1, 117-132 (2023). MSC: 34B30 34A08 41A15 26A33 34B15 45D05 65L10 PDF BibTeX XML Cite \textit{S. J. C. Mary} and \textit{A. Tamilselvan}, J. Math. Model. 11, No. 1, 117--132 (2023; Zbl 07695072) Full Text: DOI
Martire, Antonio L.; Russo, Emilio; Staino, Alessandro Surrender and path-dependent guarantees in variable annuities: integral equation solutions and benchmark methods. (English) Zbl 1519.91217 Decis. Econ. Finance 46, No. 1, 177-220 (2023). MSC: 91G05 45D05 65C05 PDF BibTeX XML Cite \textit{A. L. Martire} et al., Decis. Econ. Finance 46, No. 1, 177--220 (2023; Zbl 1519.91217) Full Text: DOI
Talaei, Y.; Lima, P. M. An efficient spectral method for solving third-kind Volterra integral equations with non-smooth solutions. (English) Zbl 07691715 Comput. Appl. Math. 42, No. 4, Paper No. 190, 22 p. (2023). MSC: 65M70 35R09 35R11 26A33 45D05 65M12 PDF BibTeX XML Cite \textit{Y. Talaei} and \textit{P. M. Lima}, Comput. Appl. Math. 42, No. 4, Paper No. 190, 22 p. (2023; Zbl 07691715) Full Text: DOI arXiv
Sabitov, K. B. Forward and inverse source reconstruction problems for the equations of vibrations of a rectangular plate. (English. Russian original) Zbl 1516.35261 Comput. Math. Math. Phys. 63, No. 4, 582-595 (2023); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 4, 614-628 (2023). MSC: 35L35 35R30 74H45 74K20 PDF BibTeX XML Cite \textit{K. B. Sabitov}, Comput. Math. Math. Phys. 63, No. 4, 582--595 (2023; Zbl 1516.35261); translation from Zh. Vychisl. Mat. Mat. Fiz. 63, No. 4, 614--628 (2023) Full Text: DOI
Behera, S.; Ray, S. Saha A novel numerical scheme based on Müntz-Legendre wavelets for solving pantograph Volterra delay-integro-differential equations. (English) Zbl 07686471 Mediterr. J. Math. 20, No. 1, Paper No. 46, 35 p. (2023). MSC: 65R20 45D05 45J05 PDF BibTeX XML Cite \textit{S. Behera} and \textit{S. S. Ray}, Mediterr. J. Math. 20, No. 1, Paper No. 46, 35 p. (2023; Zbl 07686471) Full Text: DOI
Cai, Yongmei; Guo, Qian; Mao, Xuerong Positivity preserving truncated scheme for the stochastic Lotka-Volterra model with small moment convergence. (English) Zbl 1518.65011 Calcolo 60, No. 2, Paper No. 24, 21 p. (2023). MSC: 65C30 60H10 PDF BibTeX XML Cite \textit{Y. Cai} et al., Calcolo 60, No. 2, Paper No. 24, 21 p. (2023; Zbl 1518.65011) Full Text: DOI
Kharat, V. V.; Tate, Shivaji; Gophane, M. T.; Gandhi, M. A. Some results on \(\psi\)-Hilfer Volterra-Fredholm fractional integro-differential equations. (English) Zbl 1516.45009 J. Adv. Math. Stud. 16, No. 1, 66-76 (2023). MSC: 45J05 45D05 45B05 26A33 PDF BibTeX XML Cite \textit{V. V. Kharat} et al., J. Adv. Math. Stud. 16, No. 1, 66--76 (2023; Zbl 1516.45009) Full Text: Link
Nashine, Hemant Kumar; Das, Anupam Solution of Volterra integral equations in Banach algebras using measure of noncompactness. (English) Zbl 1522.45001 Mohiuddine, S. A. (ed.) et al., Sequence space theory with applications. Boca Raton, FL: CRC Press. 154-168 (2023). Reviewer: Dariusz Bugajewski (Poznań) MSC: 45D05 47N20 47H08 47H09 47H10 PDF BibTeX XML Cite \textit{H. K. Nashine} and \textit{A. Das}, in: Sequence space theory with applications. Boca Raton, FL: CRC Press. 154--168 (2023; Zbl 1522.45001) Full Text: DOI
Amirali, Ilhame; Acar, Hülya A novel approach for the stability inequalities for high-order Volterra delay integro-differential equation. (English) Zbl 1509.65148 J. Appl. Math. Comput. 69, No. 1, 1057-1069 (2023). MSC: 65R20 45J05 45D05 65L05 PDF BibTeX XML Cite \textit{I. Amirali} and \textit{H. Acar}, J. Appl. Math. Comput. 69, No. 1, 1057--1069 (2023; Zbl 1509.65148) Full Text: DOI
Kumar, Saurabh; Gupta, Vikas An approach based on fractional-order Lagrange polynomials for the numerical approximation of fractional order non-linear Volterra-Fredholm integro-differential equations. (English) Zbl 07676658 J. Appl. Math. Comput. 69, No. 1, 251-272 (2023). MSC: 65Mxx 26Axx 65Rxx PDF BibTeX XML Cite \textit{S. Kumar} and \textit{V. Gupta}, J. Appl. Math. Comput. 69, No. 1, 251--272 (2023; Zbl 07676658) Full Text: DOI
Inoan, Daniela; Marian, Daniela Semi-Hyers-Ulam-Rassias stability for an integro-differential equation of order \(n\). (English) Zbl 1511.45006 Demonstr. Math. 56, Article ID 20220198, 10 p. (2023). MSC: 45J05 45E10 45D05 45M10 44A10 PDF BibTeX XML Cite \textit{D. Inoan} and \textit{D. Marian}, Demonstr. Math. 56, Article ID 20220198, 10 p. (2023; Zbl 1511.45006) Full Text: DOI
Maksymuk, O. V. Specific features of the contact interaction and wear of thin-walled structural elements. (English. Ukrainian original) Zbl 1512.74076 J. Math. Sci., New York 270, No. 1, 157-175 (2023); translation from Mat. Metody Fiz.-Mekh. Polya 63, No. 1, 133-148 (2020). MSC: 74M15 74M10 74F05 74S99 PDF BibTeX XML Cite \textit{O. V. Maksymuk}, J. Math. Sci., New York 270, No. 1, 157--175 (2023; Zbl 1512.74076); translation from Mat. Metody Fiz.-Mekh. Polya 63, No. 1, 133--148 (2020) Full Text: DOI
Kiyanpour, Mojtaba; Zangeneh, Bijan Z.; Jahanipur, Ruhollah Global solution to non-self-adjoint stochastic Volterra equation. (English) Zbl 1515.60235 Stoch. Dyn. 23, No. 1, Article ID 2350004, 24 p. (2023). Reviewer: Toader Morozan (Bucureşti) MSC: 60H15 60H20 45D05 34A12 PDF BibTeX XML Cite \textit{M. Kiyanpour} et al., Stoch. Dyn. 23, No. 1, Article ID 2350004, 24 p. (2023; Zbl 1515.60235) Full Text: DOI
Kudryashova, Elena V.; Reitmann, Volker Contraction analysis of Volterra integral equations via realization theory and frequency-domain methods. (English) Zbl 1511.45002 J. Comput. Dyn. 10, No. 1, 248-267 (2023). MSC: 45D05 93B15 PDF BibTeX XML Cite \textit{E. V. Kudryashova} and \textit{V. Reitmann}, J. Comput. Dyn. 10, No. 1, 248--267 (2023; Zbl 1511.45002) Full Text: DOI
Singh, P. K.; Saha Ray, S. Shifted Chebyshev spectral Galerkin method to solve stochastic Itô-Volterra integral equations driven by fractional Brownian motion appearing in mathematical physics. (English) Zbl 07671212 Comput. Appl. Math. 42, No. 3, Paper No. 120, 23 p. (2023). MSC: 65R20 60H30 60H35 45R05 60J65 PDF BibTeX XML Cite \textit{P. K. Singh} and \textit{S. Saha Ray}, Comput. Appl. Math. 42, No. 3, Paper No. 120, 23 p. (2023; Zbl 07671212) Full Text: DOI
Wang, Mengjie; Dai, Xinjie; Yu, Yanyan; Xiao, Aiguo Fast \(\theta\)-Maruyama scheme for stochastic Volterra integral equations of convolution type: mean-square stability and strong convergence analysis. (English) Zbl 07671202 Comput. Appl. Math. 42, No. 3, Paper No. 108, 36 p. (2023). MSC: 65C30 60H20 45D05 60H35 PDF BibTeX XML Cite \textit{M. Wang} et al., Comput. Appl. Math. 42, No. 3, Paper No. 108, 36 p. (2023; Zbl 07671202) Full Text: DOI
Sikorska-Nowak, Aneta Integrodifferential equations of mixed type on time scales with \(\Delta\)-HK and \(\Delta\)-HKP integrals. (English) Zbl 1514.45006 Electron. J. Differ. Equ. 2023, Paper No. 29, 20 p. (2023). MSC: 45J05 47N20 47H08 26E70 PDF BibTeX XML Cite \textit{A. Sikorska-Nowak}, Electron. J. Differ. Equ. 2023, Paper No. 29, 20 p. (2023; Zbl 1514.45006) Full Text: Link
Ma, Zheng; Huang, Chengming An \(hp\)-version fractional collocation method for Volterra integro-differential equations with weakly singular kernels. (English) Zbl 1511.65061 Numer. Algorithms 92, No. 4, 2377-2404 (2023). MSC: 65L03 65R10 45D05 65L60 PDF BibTeX XML Cite \textit{Z. Ma} and \textit{C. Huang}, Numer. Algorithms 92, No. 4, 2377--2404 (2023; Zbl 1511.65061) Full Text: DOI
Tuan Nguyen Dinh Risk-neutral multiobjective optimal control of random Volterra integral equations. (English) Zbl 1510.49023 J. Math. Anal. Appl. 523, No. 2, Article ID 127024, 38 p. (2023). MSC: 49K45 49J21 45D05 90C29 PDF BibTeX XML Cite \textit{Tuan Nguyen Dinh}, J. Math. Anal. Appl. 523, No. 2, Article ID 127024, 38 p. (2023; Zbl 1510.49023) Full Text: DOI
Hamoud, Ahmed A.; Mohammed, Nedal M. Existence and uniqueness results for fractional Volterra-Fredholm integro differential equations with integral boundary conditions. (English) Zbl 1516.45006 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 1, 75-86 (2023). Reviewer: Vitaliy Volchkov (Donetsk) MSC: 45J05 45D05 45B05 45M20 45M10 26A33 47N20 PDF BibTeX XML Cite \textit{A. A. Hamoud} and \textit{N. M. Mohammed}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 30, No. 1, 75--86 (2023; Zbl 1516.45006) Full Text: Link
Mahmoodi, Darani Narges Hybrid collocation method for some classes of second-kind nonlinear weakly singular integral equations. (English) Zbl 07665303 Comput. Methods Differ. Equ. 11, No. 1, 183-196 (2023). MSC: 65L05 34K06 34K28 PDF BibTeX XML Cite \textit{D. N. Mahmoodi}, Comput. Methods Differ. Equ. 11, No. 1, 183--196 (2023; Zbl 07665303) Full Text: DOI
Pyatkov, S. G.; Baranchuk, V. A. Determination of the heat transfer coefficient in mathematical models of heat and mass transfer. (English. Russian original) Zbl 1509.80006 Math. Notes 113, No. 1, 93-108 (2023); translation from Mat. Zametki 113, No. 1, 90-108 (2023). MSC: 80A23 35R30 80A19 35K05 35N10 35A01 35A02 80M50 45D05 65R20 PDF BibTeX XML Cite \textit{S. G. Pyatkov} and \textit{V. A. Baranchuk}, Math. Notes 113, No. 1, 93--108 (2023; Zbl 1509.80006); translation from Mat. Zametki 113, No. 1, 90--108 (2023) Full Text: DOI
Wu, Qinghua; Sun, Mengjun On the convergence rate of collocation methods for Volterra integral equations with weakly singular oscillatory trigonometric kernels. (English) Zbl 07663297 Results Appl. Math. 17, Article ID 100352, 14 p. (2023). MSC: 65Rxx 65Dxx 45Dxx PDF BibTeX XML Cite \textit{Q. Wu} and \textit{M. Sun}, Results Appl. Math. 17, Article ID 100352, 14 p. (2023; Zbl 07663297) Full Text: DOI
Yapman, Ömer; Kudu, Mustafa; Amiraliyev, Gabil M. Method of exact difference schemes for the numerical solution of parameterized singularly perturbed problem. (English) Zbl 1506.65115 Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023). MSC: 65L11 65L12 65L20 65R20 PDF BibTeX XML Cite \textit{Ö. Yapman} et al., Mediterr. J. Math. 20, No. 3, Paper No. 146, 18 p. (2023; Zbl 1506.65115) Full Text: DOI
Tuan, Tran Van Stability and regularity in inverse source problem for generalized subdiffusion equation perturbed by locally Lipschitz sources. (English) Zbl 1510.35388 Z. Angew. Math. Phys. 74, No. 2, Paper No. 65, 25 p. (2023). MSC: 35R11 35B40 35C15 35R09 45D05 45K05 PDF BibTeX XML Cite \textit{T. Van Tuan}, Z. Angew. Math. Phys. 74, No. 2, Paper No. 65, 25 p. (2023; Zbl 1510.35388) Full Text: DOI
Admon, Mohd Rashid; Senu, Norazak; Ahmadian, Ali; Majid, Zanariah Abdul; Salahshour, Soheil A new accurate method for solving fractional relaxation-oscillation with Hilfer derivatives. (English) Zbl 07655419 Comput. Appl. Math. 42, No. 1, Paper No. 10, 33 p. (2023). MSC: 65-XX 34A08 26A33 PDF BibTeX XML Cite \textit{M. R. Admon} et al., Comput. Appl. Math. 42, No. 1, Paper No. 10, 33 p. (2023; Zbl 07655419) Full Text: DOI
Ghiat, Mourad; Tair, Boutheina; Ghuebbai, Hamza; Kamouche, Soumia Block-by-block method for solving non-linear Volterra integral equation of the first kind. (English) Zbl 1505.65319 Comput. Appl. Math. 42, No. 1, Paper No. 67, 21 p. (2023). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{M. Ghiat} et al., Comput. Appl. Math. 42, No. 1, Paper No. 67, 21 p. (2023; Zbl 1505.65319) Full Text: DOI
Lan, Kunquan Linear higher-order fractional differential and integral equations. (English) Zbl 1502.34010 Electron. J. Differ. Equ. 2023, Paper No. 01, 20 p. (2023). MSC: 34A08 26A33 34A12 45D05 PDF BibTeX XML Cite \textit{K. Lan}, Electron. J. Differ. Equ. 2023, Paper No. 01, 20 p. (2023; Zbl 1502.34010) Full Text: Link
Alegría, Francisco; Poblete, Verónica; Pozo, Juan C. Nonlocal in-time telegraph equation and telegraph processes with random time. (English) Zbl 1505.35346 J. Differ. Equations 347, 310-347 (2023). MSC: 35R11 35R60 26A33 45D05 60G22 60H15 60H20 PDF BibTeX XML Cite \textit{F. Alegría} et al., J. Differ. Equations 347, 310--347 (2023; Zbl 1505.35346) Full Text: DOI
Vabishchevich, P. N. Approximate solution of the Cauchy problem for a first-order integrodifferential equation with solution derivative memory. (English) Zbl 1499.65774 J. Comput. Appl. Math. 422, Article ID 114887, 11 p. (2023). MSC: 65R20 34K30 35R20 47G20 65J08 PDF BibTeX XML Cite \textit{P. N. Vabishchevich}, J. Comput. Appl. Math. 422, Article ID 114887, 11 p. (2023; Zbl 1499.65774) Full Text: DOI arXiv
Tuan, Tran van Existence and regularity in inverse source problem for fractional reaction-subdiffusion equation perturbed by locally Lipschitz sources. (English) Zbl 1504.35654 Evol. Equ. Control Theory 12, No. 1, 336-361 (2023). MSC: 35R30 35B65 35C15 35R11 45D05 45K05 PDF BibTeX XML Cite \textit{T. van Tuan}, Evol. Equ. Control Theory 12, No. 1, 336--361 (2023; Zbl 1504.35654) Full Text: DOI
Liang, Hui; Stynes, Martin Regularity of the solution of a nonlinear Volterra integral equation of the second kind. (English) Zbl 1506.45002 Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 2211-2223 (2023). Reviewer: Alexander N. Tynda (Penza) MSC: 45D05 45B05 45G05 PDF BibTeX XML Cite \textit{H. Liang} and \textit{M. Stynes}, Discrete Contin. Dyn. Syst., Ser. B 28, No. 3, 2211--2223 (2023; Zbl 1506.45002) Full Text: DOI
Márquez Albés, Ignacio; Slavík, Antonín; Tvrdý, Milan Duality for Stieltjes differential and integral equations. (English) Zbl 1507.34004 J. Math. Anal. Appl. 519, No. 1, Article ID 126789, 52 p. (2023). MSC: 34A06 34A30 34N05 26A39 45D05 34A05 PDF BibTeX XML Cite \textit{I. Márquez Albés} et al., J. Math. Anal. Appl. 519, No. 1, Article ID 126789, 52 p. (2023; Zbl 1507.34004) Full Text: DOI
Saemi, Fereshteh; Ebrahimi, Hamideh; Shafiee, Mahmoud; Hosseini, Kamyar A detailed study on 2D Volterra-Fredholm integro-differential equations involving the Caputo fractional derivative. (English) Zbl 07604641 J. Comput. Appl. Math. 420, Article ID 114820, 12 p. (2023). MSC: 65R20 45D05 45B05 65M70 65L60 PDF BibTeX XML Cite \textit{F. Saemi} et al., J. Comput. Appl. Math. 420, Article ID 114820, 12 p. (2023; Zbl 07604641) Full Text: DOI
Laib, Hafida; Boulmerka, Aissa; Bellour, Azzeddine; Birem, Fouzia Numerical solution of two-dimensional linear and nonlinear Volterra integral equations using Taylor collocation method. (English) Zbl 1502.65275 J. Comput. Appl. Math. 417, Article ID 114537, 21 p. (2023). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{H. Laib} et al., J. Comput. Appl. Math. 417, Article ID 114537, 21 p. (2023; Zbl 1502.65275) Full Text: DOI
Bulai, I. M.; De Bonis, M. C.; Laurita, C.; Sagaria, V. Modeling metastatic tumor evolution, numerical resolution and growth prediction. (English) Zbl 07594656 Math. Comput. Simul. 203, 721-740 (2023). MSC: 92-XX 65-XX PDF BibTeX XML Cite \textit{I. M. Bulai} et al., Math. Comput. Simul. 203, 721--740 (2023; Zbl 07594656) Full Text: DOI
Braik, Abdelkader; Beniani, Abderrahmane; Zennir, Khaled Well-posedness and general decay for Moore-Gibson-Thompson equation in viscoelasticity with delay term. (English) Zbl 07771834 Ric. Mat. 71, No. 2, 689-710 (2022). MSC: 35B40 35G40 35R09 45D05 PDF BibTeX XML Cite \textit{A. Braik} et al., Ric. Mat. 71, No. 2, 689--710 (2022; Zbl 07771834) Full Text: DOI