Abeya, Asela; Biondini, Gino; Hoefer, Mark A. Whitham modulation theory for the defocusing nonlinear Schrödinger equation in two and three spatial dimensions. (English) Zbl 07657057 J. Phys. A, Math. Theor. 56, No. 2, Article ID 025701, 34 p. (2023). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{A. Abeya} et al., J. Phys. A, Math. Theor. 56, No. 2, Article ID 025701, 34 p. (2023; Zbl 07657057) Full Text: DOI arXiv OpenURL
Yu, Yanghai; Li, Jinlu Non-uniform dependence of the data-to-solution map for the two-component Fornberg-Whitham system. (English) Zbl 07645542 Ann. Mat. Pura Appl. (4) 202, No. 1, 59-76 (2023). MSC: 35Q35 35Q53 35B30 35C08 PDF BibTeX XML Cite \textit{Y. Yu} and \textit{J. Li}, Ann. Mat. Pura Appl. (4) 202, No. 1, 59--76 (2023; Zbl 07645542) Full Text: DOI OpenURL
Guo, Yingying The well-posedness, ill-posedness and non-uniform dependence on initial data for the Fornberg-Whitham equation in Besov spaces. (English) Zbl 07640624 Nonlinear Anal., Real World Appl. 70, Article ID 103791, 18 p. (2023). MSC: 35Q35 35Q53 35B30 35G25 35A01 35A02 76B03 76B25 35R25 PDF BibTeX XML Cite \textit{Y. Guo}, Nonlinear Anal., Real World Appl. 70, Article ID 103791, 18 p. (2023; Zbl 07640624) Full Text: DOI arXiv OpenURL
Lai, Shaoyong; Luo, Kexin Wave breaking to a shallow water wave equation involving the Fornberg-Whitham model. (English) Zbl 1503.35169 J. Differ. Equations 344, 509-521 (2023). MSC: 35Q35 76B25 35D35 PDF BibTeX XML Cite \textit{S. Lai} and \textit{K. Luo}, J. Differ. Equations 344, 509--521 (2023; Zbl 1503.35169) Full Text: DOI OpenURL
Bashir, Azhar; Seadawy, Aly R.; Ahmed, Sarfaraz; Rizvi, Syed T. R. The Weierstrass and Jacobi elliptic solutions along with multiwave, homoclinic breather, kink-periodic-cross rational and other solitary wave solutions to Fornberg Whitham equation. (English) Zbl 07642278 Chaos Solitons Fractals 163, Article ID 112538, 16 p. (2022). MSC: 35Qxx 35Cxx 35Bxx PDF BibTeX XML Cite \textit{A. Bashir} et al., Chaos Solitons Fractals 163, Article ID 112538, 16 p. (2022; Zbl 07642278) Full Text: DOI OpenURL
Flamarion, Marcelo V. Waves generated by a submerged topography for the Whitham equation. (English) Zbl 07626565 Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 257, 10 p. (2022). MSC: 76B15 76B20 76B25 76B55 PDF BibTeX XML Cite \textit{M. V. Flamarion}, Int. J. Appl. Comput. Math. 8, No. 5, Paper No. 257, 10 p. (2022; Zbl 07626565) Full Text: DOI OpenURL
Flamarion, Marcelo V. Solitary wave collisions for the Whitham equation. (English) Zbl 07610392 Comput. Appl. Math. 41, No. 8, Paper No. 356, 10 p. (2022). MSC: 76B15 76B20 76B25 76B55 PDF BibTeX XML Cite \textit{M. V. Flamarion}, Comput. Appl. Math. 41, No. 8, Paper No. 356, 10 p. (2022; Zbl 07610392) Full Text: DOI OpenURL
Zhang, Yan; Hao, Hui-Qin; Guo, Rui Periodic solutions and Whitham modulation equations for the Lakshmanan-Porsezian-Daniel equation. (English) Zbl 07600398 Phys. Lett., A 450, Article ID 128369, 19 p. (2022). MSC: 81-XX 82-XX PDF BibTeX XML Cite \textit{Y. Zhang} et al., Phys. Lett., A 450, Article ID 128369, 19 p. (2022; Zbl 07600398) Full Text: DOI OpenURL
Gong, Ruizhi; Wang, Deng-Shan Formation of the undular bores in shallow water generalized Kaup-Boussinesq model. (English) Zbl 07579765 Physica D 439, Article ID 133398, 15 p. (2022). MSC: 35Q35 76B25 76P05 76L05 35C06 35C08 35B40 PDF BibTeX XML Cite \textit{R. Gong} and \textit{D.-S. Wang}, Physica D 439, Article ID 133398, 15 p. (2022; Zbl 07579765) Full Text: DOI OpenURL
Truong, Tien; Wahlén, Erik; Wheeler, Miles H. Global bifurcation of solitary waves for the Whitham equation. (English) Zbl 07566708 Math. Ann. 383, No. 3-4, 1521-1565 (2022). MSC: 35Q35 35Q53 76B25 76B15 35B32 35C07 PDF BibTeX XML Cite \textit{T. Truong} et al., Math. Ann. 383, No. 3--4, 1521--1565 (2022; Zbl 07566708) Full Text: DOI arXiv OpenURL
Shaheen, Sadaf; Haq, Sirajul; Ghafoor, Abdul A meshfree technique for the numerical solutions of nonlinear Fornberg-Whitham and Degasperis-Procesi equations with their modified forms. (English) Zbl 07562926 Comput. Appl. Math. 41, No. 4, Paper No. 183, 22 p. (2022). MSC: 65M70 PDF BibTeX XML Cite \textit{S. Shaheen} et al., Comput. Appl. Math. 41, No. 4, Paper No. 183, 22 p. (2022; Zbl 07562926) Full Text: DOI OpenURL
Rashid, Saima; Kubra, Khadija Tul; Sultana, Sobia; Agarwal, Praveen; Osman, M. S. An approximate analytical view of physical and biological models in the setting of Caputo operator via Elzaki transform decomposition method. (English) Zbl 1501.92125 J. Comput. Appl. Math. 413, Article ID 114378, 23 p. (2022). MSC: 92D25 26A51 26A33 26D07 26D10 26D15 35Q92 PDF BibTeX XML Cite \textit{S. Rashid} et al., J. Comput. Appl. Math. 413, Article ID 114378, 23 p. (2022; Zbl 1501.92125) Full Text: DOI OpenURL
Peng, Linyu A modified formal Lagrangian formulation for general differential equations. (English) Zbl 07523439 Japan J. Ind. Appl. Math. 39, No. 2, 573-598 (2022). Reviewer: Margarida Camarinha (Coimbra) MSC: 70H33 70H03 PDF BibTeX XML Cite \textit{L. Peng}, Japan J. Ind. Appl. Math. 39, No. 2, 573--598 (2022; Zbl 07523439) Full Text: DOI arXiv OpenURL
Saut, Jean-Claude; Wang, Yuexun The wave breaking for Whitham-type equations revisited. (English) Zbl 1486.76015 SIAM J. Math. Anal. 54, No. 2, 2295-2319 (2022). MSC: 76B15 35Q35 PDF BibTeX XML Cite \textit{J.-C. Saut} and \textit{Y. Wang}, SIAM J. Math. Anal. 54, No. 2, 2295--2319 (2022; Zbl 1486.76015) Full Text: DOI arXiv OpenURL
Carter, John D.; Kalisch, Henrik; Kharif, Christian; Abid, Malek The cubic vortical Whitham equation. (English) Zbl 07508671 Wave Motion 110, Article ID 102883, 13 p. (2022). MSC: 76-XX 35-XX PDF BibTeX XML Cite \textit{J. D. Carter} et al., Wave Motion 110, Article ID 102883, 13 p. (2022; Zbl 07508671) Full Text: DOI arXiv OpenURL
Aslanova, Gunay; Demirci, Ali; Ahmetolan, Semra Modulated periodic wavetrains in the spherical Gardner equation. (English) Zbl 07508656 Wave Motion 109, Article ID 102844, 12 p. (2022). MSC: 35-XX 76-XX PDF BibTeX XML Cite \textit{G. Aslanova} et al., Wave Motion 109, Article ID 102844, 12 p. (2022; Zbl 07508656) Full Text: DOI OpenURL
Alrabaiah, Hussam Approximate solution of Fornberg-Whitham equation by modified homotopy perturbation method under non-singular fractional derivative. (English) Zbl 07490665 Fractals 30, No. 1, Article ID 2240029, 6 p. (2022). MSC: 65Mxx 26Axx 34Axx PDF BibTeX XML Cite \textit{H. Alrabaiah}, Fractals 30, No. 1, Article ID 2240029, 6 p. (2022; Zbl 07490665) Full Text: DOI OpenURL
Wang, Deng-Shan; Xu, Ling; Xuan, Zuxing The complete classification of solutions to the Riemann problem of the defocusing complex modified KdV equation. (English) Zbl 1486.37034 J. Nonlinear Sci. 32, No. 1, Paper No. 3, 46 p. (2022). MSC: 37K10 37K15 35Q53 35Q51 PDF BibTeX XML Cite \textit{D.-S. Wang} et al., J. Nonlinear Sci. 32, No. 1, Paper No. 3, 46 p. (2022; Zbl 1486.37034) Full Text: DOI OpenURL
Gavrilyuk, Sergey; Shyue, Keh-Ming Singular solutions of the BBM equation: analytical and numerical study. (English) Zbl 1479.35194 Nonlinearity 35, No. 1, 388-410 (2022). MSC: 35C07 35L40 35Q35 35Q74 PDF BibTeX XML Cite \textit{S. Gavrilyuk} and \textit{K.-M. Shyue}, Nonlinearity 35, No. 1, 388--410 (2022; Zbl 1479.35194) Full Text: DOI HAL OpenURL
Arnesen, Mathias Nikolai Decay and symmetry of solitary waves. (English) Zbl 1477.35154 J. Math. Anal. Appl. 507, No. 1, Article ID 125450, 24 p. (2022). MSC: 35Q35 35C08 35B06 76B15 PDF BibTeX XML Cite \textit{M. N. Arnesen}, J. Math. Anal. Appl. 507, No. 1, Article ID 125450, 24 p. (2022; Zbl 1477.35154) Full Text: DOI arXiv OpenURL
Salmi, S.; Allalou, N.; Debiane, M. Weakly nonlinear gravity three-dimensional unbounded interfacial waves: perturbation method and variational formulation. (English. Russian original) Zbl 1501.76019 Fluid Dyn. 56, Suppl. 1, S53-S69 (2021); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2022, No. 2, 105-122 (2022). MSC: 76B55 76M45 76M30 PDF BibTeX XML Cite \textit{S. Salmi} et al., Fluid Dyn. 56, S53--S69 (2021; Zbl 1501.76019); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2022, No. 2, 105--122 (2022) Full Text: DOI OpenURL
Gevorgian, A.; Kulagin, N.; Lerman, L.; Malkin, A. Solitons of Whitham equation with resonance dispersion. (English) Zbl 1498.35474 Chaos Solitons Fractals 143, Article ID 110550, 5 p. (2021). MSC: 35Q53 PDF BibTeX XML Cite \textit{A. Gevorgian} et al., Chaos Solitons Fractals 143, Article ID 110550, 5 p. (2021; Zbl 1498.35474) Full Text: DOI OpenURL
Wang, Kang-Jia; Wang, Kang-Le Variational principles for fractal Whitham-Broer-Kaup equations in shallow water. (English) Zbl 1498.76012 Fractals 29, No. 2, Article ID 2150028, 9 p. (2021). MSC: 76B10 76M30 76M60 28A80 PDF BibTeX XML Cite \textit{K.-J. Wang} and \textit{K.-L. Wang}, Fractals 29, No. 2, Article ID 2150028, 9 p. (2021; Zbl 1498.76012) Full Text: DOI OpenURL
Akers, Benjamin; Nicholls, David P. Wilton ripples in weakly nonlinear models of water waves: existence and computation. (English) Zbl 1490.76032 Water Waves 3, No. 3, 491-511 (2021). MSC: 76B15 35Q35 35C07 76B45 76M22 PDF BibTeX XML Cite \textit{B. Akers} and \textit{D. P. Nicholls}, Water Waves 3, No. 3, 491--511 (2021; Zbl 1490.76032) Full Text: DOI OpenURL
Carter, John D.; Dinvay, Evgueni; Kalisch, Henrik Fully dispersive Boussinesq models with uneven bathymetry. (English) Zbl 1497.35359 J. Eng. Math. 127, Paper No. 10, 15 p. (2021). MSC: 35Q35 76B15 76-05 65T50 PDF BibTeX XML Cite \textit{J. D. Carter} et al., J. Eng. Math. 127, Paper No. 10, 15 p. (2021; Zbl 1497.35359) Full Text: DOI arXiv OpenURL
Yang, Shaojie Wave breaking phenomena for the Fornberg-Whitham equation. (English) Zbl 1478.35056 J. Dyn. Differ. Equations 33, No. 4, 1753-1758 (2021). MSC: 35B44 35G25 35Q53 PDF BibTeX XML Cite \textit{S. Yang}, J. Dyn. Differ. Equations 33, No. 4, 1753--1758 (2021; Zbl 1478.35056) Full Text: DOI OpenURL
Charalampidis, Efstathios G.; Hur, Vera Mikyoung Numerical bifurcation and stability for the capillary-gravity Whitham equation. (English) Zbl 07428541 Wave Motion 106, Article ID 102793, 18 p. (2021). MSC: 76-XX 83-XX PDF BibTeX XML Cite \textit{E. G. Charalampidis} and \textit{V. M. Hur}, Wave Motion 106, Article ID 102793, 18 p. (2021; Zbl 07428541) Full Text: DOI arXiv OpenURL
Didenkulova, E.; Pelinovsky, E.; Touboul, J. Long-wave approximations in the description of bottom pressure. (English) Zbl 07425544 Wave Motion 100, Article ID 102668, 10 p. (2021). MSC: 35-XX 76-XX PDF BibTeX XML Cite \textit{E. Didenkulova} et al., Wave Motion 100, Article ID 102668, 10 p. (2021; Zbl 07425544) Full Text: DOI OpenURL
Zhang, Qian; Xu, Yan; Shu, Chi-Wang Dissipative and conservative local discontinuous Galerkin methods for the Fornberg-Whitham type equations. (English) Zbl 1473.65225 Commun. Comput. Phys. 30, No. 2, 321-356 (2021). MSC: 65M60 35L75 35G25 PDF BibTeX XML Cite \textit{Q. Zhang} et al., Commun. Comput. Phys. 30, No. 2, 321--356 (2021; Zbl 1473.65225) Full Text: DOI arXiv OpenURL
Emerald, Louis Rigorous derivation of the Whitham equations from the water waves equations in the shallow water regime. (English) Zbl 1479.35663 Nonlinearity 34, No. 11, 7470-7509 (2021). MSC: 35Q35 76B15 35C20 86A05 PDF BibTeX XML Cite \textit{L. Emerald}, Nonlinearity 34, No. 11, 7470--7509 (2021; Zbl 1479.35663) Full Text: DOI arXiv OpenURL
van der Sande, Kiera; El, Gennady A.; Hoefer, Mark A. Dynamic soliton-mean flow interaction with non-convex flux. (English) Zbl 1496.76035 J. Fluid Mech. 928, Paper No. A21, 43 p. (2021). MSC: 76B25 76B55 35Q51 35Q53 PDF BibTeX XML Cite \textit{K. van der Sande} et al., J. Fluid Mech. 928, Paper No. A21, 43 p. (2021; Zbl 1496.76035) Full Text: DOI arXiv OpenURL
Binswanger, Adam L.; Hoefer, Mark A.; Ilan, Boaz; Sprenger, Patrick Whitham modulation theory for generalized Whitham equations and a general criterion for modulational instability. (English) Zbl 1487.35313 Stud. Appl. Math. 147, No. 2, 724-751 (2021). MSC: 35Q35 35Q55 35Q53 76B15 PDF BibTeX XML Cite \textit{A. L. Binswanger} et al., Stud. Appl. Math. 147, No. 2, 724--751 (2021; Zbl 1487.35313) Full Text: DOI arXiv OpenURL
Clarke, W. A.; Marangell, R. Rigorous justification of the Whitham modulation theory for equations of NLS type. (English) Zbl 1487.35350 Stud. Appl. Math. 147, No. 2, 577-621 (2021). MSC: 35Q55 35Q53 35B10 35C07 35C20 81Q20 PDF BibTeX XML Cite \textit{W. A. Clarke} and \textit{R. Marangell}, Stud. Appl. Math. 147, No. 2, 577--621 (2021; Zbl 1487.35350) Full Text: DOI arXiv OpenURL
Nguyen, Lu Trong Khiem; Smyth, Noel Frederick Dispersive shock waves for the Boussinesq Benjamin-Ono equation. (English) Zbl 1471.76043 Stud. Appl. Math. 147, No. 1, 32-59 (2021). MSC: 76L05 76B15 86A05 PDF BibTeX XML Cite \textit{L. T. K. Nguyen} and \textit{N. F. Smyth}, Stud. Appl. Math. 147, No. 1, 32--59 (2021; Zbl 1471.76043) Full Text: DOI OpenURL
Itasaka, Kenta Wave-breaking phenomena and global existence for the generalized Fornberg-Whitham equation. (English) Zbl 1466.35059 J. Math. Anal. Appl. 502, No. 1, Article ID 125247, 26 p. (2021). MSC: 35B44 35G25 35R09 PDF BibTeX XML Cite \textit{K. Itasaka}, J. Math. Anal. Appl. 502, No. 1, Article ID 125247, 26 p. (2021; Zbl 1466.35059) Full Text: DOI arXiv OpenURL
Wei, Long New wave-breaking criteria for the Fornberg-Whitham equation. (English) Zbl 1461.35192 J. Differ. Equations 280, 571-589 (2021). Reviewer: Yongqian Zhang (Shanghai) MSC: 35Q35 35B44 76B15 35D35 PDF BibTeX XML Cite \textit{L. Wei}, J. Differ. Equations 280, 571--589 (2021; Zbl 1461.35192) Full Text: DOI OpenURL
Li, Nan; Lai, Shaoyong The entropy weak solution to a generalized Fornberg-Whitham equation. (English) Zbl 1487.35189 Bound. Value Probl. 2020, Paper No. 102, 10 p. (2020). MSC: 35G25 35D30 35L05 PDF BibTeX XML Cite \textit{N. Li} and \textit{S. Lai}, Bound. Value Probl. 2020, Paper No. 102, 10 p. (2020; Zbl 1487.35189) Full Text: DOI OpenURL
Baqer, Saleh; Smyth, Noel F. Modulation theory and resonant regimes for dispersive shock waves in nematic liquid crystals. (English) Zbl 1484.76010 Physica D 403, Article ID 132334, 20 p. (2020). MSC: 76A15 76L05 78A10 82D30 PDF BibTeX XML Cite \textit{S. Baqer} and \textit{N. F. Smyth}, Physica D 403, Article ID 132334, 20 p. (2020; Zbl 1484.76010) Full Text: DOI arXiv OpenURL
Zhang, Jianke; Yin, Luyang Residual power series method for the time fractional Fornberg-Whitham equation. (English) Zbl 1482.35261 Int. J. Dyn. Syst. Differ. Equ. 10, No. 6, 570-585 (2020). MSC: 35R11 34A08 35A35 26A33 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{L. Yin}, Int. J. Dyn. Syst. Differ. Equ. 10, No. 6, 570--585 (2020; Zbl 1482.35261) Full Text: DOI OpenURL
Haidar, Mohammad; El Arwadi, Toufic; Israwi, Samer Explicit solutions and numerical simulations for an asymptotic water waves model with surface tension. (English) Zbl 1481.76045 J. Appl. Math. Comput. 63, No. 1-2, 655-681 (2020). MSC: 76B15 76B45 76M45 76M99 PDF BibTeX XML Cite \textit{M. Haidar} et al., J. Appl. Math. Comput. 63, No. 1--2, 655--681 (2020; Zbl 1481.76045) Full Text: DOI OpenURL
Ablowitz, Mark J.; Cole, Justin T.; Rumanov, Igor Whitham equations and phase shifts for the Korteweg-de Vries equation. (English) Zbl 1472.35330 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2240, Article ID 20200300, 21 p. (2020). MSC: 35Q53 76B15 PDF BibTeX XML Cite \textit{M. J. Ablowitz} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 476, No. 2240, Article ID 20200300, 21 p. (2020; Zbl 1472.35330) Full Text: DOI arXiv OpenURL
Ding, Danping; Liu, Fei Blow-up of solution to the Fornberg-Whitham equation with weak dissipation. (Chinese. English summary) Zbl 1474.35136 J. Anhui Univ., Nat. Sci. 44, No. 6, 1-7 (2020). MSC: 35B44 35Q53 PDF BibTeX XML Cite \textit{D. Ding} and \textit{F. Liu}, J. Anhui Univ., Nat. Sci. 44, No. 6, 1--7 (2020; Zbl 1474.35136) Full Text: DOI OpenURL
Najafi, Ramin Group-invariant solutions for time-fractional Fornberg-Whitham equation by Lie symmetry analysis. (English) Zbl 1474.76066 Comput. Methods Differ. Equ. 8, No. 2, 251-258 (2020). MSC: 76M60 35R11 58J70 PDF BibTeX XML Cite \textit{R. Najafi}, Comput. Methods Differ. Equ. 8, No. 2, 251--258 (2020; Zbl 1474.76066) Full Text: DOI OpenURL
Biondini, Gino; Hoefer, Mark A.; Moro, Antonio Integrability, exact reductions and special solutions of the KP-Whitham equations. (English) Zbl 1471.37061 Nonlinearity 33, No. 8, 4114-4132 (2020). MSC: 37K10 37K40 35C08 35Q51 35Q35 PDF BibTeX XML Cite \textit{G. Biondini} et al., Nonlinearity 33, No. 8, 4114--4132 (2020; Zbl 1471.37061) Full Text: DOI arXiv OpenURL
Wang, Yaji; Xu, Hang; Sun, Q. New groups of solutions to the Whitham-Broer-Kaup equation. (English) Zbl 1457.35087 AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1735-1746 (2020). MSC: 35Q86 86A15 35C07 35B32 PDF BibTeX XML Cite \textit{Y. Wang} et al., AMM, Appl. Math. Mech., Engl. Ed. 41, No. 11, 1735--1746 (2020; Zbl 1457.35087) Full Text: DOI OpenURL
Ahmad, Hijaz; Akgül, Ali; Khan, Tufail A.; Stanimirović, Predrag S.; Chu, Yu-Ming New perspective on the conventional solutions of the nonlinear time-fractional partial differential equations. (English) Zbl 1456.35208 Complexity 2020, Article ID 8829017, 10 p. (2020). MSC: 35R11 35C10 65M12 PDF BibTeX XML Cite \textit{H. Ahmad} et al., Complexity 2020, Article ID 8829017, 10 p. (2020; Zbl 1456.35208) Full Text: DOI OpenURL
Johnson, Mathew A.; Wright, J. Douglas Generalized solitary waves in the gravity-capillary Whitham equation. (English) Zbl 1454.35285 Stud. Appl. Math. 144, No. 1, 102-130 (2020). MSC: 35Q35 35C07 76B25 76B45 35B40 PDF BibTeX XML Cite \textit{M. A. Johnson} and \textit{J. D. Wright}, Stud. Appl. Math. 144, No. 1, 102--130 (2020; Zbl 1454.35285) Full Text: DOI arXiv OpenURL
Kharif, C.; Abid, M.; Carter, J. D.; Kalisch, H. Stability of periodic progressive gravity wave solutions of the Whitham equation in the presence of vorticity. (English) Zbl 1448.35072 Phys. Lett., A 384, No. 2, Article ID 126060, 6 p. (2020). MSC: 35C07 35Q53 PDF BibTeX XML Cite \textit{C. Kharif} et al., Phys. Lett., A 384, No. 2, Article ID 126060, 6 p. (2020; Zbl 1448.35072) Full Text: DOI HAL OpenURL
Goatin, Paola; Rossi, Elena Comparative study of macroscopic traffic flow models at road junctions. (English) Zbl 1452.35098 Netw. Heterog. Media 15, No. 2, 261-279 (2020). Reviewer: Giuseppe Maria Coclite (Bari) MSC: 35L65 90B20 82B21 65M08 PDF BibTeX XML Cite \textit{P. Goatin} and \textit{E. Rossi}, Netw. Heterog. Media 15, No. 2, 261--279 (2020; Zbl 1452.35098) Full Text: DOI OpenURL
Dai, Jialiang Generalized Picard-Fuchs operators from Whitham hierarchy in \(\mathcal{N} = 2\) supersymmetric gauge theory with massless hypermultiplets. (English. Russian original) Zbl 1445.81038 Theor. Math. Phys. 202, No. 2, 150-164 (2020); translation from Teor. Mat. Fiz. 202, No. 2, 170-186 (2020). MSC: 81T13 81T60 35Q40 14D21 47A56 14D05 PDF BibTeX XML Cite \textit{J. Dai}, Theor. Math. Phys. 202, No. 2, 150--164 (2020; Zbl 1445.81038); translation from Teor. Mat. Fiz. 202, No. 2, 170--186 (2020) Full Text: DOI OpenURL
Demirci, Ali Dispersive shock waves in three dimensional Benjamin-Ono equation. (English) Zbl 07222288 Wave Motion 94, Article ID 102502, 10 p. (2020). MSC: 35-XX 76-XX PDF BibTeX XML Cite \textit{A. Demirci}, Wave Motion 94, Article ID 102502, 10 p. (2020; Zbl 07222288) Full Text: DOI arXiv OpenURL
Lee, Yongki Wave breaking in a class of non-local conservation laws. (English) Zbl 1442.35255 J. Differ. Equations 269, No. 10, 8838-8854 (2020). MSC: 35L65 35L67 35L45 35Q35 35B44 PDF BibTeX XML Cite \textit{Y. Lee}, J. Differ. Equations 269, No. 10, 8838--8854 (2020; Zbl 1442.35255) Full Text: DOI arXiv OpenURL
Maehlen, Ola I. H. Solitary waves for weakly dispersive equations with inhomogeneous nonlinearities. (English) Zbl 1437.35147 Discrete Contin. Dyn. Syst. 40, No. 7, 4113-4130 (2020). MSC: 35C08 35A15 35Q53 76B03 76B15 PDF BibTeX XML Cite \textit{O. I. H. Maehlen}, Discrete Contin. Dyn. Syst. 40, No. 7, 4113--4130 (2020; Zbl 1437.35147) Full Text: DOI arXiv OpenURL
Stefanov, Atanas; Wright, J. Douglas Small amplitude traveling waves in the full-dispersion Whitham equation. (English) Zbl 1436.34018 J. Dyn. Differ. Equations 32, No. 1, 85-99 (2020). Reviewer: Minghe Pei (Jilin) MSC: 34B15 34E10 35C07 35Q53 35L05 35B35 PDF BibTeX XML Cite \textit{A. Stefanov} and \textit{J. D. Wright}, J. Dyn. Differ. Equations 32, No. 1, 85--99 (2020; Zbl 1436.34018) Full Text: DOI arXiv OpenURL
Mohyud-Din, Syed Tauseef; Bibi, Sadaf; Ahmed, Naveed; Khan, Umar Some exact solutions of the nonlinear space-time fractional differential equations. (English) Zbl 07583667 Waves Random Complex Media 29, No. 4, 645-664 (2019). MSC: 35R11 35C08 PDF BibTeX XML Cite \textit{S. T. Mohyud-Din} et al., Waves Random Complex Media 29, No. 4, 645--664 (2019; Zbl 07583667) Full Text: DOI OpenURL
Ehrnström, Mats; Wahlén, Erik On Whitham’s conjecture of a highest cusped wave for a nonlocal dispersive equation. (English) Zbl 1423.35059 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 6, 1603-1637 (2019). MSC: 35C07 35F20 35R09 35B32 PDF BibTeX XML Cite \textit{M. Ehrnström} and \textit{E. Wahlén}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 36, No. 6, 1603--1637 (2019; Zbl 1423.35059) Full Text: DOI arXiv OpenURL
Dai, Jialiang; Fan, Engui Whitham hierarchy and generalized Picard-Fuchs operators in the \(\mathcal{N}=2\) susy Yang-Mills theory for classical gauge groups. (English. Russian original) Zbl 1419.81031 Theor. Math. Phys. 198, No. 3, 317-330 (2019); translation from Teor. Mat. Fiz. 198, No. 3, 365-380 (2019). MSC: 81T13 81T60 37K10 14H52 81T17 57R57 14D21 PDF BibTeX XML Cite \textit{J. Dai} and \textit{E. Fan}, Theor. Math. Phys. 198, No. 3, 317--330 (2019; Zbl 1419.81031); translation from Teor. Mat. Fiz. 198, No. 3, 365--380 (2019) Full Text: DOI OpenURL
Pandey, Ashish Kumar The effects of surface tension on modulational instability in full-dispersion water-wave models. (English) Zbl 1475.76046 Eur. J. Mech., B, Fluids 77, 177-182 (2019). MSC: 76E17 76B15 76B45 PDF BibTeX XML Cite \textit{A. K. Pandey}, Eur. J. Mech., B, Fluids 77, 177--182 (2019; Zbl 1475.76046) Full Text: DOI OpenURL
Hörmann, Günther; Okamoto, Hisashi Weak periodic solutions and numerical case studies of the Fornberg-Whitham equation. (English) Zbl 1415.35242 Discrete Contin. Dyn. Syst. 39, No. 8, 4455-4469 (2019). MSC: 35Q53 35D30 PDF BibTeX XML Cite \textit{G. Hörmann} and \textit{H. Okamoto}, Discrete Contin. Dyn. Syst. 39, No. 8, 4455--4469 (2019; Zbl 1415.35242) Full Text: DOI arXiv OpenURL
Dinvay, Evgueni; Dutykh, Denys; Kalisch, Henrik A comparative study of bi-directional Whitham systems. (English) Zbl 1415.76066 Appl. Numer. Math. 141, 248-262 (2019). MSC: 76B15 35Q53 PDF BibTeX XML Cite \textit{E. Dinvay} et al., Appl. Numer. Math. 141, 248--262 (2019; Zbl 1415.76066) Full Text: DOI arXiv OpenURL
Bauer, Roman; Düll, Wolf-Patrick; Schneider, Guido The Korteweg-de Vries, Burgers and Whitham limits for a spatially periodic Boussinesq model. (English) Zbl 1421.35319 Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 1, 191-217 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 76M45 PDF BibTeX XML Cite \textit{R. Bauer} et al., Proc. R. Soc. Edinb., Sect. A, Math. 149, No. 1, 191--217 (2019; Zbl 1421.35319) Full Text: DOI arXiv OpenURL
Inc, Mustafa; Abdel-gawad, Hamdy I.; Tantawy, Mohammad; Yusuf, Abdullahi On multiple soliton similariton-pair solutions, conservation laws via multiplier and stability analysis for the Whitham-Broer-Kaup equations in weakly dispersive media. (English) Zbl 1414.76040 Math. Methods Appl. Sci. 42, No. 7, 2455-2464 (2019). MSC: 76M60 35L65 35Q90 PDF BibTeX XML Cite \textit{M. Inc} et al., Math. Methods Appl. Sci. 42, No. 7, 2455--2464 (2019; Zbl 1414.76040) Full Text: DOI OpenURL
Johnson, Mathew A.; Noble, Pascal; Rodrigues, L. Miguel; Yang, Zhao; Zumbrun, Kevin Spectral stability of inviscid roll waves. (English) Zbl 1455.35013 Commun. Math. Phys. 367, No. 1, 265-316 (2019). Reviewer: Jörg Härterich (Bochum) MSC: 35B35 35L60 35B25 35B36 35Q35 PDF BibTeX XML Cite \textit{M. A. Johnson} et al., Commun. Math. Phys. 367, No. 1, 265--316 (2019; Zbl 1455.35013) Full Text: DOI arXiv OpenURL
Kamchatnov, A. M. Self-similar wave breaking in dispersive Korteweg-de Vries hydrodynamics. (English) Zbl 1457.76044 Chaos 29, No. 2, 023106, 8 p. (2019). MSC: 76B15 76M55 PDF BibTeX XML Cite \textit{A. M. Kamchatnov}, Chaos 29, No. 2, 023106, 8 p. (2019; Zbl 1457.76044) Full Text: DOI arXiv OpenURL
Ehrnström, Mats; Johnson, Mathew A.; Claassen, Kyle M. Existence of a highest wave in a fully dispersive two-way shallow water model. (English) Zbl 1435.76014 Arch. Ration. Mech. Anal. 231, No. 3, 1635-1673 (2019). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 76B15 35Q35 35Q31 PDF BibTeX XML Cite \textit{M. Ehrnström} et al., Arch. Ration. Mech. Anal. 231, No. 3, 1635--1673 (2019; Zbl 1435.76014) Full Text: DOI arXiv OpenURL
Gao, Xiujuan; Lai, Shaoyong; Chen, Hongjin The stability of solutions for the Fornberg-Whitham equation in \(L^1(\mathbb{R})\) space. (English) Zbl 1499.35189 Bound. Value Probl. 2018, Paper No. 142, 13 p. (2018). MSC: 35G25 35L05 PDF BibTeX XML Cite \textit{X. Gao} et al., Bound. Value Probl. 2018, Paper No. 142, 13 p. (2018; Zbl 1499.35189) Full Text: DOI OpenURL
Carter, John D. Bidirectional Whitham equations as models of waves on shallow water. (English) Zbl 07214041 Wave Motion 82, 51-61 (2018). MSC: 76-XX 35-XX PDF BibTeX XML Cite \textit{J. D. Carter}, Wave Motion 82, 51--61 (2018; Zbl 07214041) Full Text: DOI arXiv OpenURL
Casey, Kendall F. Periodic traveling-wave solutions to the Whitham equation. (English) Zbl 1405.35181 Math. Model. Nat. Phenom. 13, No. 2, Paper No. 16, 12 p. (2018). MSC: 35Q53 45G10 47H30 PDF BibTeX XML Cite \textit{K. F. Casey}, Math. Model. Nat. Phenom. 13, No. 2, Paper No. 16, 12 p. (2018; Zbl 1405.35181) Full Text: DOI OpenURL
An, X.; Marchant, T. R.; Smyth, N. F. Dispersive shock waves governed by the Whitham equation and their stability. (English) Zbl 1404.76032 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 474, No. 2216, Article ID 20180278, 18 p. (2018). MSC: 76B15 PDF BibTeX XML Cite \textit{X. An} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 474, No. 2216, Article ID 20180278, 18 p. (2018; Zbl 1404.76032) Full Text: DOI OpenURL
Ge, Yanyan; Zuo, Dafeng A new class of Euler equation on the dual of the \(N=1\) extended Neveu-Schwarz algebra. (English) Zbl 1403.37074 J. Math. Phys. 59, No. 11, 113505, 8 p. (2018). MSC: 37K10 35Q31 17A70 81Q60 76B15 PDF BibTeX XML Cite \textit{Y. Ge} and \textit{D. Zuo}, J. Math. Phys. 59, No. 11, 113505, 8 p. (2018; Zbl 1403.37074) Full Text: DOI OpenURL
Grava, T.; Klein, C.; Pitton, G. Numerical study of the Kadomtsev-Petviashvili equation and dispersive shock waves. (English) Zbl 1402.35246 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 474, No. 2210, Article ID 20170458, 20 p. (2018). MSC: 35Q53 35B40 76L05 76M25 65M99 35Q55 PDF BibTeX XML Cite \textit{T. Grava} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 474, No. 2210, Article ID 20170458, 20 p. (2018; Zbl 1402.35246) Full Text: DOI arXiv OpenURL
Liu, Qiang; Li, Chun; Zhang, Lixin; Liu, Zhixin; Ma, Wei Qualitative analysis of traveling wave solutions to generalized Whitham-Broer-Kaup equation with dissipation term. (Chinese. English summary) Zbl 1413.35120 Math. Pract. Theory 48, No. 2, 237-243 (2018). MSC: 35C07 35Q53 PDF BibTeX XML Cite \textit{Q. Liu} et al., Math. Pract. Theory 48, No. 2, 237--243 (2018; Zbl 1413.35120) OpenURL
Hayashi, Nakao; Naumkin, Pavel I.; Sánchez-Suárez, Isahi Asymptotics for the modified Whitham equation. (English) Zbl 1397.35210 Commun. Pure Appl. Anal. 17, No. 4, 1407-1448 (2018). MSC: 35Q35 35Q55 35B40 35Q53 76B55 PDF BibTeX XML Cite \textit{N. Hayashi} et al., Commun. Pure Appl. Anal. 17, No. 4, 1407--1448 (2018; Zbl 1397.35210) Full Text: DOI OpenURL
Hörmann, Günther Wave breaking of periodic solutions to the Fornberg-Whitham equation. (English) Zbl 1397.35254 Discrete Contin. Dyn. Syst. 38, No. 3, 1605-1613 (2018). MSC: 35Q53 35B44 35B10 PDF BibTeX XML Cite \textit{G. Hörmann}, Discrete Contin. Dyn. Syst. 38, No. 3, 1605--1613 (2018; Zbl 1397.35254) Full Text: DOI arXiv OpenURL
Düll, Wolf-Patrick On the mathematical description of time-dependent surface water waves. (English) Zbl 1446.76079 Jahresber. Dtsch. Math.-Ver. 120, No. 2, 117-141 (2018). Reviewer: Balswaroop Bhatt (St. Augustine) MSC: 76B15 76-02 35Q35 35Q53 35Q55 PDF BibTeX XML Cite \textit{W.-P. Düll}, Jahresber. Dtsch. Math.-Ver. 120, No. 2, 117--141 (2018; Zbl 1446.76079) Full Text: DOI arXiv OpenURL
Wei, Long Wave breaking analysis for the Fornberg-Whitham equation. (English) Zbl 1394.35377 J. Differ. Equations 265, No. 7, 2886-2896 (2018). MSC: 35Q35 35B44 35B45 PDF BibTeX XML Cite \textit{L. Wei}, J. Differ. Equations 265, No. 7, 2886--2896 (2018; Zbl 1394.35377) Full Text: DOI OpenURL
Ratliff, Daniel J. Double degeneracy in multiphase modulation and the emergence of the Boussinesq equation. (English) Zbl 1388.35174 Stud. Appl. Math. 140, No. 1, 48-77 (2018). MSC: 35Q53 35Q55 35Q35 35C07 76B70 PDF BibTeX XML Cite \textit{D. J. Ratliff}, Stud. Appl. Math. 140, No. 1, 48--77 (2018; Zbl 1388.35174) Full Text: DOI Link OpenURL
Ablowitz, Mark J.; Biondini, Gino; Wang, Qiao Whitham modulation theory for the Kadomtsev-Petviashvili equation. (English) Zbl 1404.35382 Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 473, No. 2204, Article ID 20160695, 23 p. (2017). MSC: 35Q53 PDF BibTeX XML Cite \textit{M. J. Ablowitz} et al., Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 473, No. 2204, Article ID 20160695, 23 p. (2017; Zbl 1404.35382) Full Text: DOI arXiv OpenURL
Manafian, Jalil; Lakestani, Mehrdad The classification of the single traveling wave solutions to the modified Fornberg-Whitham equation. (English) Zbl 1397.35060 Int. J. Appl. Comput. Math. 3, No. 4, 3241-3252 (2017). MSC: 35C07 65H10 35A20 35A24 35C08 35Q53 PDF BibTeX XML Cite \textit{J. Manafian} and \textit{M. Lakestani}, Int. J. Appl. Comput. Math. 3, No. 4, 3241--3252 (2017; Zbl 1397.35060) Full Text: DOI OpenURL
Liu, Qiang; Zhang, Lixin; Ma, Wei; Liu, Zhixin; Li, Chun The approximate solutions and their error estimation of generalized Whitham-Broer-Kaup equation with dissipation term. (Chinese. English summary) Zbl 1399.35319 Math. Pract. Theory 47, No. 19, 265-271 (2017). MSC: 35Q53 PDF BibTeX XML Cite \textit{Q. Liu} et al., Math. Pract. Theory 47, No. 19, 265--271 (2017; Zbl 1399.35319) OpenURL
Khalid, M.; Khan, Fareeha Sami A new approach for solving highly nonlinear partial differential equations by successive differentiation method. (English) Zbl 1384.65066 Math. Methods Appl. Sci. 40, No. 16, 5742-5749 (2017). MSC: 65M22 35G20 35C10 35Q53 PDF BibTeX XML Cite \textit{M. Khalid} and \textit{F. S. Khan}, Math. Methods Appl. Sci. 40, No. 16, 5742--5749 (2017; Zbl 1384.65066) Full Text: DOI OpenURL
Sheikhani, Amirhossein Refahi; Kordrostami, Sohrab Solution of the space-fractional Benjamin-Ono equation: an operational approach. (English) Zbl 1398.35279 Rend. Circ. Mat. Palermo (2) 66, No. 3, 471-476 (2017). MSC: 35R11 35C05 35Q53 44A10 PDF BibTeX XML Cite \textit{A. R. Sheikhani} and \textit{S. Kordrostami}, Rend. Circ. Mat. Palermo (2) 66, No. 3, 471--476 (2017; Zbl 1398.35279) Full Text: DOI OpenURL
Remonato, Filippo; Kalisch, Henrik Numerical bifurcation for the capillary Whitham equation. (English) Zbl 1380.65427 Physica D 343, 51-62 (2017). MSC: 65P30 35Q35 35R09 35B32 37N10 PDF BibTeX XML Cite \textit{F. Remonato} and \textit{H. Kalisch}, Physica D 343, 51--62 (2017; Zbl 1380.65427) Full Text: DOI arXiv OpenURL
Fei, Jinxi; Ma, Zhengyi; Cao, Weiping Residual symmetries and interaction solutions for the Whitham-Broer-Kaup equation. (English) Zbl 1373.37156 Nonlinear Dyn. 88, No. 1, 395-402 (2017). MSC: 37K10 37K35 PDF BibTeX XML Cite \textit{J. Fei} et al., Nonlinear Dyn. 88, No. 1, 395--402 (2017; Zbl 1373.37156) Full Text: DOI OpenURL
Sakar, Mehmet Giyas; Saldır, Onur Improving variational iteration method with auxiliary parameter for nonlinear time-fractional partial differential equations. (English) Zbl 1376.65124 J. Optim. Theory Appl. 174, No. 2, 530-549 (2017). MSC: 65M22 35R11 35Q53 PDF BibTeX XML Cite \textit{M. G. Sakar} and \textit{O. Saldır}, J. Optim. Theory Appl. 174, No. 2, 530--549 (2017; Zbl 1376.65124) Full Text: DOI OpenURL
Al-luhaibi, Mohamed S. An analytical treatment to fractional Fornberg-Whitham equation. (English) Zbl 1372.65289 Math. Sci., Springer 11, No. 1, 1-6 (2017). MSC: 65M99 35R11 PDF BibTeX XML Cite \textit{M. S. Al-luhaibi}, Math. Sci., Springer 11, No. 1, 1--6 (2017; Zbl 1372.65289) Full Text: DOI OpenURL
Hoefer, M. A.; El, G. A.; Kamchatnov, A. M. Oblique spatial dispersive shock waves in nonlinear Schrödinger flows. (English) Zbl 1376.37128 SIAM J. Appl. Math. 77, No. 4, 1352-1374 (2017). MSC: 37N10 35C08 35Q55 76L05 35L67 37K40 PDF BibTeX XML Cite \textit{M. A. Hoefer} et al., SIAM J. Appl. Math. 77, No. 4, 1352--1374 (2017; Zbl 1376.37128) Full Text: DOI arXiv OpenURL
Hur, Vera Mikyoung Wave breaking in the Whitham equation. (English) Zbl 1375.35446 Adv. Math. 317, 410-437 (2017). MSC: 35Q53 35A20 35B44 35S10 35F25 76B15 35Q35 PDF BibTeX XML Cite \textit{V. M. Hur}, Adv. Math. 317, 410--437 (2017; Zbl 1375.35446) Full Text: DOI arXiv OpenURL
Bridges, Thomas J. Symmetry, phase modulation and nonlinear waves. (English) Zbl 1383.76002 Cambridge Monographs on Applied and Computational Mathematics 31. Cambridge: Cambridge University Press (ISBN 978-1-107-18884-6/hbk; 978-1-316-98676-9/ebook). ix, 228 p. (2017). Reviewer: Willi-Hans Steeb (Johannesburg) MSC: 76-02 76Bxx 35Q53 35Q51 35Q55 PDF BibTeX XML Cite \textit{T. J. Bridges}, Symmetry, phase modulation and nonlinear waves. Cambridge: Cambridge University Press (2017; Zbl 1383.76002) Full Text: DOI OpenURL
Ruggieri, M.; Speciale, M. P. On the construction of conservation laws: A mixed approach. (English) Zbl 1361.35013 J. Math. Phys. 58, No. 2, 023510, 14 p. (2017). MSC: 35A30 35B06 65N12 68W30 PDF BibTeX XML Cite \textit{M. Ruggieri} and \textit{M. P. Speciale}, J. Math. Phys. 58, No. 2, 023510, 14 p. (2017; Zbl 1361.35013) Full Text: DOI arXiv OpenURL
Kamchatnov, A. M. Whitham theory for perturbed Korteweg-de Vries equation. (English) Zbl 1415.35012 Physica D 333, 99-106 (2016). MSC: 35B20 35Q53 PDF BibTeX XML Cite \textit{A. M. Kamchatnov}, Physica D 333, 99--106 (2016; Zbl 1415.35012) Full Text: DOI arXiv OpenURL
El, G. A.; Hoefer, M. A. Dispersive shock waves and modulation theory. (English) Zbl 1415.76001 Physica D 333, 11-65 (2016). MSC: 76-02 35-02 76L05 35Q35 35Q53 35Q55 PDF BibTeX XML Cite \textit{G. A. El} and \textit{M. A. Hoefer}, Physica D 333, 11--65 (2016; Zbl 1415.76001) Full Text: DOI arXiv Link OpenURL
Aminikhah, H.; Sheikhani, A. Refahi; Rezazadeh, H. Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method. (English) Zbl 1438.35341 Bol. Soc. Parana. Mat. (3) 34, No. 2, 213-229 (2016). MSC: 35Q51 74J35 35C07 PDF BibTeX XML Cite \textit{H. Aminikhah} et al., Bol. Soc. Parana. Mat. (3) 34, No. 2, 213--229 (2016; Zbl 1438.35341) Full Text: Link OpenURL
Hamed, Yasser S.; Mohamed, Mohamed S. Solving the fractional Fornberg-Whitham equation by means of the optimal \(q\)-homotopy analysis method (Oq-Ham). (English) Zbl 1359.65109 Ital. J. Pure Appl. Math. 36, 345-358 (2016). MSC: 65L05 34A08 65L20 PDF BibTeX XML Cite \textit{Y. S. Hamed} and \textit{M. S. Mohamed}, Ital. J. Pure Appl. Math. 36, 345--358 (2016; Zbl 1359.65109) Full Text: Link OpenURL
Nadjafikhah, M.; Pourrostami, N. Self-adjointness, group classification and conservation laws of an extended Camassa-Holm equation. (English) Zbl 1371.35253 J. Gen. Lie Theory Appl. 10, No. S2, Article ID 004, 5 p. (2016). MSC: 35Q53 35A30 37K05 PDF BibTeX XML Cite \textit{M. Nadjafikhah} and \textit{N. Pourrostami}, J. Gen. Lie Theory Appl. 10, No. S2, Article ID 004, 5 p. (2016; Zbl 1371.35253) Full Text: Euclid OpenURL
Holmes, John M. Well-posedness of the Fornberg-Whitham equation on the circle. (English) Zbl 1339.35268 J. Differ. Equations 260, No. 12, 8530-8549 (2016). Reviewer: Ma Wen-Xiu (Tampa) MSC: 35Q53 35B30 35B65 PDF BibTeX XML Cite \textit{J. M. Holmes}, J. Differ. Equations 260, No. 12, 8530--8549 (2016; Zbl 1339.35268) Full Text: DOI OpenURL
Wang, Kangle; Liu, Sanyang Application of new iterative transform method and modified fractional homotopy analysis transform method for fractional Fornberg-Whitham equation. (English) Zbl 06555173 J. Nonlinear Sci. Appl. 9, No. 5, 2419-2433 (2016). MSC: 35R11 74H15 PDF BibTeX XML Cite \textit{K. Wang} and \textit{S. Liu}, J. Nonlinear Sci. Appl. 9, No. 5, 2419--2433 (2016; Zbl 06555173) Full Text: DOI Link OpenURL
Borluk, Handan; Kalisch, Henrik; Nicholls, David P. A numerical study of the Whitham equation as a model for steady surface water waves. (English) Zbl 1343.76038 J. Comput. Appl. Math. 296, 293-302 (2016). MSC: 76M22 76B15 65M70 PDF BibTeX XML Cite \textit{H. Borluk} et al., J. Comput. Appl. Math. 296, 293--302 (2016; Zbl 1343.76038) Full Text: DOI OpenURL
Marasi, H. R.; Aqdam, A. Pourmostafa Homotopy analysis method and homotopy Padé approximants for solving the Fornberg-Whitham equation. (English) Zbl 1463.35022 Eurasian Math. J. 6, No. 1, 65-75 (2015). MSC: 35A15 35A25 PDF BibTeX XML Cite \textit{H. R. Marasi} and \textit{A. P. Aqdam}, Eurasian Math. J. 6, No. 1, 65--75 (2015; Zbl 1463.35022) Full Text: MNR OpenURL
Sakar, Mehmet Giyas; Ergören, Hilmi Alternative variational iteration method for solving the time-fractional Fornberg-Whitham equation. (English) Zbl 1443.65278 Appl. Math. Modelling 39, No. 14, 3972-3979 (2015). MSC: 65M99 35R11 PDF BibTeX XML Cite \textit{M. G. Sakar} and \textit{H. Ergören}, Appl. Math. Modelling 39, No. 14, 3972--3979 (2015; Zbl 1443.65278) Full Text: DOI OpenURL