×

Nonlinear modulational stability of periodic traveling-wave solutions of the generalized Kuramoto-Sivashinsky equation. (English) Zbl 1304.35184

Summary: We consider the spectral and nonlinear stabilities of periodic traveling wave solutions of a generalized Kuramoto-Sivashinsky equation. In particular, we resolve the long-standing question of nonlinear modulational stability by demonstrating that spectrally stable waves are nonlinearly stable when subject to small localized (integrable) perturbations. Our analysis is based upon detailed estimates of the linearized solution operator, which are complicated by the fact that the (necessarily essential) spectrum of the associated linearization intersects the imaginary axis at the origin. We carry out a numerical Evans function study of the spectral problem and find bands of spectrally stable periodic traveling waves, in close agreement with previous numerical studies of Frisch-She-Thual, Bar-Nepomnyashchy, Chang-Demekhin-Kopelevich, and others carried out by other techniques. We also compare predictions of the associated Whitham modulation equations, which formally describe the dynamics of weak large scale perturbations of a periodic wave train, with numerical time evolution studies, demonstrating their effectiveness at a practical level. For the reader’s convenience, we include in an appendix the corresponding treatment of the Swift-Hohenberg equation, a nonconservative counterpart of the generalized Kuramoto-Sivashinsky equation for which the nonlinear stability analysis is considerably simpler, together with numerical Evans function analyses extending spectral stability analyses of Mielke and Schneider.

MSC:

35C07 Traveling wave solutions
35B35 Stability in context of PDEs
35K57 Reaction-diffusion equations

Software:

SpectrUW; STABLAB
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ei, S., The motion of weakly interacting pulses in reaction-diffusion systems, J. Dynam. Differential Equations, 14, 1, 85-137 (1992) · Zbl 1007.35039
[2] Sivashinsky, G. I., Nonlinear analysis of hydrodynamic instability in laminar flame. I. Derivation of basic equations, Acta Astron., 4, 11-12, 1177-1206 (1977) · Zbl 0427.76047
[3] Sivashinsky, G. I., Instabilities, pattern formation, and turbulence in flamesbe, Annu. Rev. Fluid Mech., 15, 179-199 (1983)
[4] Kuramoto, Y., Chemical Oscillations, Waves, and Turbulence, 164 (1984), Springer-Verlag: Springer-Verlag Berlin · Zbl 0558.76051
[5] Kuramoto, Y.; Tsuzuki, T., On the formation of dissipative structures in reaction-diffusion systems, Progress of Theoretical Physics, 54, 3 (1975)
[6] Chang, H.-C.; Demekhin, E. A., Complex Wave Dynamics on Thin Films (2002), Elsevier
[7] Pego, R. L.; Schneider, G.; Uecker, H., Long-time persistence of Korteweg-de Vries solitons as transient dynamics in a model of inclined film flow, Proc. Roy. Soc. Edinburg, 137A, 133-146 (2007) · Zbl 1174.35102
[8] Yu, J.; Yang, Y., Evolution of small periodic disturbances into roll waves in channel flow with internal dissipation, Stud. Appl. Math., 111, 1, 1-27 (2003) · Zbl 1141.76377
[9] Win, H. A., Model equation of surface waves of viscous fluid down an inclined plane, J. Math. Kyoto Univ., 33, 3, 803-824 (1993) · Zbl 0855.35116
[10] Frisch, U.; She, Z. S.; Thual, O., Viscoelastic behaviour of cellular solutions to the Kuramoto-Sivashinsky model, J. Fluid Mech., 168, 221-240 (1986) · Zbl 0597.76006
[11] Kent, P.; Elgin, J., Traveling-waves of the Kuramoto-Sivashinsky equation: period-multiplying bifurcations, Nonlinearity, 5, 4, 899-919 (1992) · Zbl 0771.35006
[12] Chang, H. C.; Demekhin, E. A.; Kopelevich, D. I., Laminarizing effects of dispersion in an active-dissipative nonlinear medium, Physica D, 63, 299-320 (1993) · Zbl 0797.35142
[13] Bar, D. E.; Nepomnyashchy, A. A., Stability of periodic waves governed by the modified Kawahara equation, Physica D, 86, 4, 586-602 (1995) · Zbl 0847.35059
[14] Barker, B.; Johnson, M.; Rodrigues, M.; Zumbrun, K., Metastability of solitary roll wave solutions of St. Venant equations, Physica D, 240, 16, 1289-1310 (2011) · Zbl 1223.37109
[15] B. Barker, M. Johnson, P. Noble, M. Rodrigues, K. Zumbrun, Whitham averaged equations and modulational stability of periodic solutions of hyperbolic-parabolic balance laws, in: Proceedings of the Journées Équ. Dériv. Partielles, Port-d’Albret, 2010.
[16] Cohen, B. I.; Krommes, J. A.; Tang, W. M.; Rosenbluth, M. N., Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nucl. Fusion, 16, 971 (1976)
[17] Ercolani, N. M.; McLaughlin, D. W.; Roitner, H., Attractors and transients for a perturbed periodic KdV equation: a nonlinear spectral analysis, J. Nonlinear Sci., 3, 1, 477-539 (1993) · Zbl 0797.35145
[18] Schneider, G., Diffusive stability of spatial periodic solutions of the Swift-Hohneberg equation, Comm. Math. Phys., 178, 679-702 (1996) · Zbl 0861.35107
[19] Doelman, A.; Sandstede, B.; Scheel, A.; Schneider, G., The dynamics of modulated wave trains, Mem. Amer. Math. Soc., 199, 934 (2009) · Zbl 1179.35005
[20] Sandstede, B.; Scheel, A.; Schneider, G.; Uecker, H., Diffusive mixing of periodic wave trains in reaction-diffusion systems, J. Differential Equations, 252, 3541-3574 (2012) · Zbl 1298.35108
[21] Johnson, M.; Zumbrun, K., Nonlinear stability of periodic traveling waves of viscous conservation laws in the generic case, J. Differential Equations, 249, 5, 1213-1240 (2010) · Zbl 1198.35027
[22] Johnson, M.; Zumbrun, K.; Noble, P., Nonlinear stability of viscous roll waves, SIAM J. Math. Anal., 43, 2, 577-611 (2011) · Zbl 1240.35037
[23] B. Barker, M. Johnson, P. Noble, M. Rodrigues, K. Zumbrun, Efficient numerical evaluation of the periodic Evans function of Gardner and spectral stability of periodic viscous roll waves, in preparation.
[24] Barker, B.; Johnson, M.; Noble, P.; Rodrigues, M.; Zumbrun, K., Stability of periodic Kuramoto-Sivashinsky waves, Appl. Math. Lett., 25, 5, 824-829 (2012) · Zbl 1238.35094
[25] Mielke, A., Instability and stability of rolls in the Swift-Hohenberg equation, Comm. Math. Phys., 189, 3, 829-853 (1997) · Zbl 0897.76037
[26] Mielke, A., A new approach to sideband-instabilities using the principle of reduced instability, (Doleman, A.; van Harten, A., Nonlinear Dynamics and Pattern Formation in the Natural Environment (1995), Longman: Longman UK), 206-222 · Zbl 0838.35011
[27] Kapitula, T., Stability of weak shocks in \(\lambda - \omega\) systems, Indiana Univ. Math J., 4, 1193-1219 (1991) · Zbl 0756.35050
[28] Mielke, A.; Schneider, G.; Uecker, H., TODO: stability and diffusive dynamics on unbounded domains, (Fiedler, B., Ergodic Theory, Analysis and Efficient Simulation of Dynamical Systems (2001), Springer), 563-584
[29] Carter, J. D.; Deconick, B.; Kiyak, F.; Nathan Kutz, J., SpectrUW: a laboratory for the numerical exploration of spectra of linear operators, Math. Comput. Simul., 74, 370-379 (2007) · Zbl 1113.65058
[30] Johnson, M.; Zumbrun, K., Convergence of Hill’s method for nonselfadjoint operators, SIAM J. Numer. Anal., 50, 1, 64-78 (2012) · Zbl 1246.65134
[31] Brin, L. Q., Numerical testing of the stability of viscous shock waves, Math. Comp., 70, 235, 1071-1088 (2001) · Zbl 0980.65092
[32] K. Zumbrun, Numerical error analysis for evans function computations: a numerical gap lemma, centered-coordinate methods, and the unreasonable effectiveness of continuous orthogonalization, 2009, Preprint.
[33] Zumbrun, K., 2-modified characteristic Fredholm determinants, Hill’s method, and the periodic Evans function of Gardner, Z. Anal. Anwend., 31, 4, 463-472 (2012) · Zbl 1264.34171
[34] B. Barker, A numerical proof of stability of periodic solutions of thin film equations in a singular KdV limit, in preparation.
[35] M. Johnson, P. Noble, L.-M. Rodrigues, K. Zumbrun, Spectral stability of periodic wave trains of the Korteweg-de Vries/Kuramoto-Sivashinsky equation in the Korteweg-de Vries limit, 2012, Preprint arXiv:1202.6402. · Zbl 1310.35035
[36] Noble, P.; Rodrigues, M., Whitham’s modulation equations and stability of periodic wave solutions of the generalized Kuramoto-Sivashinsky equations, IU Math. J. (2013), (to appear) · Zbl 1296.35161
[37] Serre, D., Spectral stability of periodic solutions of viscous conservation laws: large wavelength analysis, Comm. Partial Differential Equations, 30, 1-3, 259-282 (2005) · Zbl 1131.35046
[38] Johnson, M.; Zumbrun, K., Rigorous justification of the Whitham modulation equations for the generalized Korteweg-de Vries equation, Stud. Appl. Math., 125, 1, 69-89 (2010) · Zbl 1196.35184
[39] Bronski, J. C.; Johnson, M.; Zumbrun, K., On the modulation equations and stability of periodic GKdV waves via bloch decompositions, Physica D, 239, 2037-2065 (2010) · Zbl 1211.37087
[40] P. Noble, M. Rodrigues, Whitham’s equations for modulated roll-waves in shallow flows, 2010, Preprint arXiv:1011.2296.
[41] M. Johnson, P. Noble, L.-M. Rodrigues, K. Zumbrun, Behavior of periodic solutions of viscous conservation laws under localized and nonlocalized perturbations, 2012, Preprint arXiv:1211.2156. · Zbl 1304.35192
[42] Laugesen, R.; Pugh, M., Linear stability of steady states for thin film and Cahn- Hilliard type equations, Arch. Ration. Mech. Anal., 154, 1, 3-51 (2000) · Zbl 0980.35030
[43] Bertozzi, A. L.; Muensch, A.; Shearer, M., Undercompressive shocks in thin film flows, Physica D, 134, 4, 431-464 (1999) · Zbl 1076.76509
[44] Howard, P., Spectral analysis for periodic solutions of the Cahn-Hilliard equation on R, NoDEA Nonlinear Differential Equations Appl., 18, 1-26 (2011) · Zbl 1228.35112
[45] Johnson, M.; Zumbrun, K., Nonlinear stability of periodic traveling waves of systems of reaction diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28, 4, 471-483 (2011) · Zbl 1246.35034
[46] Gardner, R., On the structure of the spectra of periodic traveling waves, J. Math. Pures Appl., 72, 415-439 (1993) · Zbl 0831.35077
[47] Johnson, M.; Zumbrun, K., Nonlinear stability of periodic traveling wave solutions of viscous conservation laws in dimensions one and two, SIAM J. Appl. Dyn. Syst., 10, 1, 189-211 (2011) · Zbl 1221.35055
[48] Oh, M.; Zumbrun, K., Stability and asymptotic behavior of periodic traveling wave solutions of viscous conservation laws in several dimensions, Arch. Ration. Mech. Anal., 196, 1, 1-20 (2010) · Zbl 1197.35075
[49] Oh, M.; Zumbrun, K., Stability of periodic solutions of viscous conservation laws with viscosity: pointwise bounds on the Green function, Arch. Ration. Mech. Anal., 166, 2, 167-196 (2003) · Zbl 1031.35022
[50] Johnson, M.; Noble, P.; Rodiruges, L.-M.; Zumbrun, K., Non-localized modulation of periodic reaction diffusion waves: nonlinear stability, Arch. Ration. Mech. Anal., 207, 2, 693-715 (2013) · Zbl 1276.35031
[51] Johnson, M.; Noble, P.; Rodiruges, L.-M.; Zumbrun, K., Non-localized modulation of periodic reaction diffusion waves: the Whitham equation, Arch. Ration. Mech. Anal., 207, 2, 669-692 (2013) · Zbl 1270.35106
[52] Bricmont; Kupiainen; Lin, Renormalization group and asymptotics of solutions of nonlinear parabolic equations, Comm. Pure Appl. Math., 6, 893-922 (1994), TODO: · Zbl 0806.35067
[53] Uecker, H.; Wierschem, A., A spatially periodic Kuramoto-Sivashinsky equation as a model problem for inclined film flow over wavy bottom, EJDE, 118, 1-18 (2007) · Zbl 1136.35329
[54] Häcker, T.; Schneider, G.; Uecker, H., Self-similar decay to the marginally stable ground state in a model for film flow over inclined wavy bottoms, EJDE, 61, 1-51 (2012) · Zbl 1236.35122
[55] Uecker, H., Self-similar decay of localized perturbations in the integral boundary layer equation, J. Differential Equations, 207, 2, 407-422 (2004) · Zbl 1101.35018
[56] Uecker, H., Self-similar decay of localized perturbations of the Nusselt solution for the Navier-Stokes equations on an inclined plane, Arch. Ration. Mech. Anal., 184, 3, 401-447 (2007) · Zbl 1110.76021
[57] Eckhaus, W., Studies in nonlinear stability theory, (Springer Tracts in Nat. Phil. Vol. 6 (1965)) · Zbl 0125.33101
[58] B. Barker, K. Zumbrun, Numerical stability analysis of ZND detonations, in preparation.
[59] B. Barker, M. Johnson, K. Zumbrun, A posteriori estimates for Hill’s method, in preparation.
[60] B. Barker, J. Humpherys, K. Zumbrun, STABLAB: a MATLAB-based numerical library for Evans function computation. Available at: http://impact.byu.edu/stablab/.
[61] Bottman, N.; Deconinck, B., KdV cnoidal waves are linearly stable, Discrete Contin. Dyn. Syst., 25, 4, 1163-1180 (2009) · Zbl 1178.35327
[62] Zumbrun, K., A sharp stability criterion for soliton-type propagating phase boundaries in Korteweg’s model, Z. Anal. Anwend., 27, 1, 11-30 (2008) · Zbl 1187.35229
[63] Henry, D., Geometric theory of semilinear parabolic equations, (Lecture Notes in Mathematics (1981), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0456.35001
[64] Pazy, A., Semigroups of linear operators and applications to partial differential equations, (Applied Mathematical Sciences, Vol. 44 (1983), Springer-Verlag: Springer-Verlag New York-Berlin), viii+279, ISBN: 0-387-90845-5 · Zbl 0516.47023
[65] Brown, H. S.; Kevrekidis, I. G.; Jolly, M. S., A minimal model for spatio-temporal patterns in thin film flows, Pattern and Dynamics in Reactive Media. Pattern and Dynamics in Reactive Media, IMA Vol. Math. Appl., 37 (1991) · Zbl 0744.58054
[66] Mielke, A.; Schneider, G., Attractors for modulation equations on unbounded domains—Existence and comparison, Nonlinearity, 8, 743-768 (1995) · Zbl 0833.35016
[67] Oh, M.; Zumbrun, K., Stability of periodic solutions of viscous conservation laws with viscosity- 1. Analysis of the Evans function, Arch. Ration. Mech. Anal., 166, 2, 99-166 (2003) · Zbl 1074.35006
[68] Alexander, J.; Gardner, R.; Jones, C. K.R. T., A topological invariant arising in the analysis of traveling waves, J. Reine Angew. Math., 410, 167-212 (1990) · Zbl 0705.35070
[69] Pego, R. L.; Weinstein, M. I., Eigenvalues, and instabilities of solitary waves, Philos. Trans. R. Soc. Lond. Ser. A, 340, 47-94 (1992) · Zbl 0776.35065
[70] Gardner, R.; Zumbrun, K., The Gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51, 7, 797-855 (1998)
[71] Gardner, R. A., Spectral analysis of long wavelength periodic waves and applications, J. Reine Angew. Math., 491, 149-181 (1997) · Zbl 0883.35055
[72] Sandstede, B.; Scheel, A., On the stability of periodic traveling waves with large spatial period, J. Differential Equations, 172, 134-188 (2001) · Zbl 0994.34035
[73] K. Zumbrun, Stability of periodic traveling waves in the homoclinic limit, in preparation.
[74] Brin, L.; Zumbrun, K., Analytically varying eigenvectors and the stability of viscous shock waves, (Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001). Seventh Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 2001), Mat. Contemp., vol. 22 (2002)), 19-32 · Zbl 1044.35057
[75] Humpherys, J.; Zumbrun, K., An efficient shooting algorithm for Evans function calculations in large systems, Physica D, 220, 2, 116-126 (2006) · Zbl 1101.65082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.