Ilie, Mousa An application of the first integral method for time M-fractional differential equations. (English) Zbl 07559303 J. Fract. Calc. Appl. 13, No. 2, 32-44 (2022). MSC: 35Q51 35Q53 35Q99 PDF BibTeX XML Cite \textit{M. Ilie}, J. Fract. Calc. Appl. 13, No. 2, 32--44 (2022; Zbl 07559303) Full Text: Link OpenURL
Larkin, N. A. Existence and decay of global solutions to the three-dimensional Kuramoto-Sivashinsky-Zakharov-Kuznetsov equation. (English) Zbl 07540666 J. Math. Anal. Appl. 514, No. 1, Article ID 126046, 18 p. (2022). MSC: 35B40 35K35 35K58 PDF BibTeX XML Cite \textit{N. A. Larkin}, J. Math. Anal. Appl. 514, No. 1, Article ID 126046, 18 p. (2022; Zbl 07540666) Full Text: DOI OpenURL
Castelli, M.; Doronin, G.; Padilha, M. V. Modified Zakharov-Kuznetsov equation posed on a half-strip. (English) Zbl 1487.35071 Appl. Math. Optim. 85, No. 3, Paper No. 21, 20 p. (2022). MSC: 35B40 35G31 35Q53 PDF BibTeX XML Cite \textit{M. Castelli} et al., Appl. Math. Optim. 85, No. 3, Paper No. 21, 20 p. (2022; Zbl 1487.35071) Full Text: DOI OpenURL
Faminskii, Andrei V. Initial-boundary value problems on a half-strip for the generalized Kawahara-Zakharov-Kuznetsov equation. (English) Zbl 07517417 Z. Angew. Math. Phys. 73, No. 3, Paper No. 93, 27 p. (2022). MSC: 35Q53 35B40 35D30 35D35 35A01 35A02 PDF BibTeX XML Cite \textit{A. V. Faminskii}, Z. Angew. Math. Phys. 73, No. 3, Paper No. 93, 27 p. (2022; Zbl 07517417) Full Text: DOI OpenURL
Morales Paredes, Jorge; Méndez, Félix Humberto Soriano On the Cauchy problems associated to a ZK-KP-type family equations with a transversal fractional dispersion. (English) Zbl 07513971 Discrete Contin. Dyn. Syst. 42, No. 5, 2257-5593 (2022). MSC: 35Q53 35Q35 35A01 35A02 26A33 35R11 35R25 PDF BibTeX XML Cite \textit{J. Morales Paredes} and \textit{F. H. S. Méndez}, Discrete Contin. Dyn. Syst. 42, No. 5, 2257--5593 (2022; Zbl 07513971) Full Text: DOI OpenURL
Larkin, N. A. Existence and decay of global solutions for the Kuramoto-Sivashinsky-Zakharov-Kuznetsov equation posed on rectangles. (English) Zbl 1487.35084 SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 20, 17 p. (2022). MSC: 35B40 35K20 35K58 35K91 35Q53 PDF BibTeX XML Cite \textit{N. A. Larkin}, SN Partial Differ. Equ. Appl. 3, No. 2, Paper No. 20, 17 p. (2022; Zbl 1487.35084) Full Text: DOI OpenURL
Al-deiakeh, Rawya; Alquran, Marwan; Ali, Mohammed; Yusuf, Abdullahi; Momani, Shaher On group of Lie symmetry analysis, explicit series solutions and conservation laws for the time-fractional (2 + 1)-dimensional Zakharov-Kuznetsov \((q,p,r)\) equation. (English) Zbl 1487.35390 J. Geom. Phys. 176, Article ID 104512, 11 p. (2022). MSC: 35R11 35B06 35C10 PDF BibTeX XML Cite \textit{R. Al-deiakeh} et al., J. Geom. Phys. 176, Article ID 104512, 11 p. (2022; Zbl 1487.35390) Full Text: DOI OpenURL
Akram, Ghazala; Sadaf, Maasoomah; Abbas, Muhammad; Zainab, Iqra; Gillani, Syeda Rijaa Efficient techniques for traveling wave solutions of time-fractional Zakharov-Kuznetsov equation. (English) Zbl 07442894 Math. Comput. Simul. 193, 607-622 (2022). MSC: 35-XX 76-XX PDF BibTeX XML Cite \textit{G. Akram} et al., Math. Comput. Simul. 193, 607--622 (2022; Zbl 07442894) Full Text: DOI OpenURL
Akinyemi, Lanre; Şenol, Mehmet; Huseen, Shaheed N. Modified homotopy methods for generalized fractional perturbed Zakharov-Kuznetsov equation in dusty plasma. (English) Zbl 1487.65129 Adv. Difference Equ. 2021, Paper No. 45, 27 p. (2021). MSC: 65M25 65H20 35R11 26A33 PDF BibTeX XML Cite \textit{L. Akinyemi} et al., Adv. Difference Equ. 2021, Paper No. 45, 27 p. (2021; Zbl 1487.65129) Full Text: DOI OpenURL
Khater, Mostafa M. A. New traveling solutions of the fractional nonlinear KdV and ZKBBM equations with \(\mathcal{ABR}\) fractional operator. (English) Zbl 07503807 Int. J. Mod. Phys. B 35, No. 22, Article ID 2150232, 13 p. (2021). MSC: 35C07 35C05 35Q53 35R11 PDF BibTeX XML Cite \textit{M. M. A. Khater}, Int. J. Mod. Phys. B 35, No. 22, Article ID 2150232, 13 p. (2021; Zbl 07503807) Full Text: DOI OpenURL
Raut, Santanu; Roy, Subrata; Kairi, Rishi Raj; Chatterjee, Prasanta Approximate analytical solutions of generalized Zakharov-Kuznetsov and generalized modified Zakharov-Kuznetsov equations. (English) Zbl 1485.35121 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 157, 25 p. (2021). MSC: 35G25 35Q53 PDF BibTeX XML Cite \textit{S. Raut} et al., Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 157, 25 p. (2021; Zbl 1485.35121) Full Text: DOI OpenURL
Klein, Christian; Roudenko, Svetlana; Stoilov, Nikola Numerical study of soliton stability, resolution and interactions in the 3D Zakharov-Kuznetsov equation. (English) Zbl 07477861 Physica D 423, Article ID 132913, 23 p. (2021). MSC: 65-XX 35-XX 37-XX PDF BibTeX XML Cite \textit{C. Klein} et al., Physica D 423, Article ID 132913, 23 p. (2021; Zbl 07477861) Full Text: DOI arXiv OpenURL
Bhattacharya, Debdeep Mass-concentration of low-regularity blow-up solutions to the focusing 2D modified Zakharov-Kuznetsov equation. (English) Zbl 1476.35221 SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 83, 29 p. (2021). MSC: 35Q53 35B44 37K40 35C07 37L50 PDF BibTeX XML Cite \textit{D. Bhattacharya}, SN Partial Differ. Equ. Appl. 2, No. 6, Paper No. 83, 29 p. (2021; Zbl 1476.35221) Full Text: DOI arXiv OpenURL
Kumar Mishra, Hradyesh; Pandey, Rishi Kumar Time-fractional nonlinear dispersive type of the Zakharov-Kuznetsov equation via HAFSTM. (English) Zbl 07433799 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 91, No. 1, 97-110 (2021). MSC: 35R11 65M99 35Q53 PDF BibTeX XML Cite \textit{H. Kumar Mishra} and \textit{R. K. Pandey}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 91, No. 1, 97--110 (2021; Zbl 07433799) Full Text: DOI OpenURL
Linares, Felipe; Ramos, João P. G. The Cauchy problem for the \(L^2\)-critical generalized Zakharov-Kuznetsov equation in dimension 3. (English) Zbl 1477.35221 Commun. Partial Differ. Equations 46, No. 9, 1601-1627 (2021). MSC: 35Q53 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{F. Linares} and \textit{J. P. G. Ramos}, Commun. Partial Differ. Equations 46, No. 9, 1601--1627 (2021; Zbl 1477.35221) Full Text: DOI arXiv OpenURL
Chong, Gezi; Yu, Haoyang; Wang, Haiquan; Fu, Ying Decay properties of solutions of the three-dimensional Zakharov-Kuznetsov equation. (Chinese. English summary) Zbl 07404528 Pure Appl. Math. 37, No. 1, 57-63 (2021). MSC: 35Q53 PDF BibTeX XML Cite \textit{G. Chong} et al., Pure Appl. Math. 37, No. 1, 57--63 (2021; Zbl 07404528) Full Text: DOI OpenURL
Herr, Sebastian; Kinoshita, Shinya The Zakharov-Kuznetsov equation in high dimensions: small initial data of critical regularity. (English) Zbl 1476.35223 J. Evol. Equ. 21, No. 2, 2105-2121 (2021). MSC: 35Q53 35A01 35A02 PDF BibTeX XML Cite \textit{S. Herr} and \textit{S. Kinoshita}, J. Evol. Equ. 21, No. 2, 2105--2121 (2021; Zbl 1476.35223) Full Text: DOI arXiv OpenURL
Faminskii, Andrei V. Initial-boundary value problems on a half-strip for the modified Zakharov-Kuznetsov equation. (English) Zbl 1476.35222 J. Evol. Equ. 21, No. 2, 1263-1298 (2021). MSC: 35Q53 35B40 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{A. V. Faminskii}, J. Evol. Equ. 21, No. 2, 1263--1298 (2021; Zbl 1476.35222) Full Text: DOI OpenURL
Linares, Felipe; Pastor, Ademir; Scialom, Marcia Existence of solutions for the surface electromigration equation. (English) Zbl 1473.35531 Nonlinearity 34, No. 8, 5213-5233 (2021). MSC: 35Q60 35Q53 78A35 35C08 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{F. Linares} et al., Nonlinearity 34, No. 8, 5213--5233 (2021; Zbl 1473.35531) Full Text: DOI arXiv OpenURL
Zhang, Zhi-Yong; Zheng, Jia Symmetry structure of multi-dimensional time-fractional partial differential equations. (English) Zbl 1468.76049 Nonlinearity 34, No. 8, 5186-5212 (2021). MSC: 76M60 76X05 76B15 35A30 35R11 PDF BibTeX XML Cite \textit{Z.-Y. Zhang} and \textit{J. Zheng}, Nonlinearity 34, No. 8, 5186--5212 (2021; Zbl 1468.76049) Full Text: DOI arXiv OpenURL
Côte, Raphaël; Valet, Frédéric Polynomial growth of high Sobolev norms of solutions to the Zakharov-Kuznetsov equation. (English) Zbl 1467.35280 Commun. Pure Appl. Anal. 20, No. 3, 1039-1058 (2021). MSC: 35Q53 35Q35 35B65 76F06 PDF BibTeX XML Cite \textit{R. Côte} and \textit{F. Valet}, Commun. Pure Appl. Anal. 20, No. 3, 1039--1058 (2021; Zbl 1467.35280) Full Text: DOI arXiv OpenURL
Shan, Minjie; Zhang, Liqun Lower bounds on the radius of spatial analyticity for the 2D generalized Zakharov-Kuznetsov equation. (English) Zbl 1467.76077 J. Math. Anal. Appl. 501, No. 2, Article ID 125218, 13 p. (2021). MSC: 76X05 35Q35 35Q60 PDF BibTeX XML Cite \textit{M. Shan} and \textit{L. Zhang}, J. Math. Anal. Appl. 501, No. 2, Article ID 125218, 13 p. (2021; Zbl 1467.76077) Full Text: DOI OpenURL
Yamazaki, Yohei Center stable manifolds around line solitary waves of the Zakharov-Kuznetsov equation with critical speed. (English) Zbl 1465.35099 Discrete Contin. Dyn. Syst. 41, No. 8, 3579-3614 (2021). MSC: 35C08 35B35 35Q53 37L10 PDF BibTeX XML Cite \textit{Y. Yamazaki}, Discrete Contin. Dyn. Syst. 41, No. 8, 3579--3614 (2021; Zbl 1465.35099) Full Text: DOI arXiv OpenURL
Klein, Christian; Roudenko, Svetlana; Stoilov, Nikola Numerical study of Zakharov-Kuznetsov equations in two dimensions. (English) Zbl 1464.35298 J. Nonlinear Sci. 31, No. 2, Paper No. 26, 29 p. (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 65N35 65T50 37K40 37K45 35B44 PDF BibTeX XML Cite \textit{C. Klein} et al., J. Nonlinear Sci. 31, No. 2, Paper No. 26, 29 p. (2021; Zbl 1464.35298) Full Text: DOI arXiv OpenURL
Li, Changzhao; Fang, Hui Stochastic bifurcations of group-invariant solutions for a generalized stochastic Zakharov-Kuznetsov equation. (English) Zbl 1465.60052 Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150040, 20 p. (2021). MSC: 60H10 34F05 PDF BibTeX XML Cite \textit{C. Li} and \textit{H. Fang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 31, No. 3, Article ID 2150040, 20 p. (2021; Zbl 1465.60052) Full Text: DOI OpenURL
Pu, Xueke; Rong, Rong Zakharov-Kuznetsov-type limit for ion dynamics system with external magnetic field in \(\mathbb{R}^3\). (English) Zbl 1462.35310 Appl. Math. Lett. 115, Article ID 106938, 8 p. (2021). MSC: 35Q35 35Q60 76X05 82D10 78A35 PDF BibTeX XML Cite \textit{X. Pu} and \textit{R. Rong}, Appl. Math. Lett. 115, Article ID 106938, 8 p. (2021; Zbl 1462.35310) Full Text: DOI OpenURL
Linares, Felipe; Ramos, João P. G. Maximal function estimates and local well-posedness for the generalized Zakharov-Kuznetsov equation. (English) Zbl 1457.42031 SIAM J. Math. Anal. 53, No. 1, 914-936 (2021). MSC: 42B25 35Q53 42B37 PDF BibTeX XML Cite \textit{F. Linares} and \textit{J. P. G. Ramos}, SIAM J. Math. Anal. 53, No. 1, 914--936 (2021; Zbl 1457.42031) Full Text: DOI arXiv OpenURL
Linares, F.; Pastor, A.; Drumond Silva, J. Dispersive blow-up for solutions of the Zakharov-Kuznetsov equation. (English) Zbl 1458.35375 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 281-300 (2021). MSC: 35Q53 35B44 PDF BibTeX XML Cite \textit{F. Linares} et al., Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 281--300 (2021; Zbl 1458.35375) Full Text: DOI arXiv OpenURL
Kinoshita, Shinya; Schippa, Robert Loomis-Whitney-type inequalities and low regularity well-posedness of the periodic Zakharov-Kuznetsov equation. (English) Zbl 1458.35374 J. Funct. Anal. 280, No. 6, Article ID 108904, 54 p. (2021). MSC: 35Q53 42B37 35A01 35A02 PDF BibTeX XML Cite \textit{S. Kinoshita} and \textit{R. Schippa}, J. Funct. Anal. 280, No. 6, Article ID 108904, 54 p. (2021; Zbl 1458.35374) Full Text: DOI arXiv OpenURL
Zhang, Tian-Tian; Xu, Mei-Juan The symmetry-preserving difference schemes and exact solutions of some high-dimensional differential equations. (English) Zbl 1458.65117 Appl. Math. Lett. 112, Article ID 106813, 9 p. (2021). MSC: 65M06 35K59 PDF BibTeX XML Cite \textit{T.-T. Zhang} and \textit{M.-J. Xu}, Appl. Math. Lett. 112, Article ID 106813, 9 p. (2021; Zbl 1458.65117) Full Text: DOI OpenURL
Ali, Karmina K.; Yilmazer, Resat; Yokus, Asıf; Bulut, Hasan Analytical solutions for the \((3+1)\)-dimensional nonlinear extended quantum Zakharov-Kuznetsov equation in plasma physics. (English) Zbl 07530539 Physica A 548, Article ID 124327, 13 p. (2020). MSC: 82-XX PDF BibTeX XML Cite \textit{K. K. Ali} et al., Physica A 548, Article ID 124327, 13 p. (2020; Zbl 07530539) Full Text: DOI OpenURL
Du, Xia-Xia; Tian, Bo; Qu, Qi-Xing; Yuan, Yu-Qiang; Zhao, Xue-Hui Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma. (English) Zbl 1483.35177 Chaos Solitons Fractals 134, Article ID 109709, 11 p. (2020). MSC: 35Q51 35B06 35Q60 PDF BibTeX XML Cite \textit{X.-X. Du} et al., Chaos Solitons Fractals 134, Article ID 109709, 11 p. (2020; Zbl 1483.35177) Full Text: DOI OpenURL
Khater, Mostafa M. A.; Baleanu, Dumitru On abundant new solutions of two fractional complex models. (English) Zbl 1482.35252 Adv. Difference Equ. 2020, Paper No. 268, 14 p. (2020). MSC: 35R11 35Q53 26A33 35C08 76U65 PDF BibTeX XML Cite \textit{M. M. A. Khater} and \textit{D. Baleanu}, Adv. Difference Equ. 2020, Paper No. 268, 14 p. (2020; Zbl 1482.35252) Full Text: DOI OpenURL
Karatas, Tulin; Tasbozan, Orkun; Kurt, Ali New solutions for conformable fractional partial differential equations using first integral method. (English) Zbl 07458920 J. Fract. Calc. Appl. 11, No. 1, 145-150 (2020). MSC: 34A08 26A33 PDF BibTeX XML Cite \textit{T. Karatas} et al., J. Fract. Calc. Appl. 11, No. 1, 145--150 (2020; Zbl 07458920) Full Text: Link OpenURL
Naderifard, Azadeh; Hejazi, S. Reza; Dastranj, Elham Conservation laws of the time-fractional Zakharov-Kuznetsov-Burgers equation. (English) Zbl 07415790 Kragujevac J. Math. 44, No. 1, 75-88 (2020). MSC: 35Rxx PDF BibTeX XML Cite \textit{A. Naderifard} et al., Kragujevac J. Math. 44, No. 1, 75--88 (2020; Zbl 07415790) Full Text: Link OpenURL
Shan, Min Jie Global well-posedness and global attractor for two-dimensional Zakharov-Kuznetsov equation. (English) Zbl 1467.35294 Acta Math. Sin., Engl. Ser. 36, No. 9, 969-1000 (2020). MSC: 35Q53 35B41 35B45 35A01 35A02 76X05 82D10 35Q35 PDF BibTeX XML Cite \textit{M. J. Shan}, Acta Math. Sin., Engl. Ser. 36, No. 9, 969--1000 (2020; Zbl 1467.35294) Full Text: DOI arXiv OpenURL
Lü, Feng Meromorphic solutions of generalized inviscid Burgers’ equations and related PDEs. (English) Zbl 1456.35009 C. R., Math., Acad. Sci. Paris 358, No. 11-12, 1169-1178 (2020). MSC: 35B08 35F20 32A15 32A22 35Q53 PDF BibTeX XML Cite \textit{F. Lü}, C. R., Math., Acad. Sci. Paris 358, No. 11--12, 1169--1178 (2020; Zbl 1456.35009) Full Text: DOI OpenURL
Chen, Mo; Rosier, Lionel Exact controllability of the linear Zakharov-Kuznetsov equation. (English) Zbl 1454.37073 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3889-3916 (2020). MSC: 37K99 37N35 93B05 35Q93 35Q53 PDF BibTeX XML Cite \textit{M. Chen} and \textit{L. Rosier}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3889--3916 (2020; Zbl 1454.37073) Full Text: DOI arXiv OpenURL
Eidnes, Sølve; Li, Lu Linearly implicit local and global energy-preserving methods for PDEs with a cubic Hamiltonian. (English) Zbl 1456.37094 SIAM J. Sci. Comput. 42, No. 5, A2865-A2888 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 37M15 65M06 65P10 PDF BibTeX XML Cite \textit{S. Eidnes} and \textit{L. Li}, SIAM J. Sci. Comput. 42, No. 5, A2865--A2888 (2020; Zbl 1456.37094) Full Text: DOI arXiv OpenURL
Zayed, Elsayed M. E.; Shohib, Reham M. A.; Alngar, Mohamed E. M. New extended generalized Kudryashov method for solving three nonlinear partial differential equations. (English) Zbl 07249219 Nonlinear Anal., Model. Control 25, No. 4, 598-617 (2020). MSC: 35Q55 35Q53 76X05 76Q05 35C08 34A34 PDF BibTeX XML Cite \textit{E. M. E. Zayed} et al., Nonlinear Anal., Model. Control 25, No. 4, 598--617 (2020; Zbl 07249219) Full Text: DOI OpenURL
Shan, Minjie Well-posedness for the two-dimensional Zakharov-Kuznetsov equation. (English) Zbl 1458.35393 Funkc. Ekvacioj, Ser. Int. 63, No. 1, 67-95 (2020). MSC: 35Q55 35A01 35A02 PDF BibTeX XML Cite \textit{M. Shan}, Funkc. Ekvacioj, Ser. Int. 63, No. 1, 67--95 (2020; Zbl 1458.35393) Full Text: DOI OpenURL
Schippa, Robert On the Cauchy problem for higher dimensional Benjamin-Ono and Zakharov-Kuznetsov equations. (English) Zbl 1442.35401 Discrete Contin. Dyn. Syst. 40, No. 9, 5189-5215 (2020). MSC: 35Q53 35B30 26A33 35R11 35A01 35A02 PDF BibTeX XML Cite \textit{R. Schippa}, Discrete Contin. Dyn. Syst. 40, No. 9, 5189--5215 (2020; Zbl 1442.35401) Full Text: DOI arXiv OpenURL
Odibat, Zaid; Alsaedi, Ahmed; Hayat, Tasawar Solitary wave solutions of some nonlinear physical models using Riccati equation approach. (English) Zbl 1436.35069 Acta Math. Appl. Sin., Engl. Ser. 36, No. 2, 401-418 (2020). MSC: 35C08 35C05 35Q51 35Q53 PDF BibTeX XML Cite \textit{Z. Odibat} et al., Acta Math. Appl. Sin., Engl. Ser. 36, No. 2, 401--418 (2020; Zbl 1436.35069) Full Text: DOI OpenURL
Bhattacharya, Debdeep; Farah, Luiz Gustavo; Roudenko, Svetlana Global well-posedness for low regularity data in the 2d modified Zakharov-Kuznetsov equation. (English) Zbl 1435.35332 J. Differ. Equations 268, No. 12, 7962-7997 (2020). MSC: 35Q53 35Q51 37K40 35A01 35A02 PDF BibTeX XML Cite \textit{D. Bhattacharya} et al., J. Differ. Equations 268, No. 12, 7962--7997 (2020; Zbl 1435.35332) Full Text: DOI arXiv OpenURL
EL-Kalaawy, O. H.; Moawad, S. M.; Tharwat, M. M.; Al-Denari, Rasha B. Conservation laws, analytical solutions and stability analysis for the time-fractional Schamel-Zakharov-Kuznetsov-Burgers equation. (English) Zbl 1485.35380 Adv. Difference Equ. 2019, Paper No. 445, 23 p. (2019). MSC: 35R11 35Q51 35B06 35C08 PDF BibTeX XML Cite \textit{O. H. EL-Kalaawy} et al., Adv. Difference Equ. 2019, Paper No. 445, 23 p. (2019; Zbl 1485.35380) Full Text: DOI OpenURL
Liu, Quansheng; Zhang, Ruigang; Yang, Liangui; Song, Jian A new model equation for nonlinear Rossby waves and some of its solutions. (English) Zbl 1486.76107 Phys. Lett., A 383, No. 6, 514-525 (2019). MSC: 76U65 76B15 76M45 PDF BibTeX XML Cite \textit{Q. Liu} et al., Phys. Lett., A 383, No. 6, 514--525 (2019; Zbl 1486.76107) Full Text: DOI OpenURL
Kumar, Sachin; Kumar, Dharmendra Solitary wave solutions of \((3+1)\)-dimensional extended Zakharov-Kuznetsov equation by Lie symmetry approach. (English) Zbl 1442.35382 Comput. Math. Appl. 77, No. 8, 2096-2113 (2019). MSC: 35Q53 35A30 35C08 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{D. Kumar}, Comput. Math. Appl. 77, No. 8, 2096--2113 (2019; Zbl 1442.35382) Full Text: DOI OpenURL
Liu, Hong-zhun; Zhang, Tong Notes on “The new exact solitary and multi-soliton solutions for the (2+1)-dimensional Zakharov-Kuznetsov equation”. (English) Zbl 1442.35386 Comput. Math. Appl. 77, No. 7, 1980-1982 (2019). MSC: 35Q53 35C08 PDF BibTeX XML Cite \textit{H.-z. Liu} and \textit{T. Zhang}, Comput. Math. Appl. 77, No. 7, 1980--1982 (2019; Zbl 1442.35386) Full Text: DOI OpenURL
Chen, Mo Unique continuation property for the Zakharov-Kuznetsov equation. (English) Zbl 1442.35372 Comput. Math. Appl. 77, No. 5, 1273-1281 (2019). MSC: 35Q53 35B60 PDF BibTeX XML Cite \textit{M. Chen}, Comput. Math. Appl. 77, No. 5, 1273--1281 (2019; Zbl 1442.35372) Full Text: DOI OpenURL
Yin, Xiaojun; Yang, Liangui; Liu, Quansheng; Wu, Guorong \((2+1)\)-dimensional ZK-Burgers equation with the generalized beta effect and its exact solitary solution. (English) Zbl 1442.76135 Comput. Math. Appl. 77, No. 1, 302-310 (2019). MSC: 76U65 35C08 35Q53 35Q86 86A05 PDF BibTeX XML Cite \textit{X. Yin} et al., Comput. Math. Appl. 77, No. 1, 302--310 (2019; Zbl 1442.76135) Full Text: DOI OpenURL
Omel’yanov, G. A.; Orozco-Casillas, G. A. Dynamics of distorted solitons in the modified Zakharov-Kuznetsov model. (English) Zbl 1440.35296 Nonlinear Phenom. Complex Syst., Minsk 22, No. 3, 242-250 (2019). MSC: 35Q53 37K40 PDF BibTeX XML Cite \textit{G. A. Omel'yanov} and \textit{G. A. Orozco-Casillas}, Nonlinear Phenom. Complex Syst., Minsk 22, No. 3, 242--250 (2019; Zbl 1440.35296) OpenURL
Farah, Luiz Gustavo; Holmer, Justin; Roudenko, Svetlana Instability of solitons in the 2D cubic Zakharov-Kuznetsov equation. (English) Zbl 1440.35267 Miller, Peter D. (ed.) et al., Nonlinear dispersive partial differential equations and inverse scattering. Papers from the focus program on “Nonlinear Dispersive Partial Differential Equations and Inverse Scattering”, Fields Institute, July 31 – August 18, 2017. New York, NY: Springer; Toronto, ON: The Fields Institute for Research in Mathematical Scienes. Fields Inst. Commun. 83, 295-371 (2019). MSC: 35Q35 76B25 37K45 PDF BibTeX XML Cite \textit{L. G. Farah} et al., Fields Inst. Commun. 83, 295--371 (2019; Zbl 1440.35267) Full Text: DOI arXiv OpenURL
Bibik, Yu. V.; Popov, S. P. Soliton solutions of a generalization of the coupled Volterra system. (English. Russian original) Zbl 1435.35112 Comput. Math. Math. Phys. 59, No. 11, 1806-1815 (2019); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 11, 1872-1882 (2019). MSC: 35C08 39A12 PDF BibTeX XML Cite \textit{Yu. V. Bibik} and \textit{S. P. Popov}, Comput. Math. Math. Phys. 59, No. 11, 1806--1815 (2019; Zbl 1435.35112); translation from Zh. Vychisl. Mat. Mat. Fiz. 59, No. 11, 1872--1882 (2019) Full Text: DOI OpenURL
Farah, Luiz Gustavo; Holmer, Justin; Roudenko, Svetlana On instability of solitons in the 2d cubic Zakharov-Kuznetsov equation. (English) Zbl 1431.35153 São Paulo J. Math. Sci. 13, No. 2, 435-446 (2019). MSC: 35Q53 37K40 37K45 35C08 PDF BibTeX XML Cite \textit{L. G. Farah} et al., São Paulo J. Math. Sci. 13, No. 2, 435--446 (2019; Zbl 1431.35153) Full Text: DOI OpenURL
Li, Changzhao; Zhang, Juan Lie symmetry analysis and exact solutions of generalized fractional Zakharov-Kuznetsov equations. (English) Zbl 1425.35216 Symmetry 11, No. 5, Paper No. 601, 12 p. (2019). MSC: 35R11 35A30 35Q53 35B06 35C05 PDF BibTeX XML Cite \textit{C. Li} and \textit{J. Zhang}, Symmetry 11, No. 5, Paper No. 601, 12 p. (2019; Zbl 1425.35216) Full Text: DOI OpenURL
Farah, Luiz Gustavo; Holmer, Justin; Roudenko, Svetlana Instability of solitons – revisited. II: The supercritical Zakharov-Kuznetsov equation. (English) Zbl 1423.35337 Zheng, Shijun (ed.) et al., Nonlinear dispersive waves and fluids. AMS special sessions on spectral calculus and quasilinear partial differential equations, and PDE analysis on fluid flows, Atlanta, GA, USA, January 5–7, 2017. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 725, 89-109 (2019). MSC: 35Q53 37K40 37K45 37K05 PDF BibTeX XML Cite \textit{L. G. Farah} et al., Contemp. Math. 725, 89--109 (2019; Zbl 1423.35337) Full Text: DOI arXiv OpenURL
Faminskii, Andrei V. On one control problem for Zakharov-Kuznetsov equation. (English) Zbl 1428.35639 Lindahl, Karl-Olof (ed.) et al., Analysis, probability, applications, and computation. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 305-313 (2019). MSC: 35Q93 35Q53 93C20 PDF BibTeX XML Cite \textit{A. V. Faminskii}, in: Analysis, probability, applications, and computation. Proceedings of the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 305--313 (2019; Zbl 1428.35639) Full Text: DOI OpenURL
Hirayama, Hiroyuki Local and global well-posedness for the 2D Zakharov-Kuznetsov-Burgers equation in low regularity Sobolev space. (English) Zbl 1417.35171 J. Differ. Equations 267, No. 7, 4089-4116 (2019). MSC: 35Q53 35A01 35A02 35K55 PDF BibTeX XML Cite \textit{H. Hirayama}, J. Differ. Equations 267, No. 7, 4089--4116 (2019; Zbl 1417.35171) Full Text: DOI arXiv OpenURL
Liu, Yang; Wang, Xin The construction of solutions to Zakharov-Kuznetsov equation with fractional power nonlinear terms. (English) Zbl 1459.35327 Adv. Difference Equ. 2019, Paper No. 134, 12 p. (2019). MSC: 35Q51 35C07 35R11 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{X. Wang}, Adv. Difference Equ. 2019, Paper No. 134, 12 p. (2019; Zbl 1459.35327) Full Text: DOI OpenURL
Liu, Yamin; Teng, Qingyong; Tai, Weipeng; Zhou, Jianping; Wang, Zhen Symmetry reductions of the \((3+1)\)-dimensional modified Zakharov-Kuznetsov equation. (English) Zbl 1458.35376 Adv. Difference Equ. 2019, Paper No. 77, 14 p. (2019). MSC: 35Q53 35Q51 35C08 37K10 37K40 PDF BibTeX XML Cite \textit{Y. Liu} et al., Adv. Difference Equ. 2019, Paper No. 77, 14 p. (2019; Zbl 1458.35376) Full Text: DOI OpenURL
Ali, Muhammad Nasir; Seadawy, Aly R.; Husnine, Syed Muhammad Lie point symmetries exact solutions and conservation laws of perturbed Zakharov-Kuznetsov equation with higher-order dispersion term. (English) Zbl 1407.35172 Mod. Phys. Lett. A 34, No. 3, Article ID 1950027, 12 p. (2019). MSC: 35Q53 35L65 35B06 PDF BibTeX XML Cite \textit{M. N. Ali} et al., Mod. Phys. Lett. A 34, No. 3, Article ID 1950027, 12 p. (2019; Zbl 1407.35172) Full Text: DOI OpenURL
Zayed, Elsayed M. E.; Shohib, Reham M. A.; Al-Nowehy, Abdul-Ghani Solitons and other solutions for higher-order NLS equation and quantum ZK equation using the extended simplest equation method. (English) Zbl 1442.35436 Comput. Math. Appl. 76, No. 9, 2286-2303 (2018). MSC: 35Q55 35C08 PDF BibTeX XML Cite \textit{E. M. E. Zayed} et al., Comput. Math. Appl. 76, No. 9, 2286--2303 (2018; Zbl 1442.35436) Full Text: DOI OpenURL
Saha Ray, S. Invariant analysis and conservation laws for the time fractional \((2+1)\)-dimensional Zakharov-Kuznetsov modified equal width equation using Lie group analysis. (English) Zbl 1442.35013 Comput. Math. Appl. 76, No. 9, 2110-2118 (2018). MSC: 35A30 35Q53 PDF BibTeX XML Cite \textit{S. Saha Ray}, Comput. Math. Appl. 76, No. 9, 2110--2118 (2018; Zbl 1442.35013) Full Text: DOI OpenURL
Kuo, Chun-Ku The new exact solitary and multi-soliton solutions for the \((2+1)\)-dimensional Zakharov-Kuznetsov equation. (English) Zbl 1415.35244 Comput. Math. Appl. 75, No. 8, 2851-2857 (2018). MSC: 35Q53 35C08 PDF BibTeX XML Cite \textit{C.-K. Kuo}, Comput. Math. Appl. 75, No. 8, 2851--2857 (2018; Zbl 1415.35244) Full Text: DOI OpenURL
Guo, Feng Some energy conservative algorithms for generalized Zakharov-Kuznetsov equation. (Chinese. English summary) Zbl 1424.65129 J. Numer. Methods Comput. Appl. 39, No. 3, 183-194 (2018). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{F. Guo}, J. Numer. Methods Comput. Appl. 39, No. 3, 183--194 (2018; Zbl 1424.65129) OpenURL
Yin, Xiaojun; Yang, Liangui; Liu, Quansheng; Zhang, Ruiguang The nonlinear \( (2 + 1)\)-dimensional Zakharov-Kuznetsov equation and its solitary solution. (Chinese. English summary) Zbl 1424.35295 J. Yunnan Univ., Nat. Sci. 40, No. 4, 619-624 (2018). MSC: 35Q51 35C07 35C08 PDF BibTeX XML Cite \textit{X. Yin} et al., J. Yunnan Univ., Nat. Sci. 40, No. 4, 619--624 (2018; Zbl 1424.35295) OpenURL
Ege, Serife Muge; Misirli, Emine Extended Kudryashov method for fractional nonlinear differential equations. (English) Zbl 1407.35207 Math. Sci. Appl. E-Notes 6, No. 1, 19-28 (2018). MSC: 35R11 35A25 35Q51 PDF BibTeX XML Cite \textit{S. M. Ege} and \textit{E. Misirli}, Math. Sci. Appl. E-Notes 6, No. 1, 19--28 (2018; Zbl 1407.35207) OpenURL
Al-Shawba, Altaf A.; Abdullah, Farah A.; Gepreel, Khaled A.; Azmi, Amirah Solitary and periodic wave solutions of higher-dimensional conformable time-fractional differential equations using the \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method. (English) Zbl 1448.35537 Adv. Difference Equ. 2018, Paper No. 362, 15 p. (2018). MSC: 35R11 26A33 35Q53 PDF BibTeX XML Cite \textit{A. A. Al-Shawba} et al., Adv. Difference Equ. 2018, Paper No. 362, 15 p. (2018; Zbl 1448.35537) Full Text: DOI OpenURL
Ali, Asghar; Seadawy, Aly R.; Lu, Dianchen Dispersive analytical soliton solutions of some nonlinear waves dynamical models via modified mathematical methods. (English) Zbl 1448.35430 Adv. Difference Equ. 2018, Paper No. 334, 20 p. (2018). MSC: 35Q51 35C08 37K40 PDF BibTeX XML Cite \textit{A. Ali} et al., Adv. Difference Equ. 2018, Paper No. 334, 20 p. (2018; Zbl 1448.35430) Full Text: DOI OpenURL
Pelinovsky, Dmitry Normal form for transverse instability of the line soliton with a nearly critical speed of propagation. (English) Zbl 1405.35187 Math. Model. Nat. Phenom. 13, No. 2, Paper No. 23, 20 p. (2018). MSC: 35Q53 37K40 37L10 PDF BibTeX XML Cite \textit{D. Pelinovsky}, Math. Model. Nat. Phenom. 13, No. 2, Paper No. 23, 20 p. (2018; Zbl 1405.35187) Full Text: DOI arXiv Link OpenURL
Shahoot, A. M.; Alurrfi, K. A. E.; Hassan, I. M.; Almsri, A. M. Solitons and other exact solutions for two nonlinear PDEs in mathematical physics using the generalized projective Riccati equations method. (English) Zbl 1404.35090 Adv. Math. Phys. 2018, Article ID 6870310, 11 p. (2018). MSC: 35C08 PDF BibTeX XML Cite \textit{A. M. Shahoot} et al., Adv. Math. Phys. 2018, Article ID 6870310, 11 p. (2018; Zbl 1404.35090) Full Text: DOI OpenURL
Ali, Muhammad Nasir; Husnine, Syed Muhammad; Ak, Turgut; Atangana, Abdon Solitary wave solution and conservation laws of higher dimensional Zakharov-Kuznetsov equation with nonlinear self-adjointness. (English) Zbl 1402.74056 Math. Methods Appl. Sci. 41, No. 16, 6611-6624 (2018). MSC: 74J35 35L35 47B25 58J70 PDF BibTeX XML Cite \textit{M. N. Ali} et al., Math. Methods Appl. Sci. 41, No. 16, 6611--6624 (2018; Zbl 1402.74056) Full Text: DOI OpenURL
Liu, Zhitang; Sirendaoerji Periodic solitary-like wave solutions of variable-coefficient Zakharov-Kuznetsov equation. (Chinese. English summary) Zbl 1413.35394 Math. Appl. 31, No. 1, 55-59 (2018). MSC: 35Q51 35B10 35C08 PDF BibTeX XML Cite \textit{Z. Liu} and \textit{Sirendaoerji}, Math. Appl. 31, No. 1, 55--59 (2018; Zbl 1413.35394) OpenURL
Deka, M. K.; Dev, A. N. Landau degeneracy effect on ion beam driven degenerate magneto plasma: evolution of hypersonic soliton. (English) Zbl 1394.82017 Ann. Phys. 395, 45-62 (2018). MSC: 82D10 35Q82 81V10 PDF BibTeX XML Cite \textit{M. K. Deka} and \textit{A. N. Dev}, Ann. Phys. 395, 45--62 (2018; Zbl 1394.82017) Full Text: DOI OpenURL
Abdullah; Seadawy, Aly R.; Wang, Jun Stability analysis and applications of traveling wave solutions of three-dimensional nonlinear modified Zakharov-Kuznetsov equation in a magnetized plasma. (English) Zbl 1393.82022 Mod. Phys. Lett. A 33, No. 25, Article ID 1850145, 15 p. (2018). MSC: 82D10 35Q53 35B35 35C07 PDF BibTeX XML Cite \textit{Abdullah} et al., Mod. Phys. Lett. A 33, No. 25, Article ID 1850145, 15 p. (2018; Zbl 1393.82022) Full Text: DOI OpenURL
Faminskii, Andrei V. Initial-boundary value problems in a half-strip for two-dimensional Zakharov-Kuznetsov equation. (English) Zbl 1393.35203 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, No. 5, 1235-1265 (2018). MSC: 35Q53 35B40 35D30 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{A. V. Faminskii}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35, No. 5, 1235--1265 (2018; Zbl 1393.35203) Full Text: DOI arXiv OpenURL
Faminskii, Andrei V. Initial-boundary value problems in a rectangle for two-dimensional Zakharov-Kuznetsov equation. (English) Zbl 1390.35306 J. Math. Anal. Appl. 463, No. 2, 760-793 (2018). MSC: 35Q53 35B40 35D30 35B65 93B05 PDF BibTeX XML Cite \textit{A. V. Faminskii}, J. Math. Anal. Appl. 463, No. 2, 760--793 (2018; Zbl 1390.35306) Full Text: DOI arXiv OpenURL
Arshad, Muhammad; Lu, Dianchen; Wang, Jun \((N+1)\)-dimensional fractional reduced differential transform method for fractional order partial differential equations. (English) Zbl 07257663 Commun. Nonlinear Sci. Numer. Simul. 48, 509-519 (2017). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{M. Arshad} et al., Commun. Nonlinear Sci. Numer. Simul. 48, 509--519 (2017; Zbl 07257663) Full Text: DOI OpenURL
Wang, Huimin Numerical simulation for the solitary wave of Zakharov-Kuznetsov equation based on lattice Boltzmann method. (English) Zbl 1446.76049 Appl. Math. Modelling 45, 1-13 (2017). MSC: 76-10 35Q53 76M28 76X05 PDF BibTeX XML Cite \textit{H. Wang}, Appl. Math. Modelling 45, 1--13 (2017; Zbl 1446.76049) Full Text: DOI OpenURL
Wu, Guorong; Yin, Xiaojun The nonlinear ZK equation with a complete Coriolis force. (Chinese. English summary) Zbl 1399.35302 J. Inn. Mong. Norm. Univ., Nat. Sci. 46, No. 5, 625-628 (2017). MSC: 35Q35 76B65 PDF BibTeX XML Cite \textit{G. Wu} and \textit{X. Yin}, J. Inn. Mong. Norm. Univ., Nat. Sci. 46, No. 5, 625--628 (2017; Zbl 1399.35302) OpenURL
Yin, Xiaojun; Yang, Liangui; Liu, Quansheng; Su, Jinmei; Wu, Guorong Nonlinear ZK equation under the external forcing with a complete Coriolis force. (Chinese. English summary) Zbl 1399.35306 Appl. Math., Ser. A (Chin. Ed.) 32, No. 4, 423-430 (2017). MSC: 35Q35 35Q53 PDF BibTeX XML Cite \textit{X. Yin} et al., Appl. Math., Ser. A (Chin. Ed.) 32, No. 4, 423--430 (2017; Zbl 1399.35306) OpenURL
Zhang, Ruigang; Yang, Liangui; Song, Jian; Liu, Quansheng \({(2+1)}\)-dimensional nonlinear Rossby solitary waves under the effects of generalized beta and slowly varying topography. (English) Zbl 1391.76082 Nonlinear Dyn. 90, No. 2, 815-822 (2017). MSC: 76B25 35C08 PDF BibTeX XML Cite \textit{R. Zhang} et al., Nonlinear Dyn. 90, No. 2, 815--822 (2017; Zbl 1391.76082) Full Text: DOI OpenURL
Kato, Tomoya On applications of modulation spaces to dispersive equations. (English) Zbl 1402.35248 RIMS Kôkyûroku Bessatsu B65, 63-78 (2017). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35Q53 42B35 PDF BibTeX XML Cite \textit{T. Kato}, RIMS Kôkyûroku Bessatsu B65, 63--78 (2017; Zbl 1402.35248) OpenURL
Elboree, Mohammed K. Conservation laws, soliton solutions and periodic solutions for generalized coupled Zakharov-Kuznetsov equations. (English) Zbl 1380.35062 Chaos Solitons Fractals 104, 607-612 (2017). MSC: 35G20 35B06 PDF BibTeX XML Cite \textit{M. K. Elboree}, Chaos Solitons Fractals 104, 607--612 (2017; Zbl 1380.35062) Full Text: DOI OpenURL
Elboree, Mohammed K. Conservation laws, soliton solutions for modified Camassa-Holm equation and \((2+1)\)-dimensional ZK-BBM equation. (English) Zbl 1377.37095 Nonlinear Dyn. 89, No. 4, 2979-2994 (2017). MSC: 37K10 35C08 PDF BibTeX XML Cite \textit{M. K. Elboree}, Nonlinear Dyn. 89, No. 4, 2979--2994 (2017; Zbl 1377.37095) Full Text: DOI OpenURL
Moleleki, L. D.; Muatjetjeja, B.; Adem, A. R. Solutions and conservation laws of a (3+1)-dimensional Zakharov-Kuznetsov equation. (English) Zbl 1373.37157 Nonlinear Dyn. 87, No. 4, 2187-2192 (2017). MSC: 37K10 35B06 35C07 PDF BibTeX XML Cite \textit{L. D. Moleleki} et al., Nonlinear Dyn. 87, No. 4, 2187--2192 (2017; Zbl 1373.37157) Full Text: DOI OpenURL
Zhang, Ruigang; Yang, Liangui; Song, Jian; Yang, Hongli \((2+1)\) dimensional Rossby waves with complete Coriolis force and its solution by homotopy perturbation method. (English) Zbl 1371.86021 Comput. Math. Appl. 73, No. 9, 1996-2003 (2017). MSC: 86A10 35Q86 35Q53 PDF BibTeX XML Cite \textit{R. Zhang} et al., Comput. Math. Appl. 73, No. 9, 1996--2003 (2017; Zbl 1371.86021) Full Text: DOI OpenURL
Esfahani, Amin Qualitative properties of solutions of an integral equation associated with the Benjamin-Ono-Zakharov-Kuznetsov operator. (English) Zbl 1379.45004 Indag. Math., New Ser. 28, No. 2, 601-611 (2017). MSC: 45G10 45M20 PDF BibTeX XML Cite \textit{A. Esfahani}, Indag. Math., New Ser. 28, No. 2, 601--611 (2017; Zbl 1379.45004) Full Text: DOI OpenURL
Kato, Tomoya Well-posedness for the generalized Zakharov-Kuznetsov equation on modulation spaces. (English) Zbl 1372.35276 J. Fourier Anal. Appl. 23, No. 3, 612-655 (2017). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35Q53 42B35 PDF BibTeX XML Cite \textit{T. Kato}, J. Fourier Anal. Appl. 23, No. 3, 612--655 (2017; Zbl 1372.35276) Full Text: DOI OpenURL
Korkmaz, Alper Exact solutions to \((3+1)\) conformable time fractional Jimbo-Miwa, Zakharov-Kuznetsov and modified Zakharov-Kuznetsov equations. (English) Zbl 1365.35208 Commun. Theor. Phys. 67, No. 5, 479-482 (2017). MSC: 35R11 35Q79 35Q83 35C05 PDF BibTeX XML Cite \textit{A. Korkmaz}, Commun. Theor. Phys. 67, No. 5, 479--482 (2017; Zbl 1365.35208) Full Text: DOI OpenURL
Saha Ray, S.; Singh, S. New exact solutions for the Wick-type stochastic Zakharov-Kuznetsov equation for modelling waves on shallow water surfaces. (English) Zbl 1365.60061 Random Oper. Stoch. Equ. 25, No. 2, 107-116 (2017). MSC: 60H15 60H30 60H35 60H40 PDF BibTeX XML Cite \textit{S. Saha Ray} and \textit{S. Singh}, Random Oper. Stoch. Equ. 25, No. 2, 107--116 (2017; Zbl 1365.60061) Full Text: DOI OpenURL
Çenesiz, Yücel; Tasbozan, Orkun; Kurt, Ali Functional variable method for conformable fractional modified KdV-ZK equation and maccari system. (English) Zbl 1372.35330 Tbil. Math. J. 10, No. 1, 117-125 (2017). MSC: 35R11 34A08 35A20 26A33 35Q53 PDF BibTeX XML Cite \textit{Y. Çenesiz} et al., Tbil. Math. J. 10, No. 1, 117--125 (2017; Zbl 1372.35330) Full Text: DOI OpenURL
Yamazaki, Yohei Stability for line solitary waves of Zakharov-Kuznetsov equation. (English) Zbl 1364.35320 J. Differ. Equations 262, No. 8, 4336-4389 (2017). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 35C08 35B32 35B35 PDF BibTeX XML Cite \textit{Y. Yamazaki}, J. Differ. Equations 262, No. 8, 4336--4389 (2017; Zbl 1364.35320) Full Text: DOI arXiv OpenURL
Guner, Ozkan; Aksoy, Esin; Bekir, Ahmet; Cevikel, Adem C. Different methods for \((3+1)\)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation. (English) Zbl 1443.35124 Comput. Math. Appl. 71, No. 6, 1259-1269 (2016). MSC: 35Q53 35C05 35R11 PDF BibTeX XML Cite \textit{O. Guner} et al., Comput. Math. Appl. 71, No. 6, 1259--1269 (2016; Zbl 1443.35124) Full Text: DOI OpenURL
Seadawy, Aly R. Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma. (English) Zbl 1443.82015 Comput. Math. Appl. 71, No. 1, 201-212 (2016). MSC: 82D10 35B35 35C07 35C08 35Q82 PDF BibTeX XML Cite \textit{A. R. Seadawy}, Comput. Math. Appl. 71, No. 1, 201--212 (2016; Zbl 1443.82015) Full Text: DOI OpenURL
Jiang, Yao-Lin; Lu, Yi; Chen, Cheng Conservation laws and optimal system of extended quantum Zakharov-Kuznetsov equation. (English) Zbl 1420.35071 J. Nonlinear Math. Phys. 23, No. 2, 157-166 (2016). MSC: 35G20 35L65 58J70 PDF BibTeX XML Cite \textit{Y.-L. Jiang} et al., J. Nonlinear Math. Phys. 23, No. 2, 157--166 (2016; Zbl 1420.35071) Full Text: DOI OpenURL
Yu, Jianping; Jing, Jian; Sun, Yongli; Wu, Suping \((n + 1)\)-dimensional reduced differential transform method for solving partial differential equations. (English) Zbl 1410.35007 Appl. Math. Comput. 273, 697-705 (2016). MSC: 35A25 35C10 PDF BibTeX XML Cite \textit{J. Yu} et al., Appl. Math. Comput. 273, 697--705 (2016; Zbl 1410.35007) Full Text: DOI OpenURL
Sun, Huixia; Liu, Lijie; Wei, Leilei A discontinuous Galerkin finite element method for the Zakharov-Kuznetsov equation. (English) Zbl 1422.65269 Adv. Difference Equ. 2016, Paper No. 158, 12 p. (2016). MSC: 65M60 35K55 65M12 65M15 PDF BibTeX XML Cite \textit{H. Sun} et al., Adv. Difference Equ. 2016, Paper No. 158, 12 p. (2016; Zbl 1422.65269) Full Text: DOI OpenURL
Seadawy, Aly R. Stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a magnetized electron-positron plasma. (English) Zbl 1400.76106 Physica A 455, 44-51 (2016). MSC: 76X05 PDF BibTeX XML Cite \textit{A. R. Seadawy}, Physica A 455, 44--51 (2016; Zbl 1400.76106) Full Text: DOI OpenURL
Aksoy, Esin; Kaplan, Melike; Bekir, Ahmet Exponential rational function method for space-time fractional differential equations. (English) Zbl 1378.35319 Waves Random Complex Media 26, No. 2, 142-151 (2016). MSC: 35R11 35C05 PDF BibTeX XML Cite \textit{E. Aksoy} et al., Waves Random Complex Media 26, No. 2, 142--151 (2016; Zbl 1378.35319) Full Text: DOI OpenURL