Holhoş, Adrian Voronovskaya-type results for positive linear operators of exponential type and their derivatives. (English) Zbl 07544777 Bull. Malays. Math. Sci. Soc. (2) 45, No. 4, 1839-1861 (2022). MSC: 41A36 41A28 PDF BibTeX XML Cite \textit{A. Holhoş}, Bull. Malays. Math. Sci. Soc. (2) 45, No. 4, 1839--1861 (2022; Zbl 07544777) Full Text: DOI OpenURL
Birou, Marius Mihai A generalization of an inequality related to a conjecture involving convex functions. (English) Zbl 1480.26018 J. Math. Anal. Appl. 505, No. 1, Article ID 125623, 15 p. (2022). Reviewer: Szymon Wąsowicz (Bielsko-Biała) MSC: 26D15 26A51 41A35 PDF BibTeX XML Cite \textit{M. M. Birou}, J. Math. Anal. Appl. 505, No. 1, Article ID 125623, 15 p. (2022; Zbl 1480.26018) Full Text: DOI OpenURL
Sofyalıoğlu, Melek; Kanat, Kadir; Çekim, Bayram Parametric generalization of the Meyer-König-Zeller operators. (English) Zbl 07577321 Chaos Solitons Fractals 152, Article ID 111417, 9 p. (2021). MSC: 41A25 41A36 47A58 PDF BibTeX XML Cite \textit{M. Sofyalıoğlu} et al., Chaos Solitons Fractals 152, Article ID 111417, 9 p. (2021; Zbl 07577321) Full Text: DOI OpenURL
Braha, Naim L.; Mansour, Toufik; Mursaleen, M. Approximation by modified Meyer-König and Zeller operators via power series summability method. (English) Zbl 1481.40004 Bull. Malays. Math. Sci. Soc. (2) 44, No. 4, 2005-2019 (2021). MSC: 40G10 40C15 41A36 40A35 PDF BibTeX XML Cite \textit{N. L. Braha} et al., Bull. Malays. Math. Sci. Soc. (2) 44, No. 4, 2005--2019 (2021; Zbl 1481.40004) Full Text: DOI OpenURL
Söylemez, Dilek; Ünver, Mehmet Rates of power series statistical convergence of positive linear operators and power series statistical convergence of \(q\)-Meyer-König and Zeller operators. (English) Zbl 1472.40004 Lobachevskii J. Math. 42, No. 2, 426-434 (2021). MSC: 40A35 40J05 41A36 PDF BibTeX XML Cite \textit{D. Söylemez} and \textit{M. Ünver}, Lobachevskii J. Math. 42, No. 2, 426--434 (2021; Zbl 1472.40004) Full Text: DOI OpenURL
Soylemez, Dilek; Ünver, Mehmet Korovkin type approximation of Abel transforms of \(q\)-Meyer-König and Zeller operators. (English) Zbl 07623373 Int. J. Nonlinear Anal. Appl. 11, No. 2, 339-350 (2020). MSC: 40A35 40G10 41A36 PDF BibTeX XML Cite \textit{D. Soylemez} and \textit{M. Ünver}, Int. J. Nonlinear Anal. Appl. 11, No. 2, 339--350 (2020; Zbl 07623373) Full Text: DOI arXiv OpenURL
Taş, Emre; Yurdakadim, Tuğba Variational approximation for modified Meyer-König and Zeller operators. (English) Zbl 1438.41038 Sarajevo J. Math. 15(28), No. 1, 113-127 (2019). MSC: 41A36 41A30 PDF BibTeX XML Cite \textit{E. Taş} and \textit{T. Yurdakadim}, Sarajevo J. Math. 15(28), No. 1, 113--127 (2019; Zbl 1438.41038) OpenURL
Gadjev, I. A direct theorem for MKZ-Kantorovich operator. (English) Zbl 1438.41033 Anal. Math. 45, No. 1, 25-38 (2019). Reviewer: Ioan Raşa (Cluj-Napoca) MSC: 41A36 41A17 41A25 41A27 PDF BibTeX XML Cite \textit{I. Gadjev}, Anal. Math. 45, No. 1, 25--38 (2019; Zbl 1438.41033) Full Text: DOI OpenURL
Sharma, Honey; Gupta, Cheena; Maurya, Ramapati On approximation by \((p,q)\)-Meyer-König-Zeller Durrmeyer operators. (English) Zbl 1412.41019 Khayyam J. Math. 5, No. 1, 113-124 (2019). MSC: 41A25 41A35 PDF BibTeX XML Cite \textit{H. Sharma} et al., Khayyam J. Math. 5, No. 1, 113--124 (2019; Zbl 1412.41019) Full Text: DOI arXiv OpenURL
Gadjev, Ivan; Parvanov, Parvan; Uluchev, Rumen Weighted approximation by Kanotrovich type modification of Meyer-König and Zeller operator. (English) Zbl 1474.41080 God. Sofiĭ. Univ., Fak. Mat. Inform. 105, 75-95 (2018). MSC: 41A81 41A25 41A36 PDF BibTeX XML Cite \textit{I. Gadjev} et al., God. Sofiĭ. Univ., Fak. Mat. Inform. 105, 75--95 (2018; Zbl 1474.41080) Full Text: Link OpenURL
Sharma, Honey; Maurya, Ramapati; Gupta, Cheena Approximation properties of Kantorovich type modifications of \((p, q)\)-Meyer-König-Zeller operators. (English) Zbl 1463.41031 Constr. Math. Anal. 1, No. 1, 58-72 (2018). MSC: 41A25 41A35 PDF BibTeX XML Cite \textit{H. Sharma} et al., Constr. Math. Anal. 1, No. 1, 58--72 (2018; Zbl 1463.41031) Full Text: DOI OpenURL
Gadjev, Ivan Approximation of functions by some exponential-type operators. (English) Zbl 1445.41013 Ivanov, Kamen (ed.) et al., Constructive theory of functions. Proceedings of the 12th international conference, Sozopol, Bulgaria, June 11–17, 2016. Sofia: Prof. Marin Drinov Academic Publishing House. 143-158 (2018). MSC: 41A36 41A17 41A25 41A27 PDF BibTeX XML Cite \textit{I. Gadjev}, in: Constructive theory of functions. Proceedings of the 12th international conference, Sozopol, Bulgaria, June 11--17, 2016. Sofia: Prof. Marin Drinov Academic Publishing House. 143--158 (2018; Zbl 1445.41013) Full Text: Link OpenURL
Ma, Jianshuo; Qi, Qiulan; Yang, Ge The approximation properties by Meyer-König-Zeller operators in Hölder norms. (Chinese. English summary) Zbl 1413.41018 Math. Pract. Theory 48, No. 2, 200-203 (2018). MSC: 41A35 PDF BibTeX XML Cite \textit{J. Ma} et al., Math. Pract. Theory 48, No. 2, 200--203 (2018; Zbl 1413.41018) OpenURL
Holhoş, Adrian Weighted approximation of functions by Meyer-König and Zeller operators of max-product type. (English) Zbl 1388.41015 Numer. Funct. Anal. Optim. 39, No. 6, 689-703 (2018). MSC: 41A36 41A25 41A30 PDF BibTeX XML Cite \textit{A. Holhoş}, Numer. Funct. Anal. Optim. 39, No. 6, 689--703 (2018; Zbl 1388.41015) Full Text: DOI OpenURL
Gavrea, Ioan; Ivan, Mircea An elementary function representation of the second-order moment of the Meyer-König and Zeller operators. (English) Zbl 1390.41004 Mediterr. J. Math. 15, No. 1, Paper No. 20, 8 p. (2018). MSC: 41A10 41A60 33C05 05A19 PDF BibTeX XML Cite \textit{I. Gavrea} and \textit{M. Ivan}, Mediterr. J. Math. 15, No. 1, Paper No. 20, 8 p. (2018; Zbl 1390.41004) Full Text: DOI OpenURL
Kadak, Uğur; Mohiuddine, S. A. Generalized statistically almost convergence based on the difference operator which includes the \((p,q)\)-gamma function and related approximation theorems. (English) Zbl 1390.41008 Result. Math. 73, No. 1, Paper No. 9, 31 p. (2018). MSC: 41A10 41A25 40G15 41A36 40A30 PDF BibTeX XML Cite \textit{U. Kadak} and \textit{S. A. Mohiuddine}, Result. Math. 73, No. 1, Paper No. 9, 31 p. (2018; Zbl 1390.41008) Full Text: DOI OpenURL
Gavrea, Bogdan On a convexity problem in connection with some linear operators. (English) Zbl 1388.41014 J. Math. Anal. Appl. 461, No. 1, 319-332 (2018). MSC: 41A36 26D15 PDF BibTeX XML Cite \textit{B. Gavrea}, J. Math. Anal. Appl. 461, No. 1, 319--332 (2018; Zbl 1388.41014) Full Text: DOI OpenURL
Gavrea, Ioan; Ivan, Mircea Complete asymptotic expansions related to conjecture on a Voronovskaja-type theorem. (English) Zbl 1375.41018 J. Math. Anal. Appl. 458, No. 1, 452-463 (2018). MSC: 41A60 41A36 PDF BibTeX XML Cite \textit{I. Gavrea} and \textit{M. Ivan}, J. Math. Anal. Appl. 458, No. 1, 452--463 (2018; Zbl 1375.41018) Full Text: DOI OpenURL
Donchev, Donche S.; Sitnik, Sergeĭ Mikhaĭlovich; Shishkina, Èlina Leonidovna On refinements of neoclassical inequality and its applications to stochastic differential equations and Brownian motion. (Russian. English summary) Zbl 1465.60020 Chelyabinskiĭ Fiz.-Mat. Zh. 2, No. 3, 257-265 (2017). MSC: 60E15 60H10 60H15 PDF BibTeX XML Cite \textit{D. S. Donchev} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 2, No. 3, 257--265 (2017; Zbl 1465.60020) Full Text: MNR OpenURL
Gadjev, Ivan; Parvanov, Parvan Weighted approximation in uniform norm by Meyer-König and Zeller operators. (English) Zbl 1474.41079 God. Sofiĭ. Univ., Fak. Mat. Inform. 104, 77-87 (2017). MSC: 41A81 41A25 41A36 PDF BibTeX XML Cite \textit{I. Gadjev} and \textit{P. Parvanov}, God. Sofiĭ. Univ., Fak. Mat. Inform. 104, 77--87 (2017; Zbl 1474.41079) Full Text: Link OpenURL
Kadak, Uğur; Braha, Naim L.; Srivastava, H. M. Statistical weighted \(\mathcal{B}\)-summability and its applications to approximation theorems. (English) Zbl 1411.40003 Appl. Math. Comput. 302, 80-96 (2017). MSC: 40C05 40G15 41A36 46A35 46A45 46B45 PDF BibTeX XML Cite \textit{U. Kadak} et al., Appl. Math. Comput. 302, 80--96 (2017; Zbl 1411.40003) Full Text: DOI OpenURL
İnce, H. Gül; Yildiz Özkan, Esma Approximation properties of bivariate generalization of Meyer-König and Zeller type operators. (English) Zbl 1399.41045 An. Științ. Univ. Al. I. Cuza Iași, Ser. Nouă, Mat. 63, No. 1, 181-191 (2017). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{H. G. İnce} and \textit{E. Yildiz Özkan}, An. Științ. Univ. Al. I. Cuza Iași, Ser. Nouă, Mat. 63, No. 1, 181--191 (2017; Zbl 1399.41045) OpenURL
Karsli, Harun Approximation by Urysohn type Meyer-König and Zeller operators to Urysohn integral operators. (English) Zbl 1376.41019 Result. Math. 72, No. 3, 1571-1583 (2017). MSC: 41A35 41A25 47A58 PDF BibTeX XML Cite \textit{H. Karsli}, Result. Math. 72, No. 3, 1571--1583 (2017; Zbl 1376.41019) Full Text: DOI OpenURL
Ağraz, Melih; Purutçuoğlu, Vilda Different types of Bernstein operators in inference of Gaussian graphical model. (English) Zbl 1438.92028 Cogent Math. 3, Article ID 1154706, 11 p. (2016). MSC: 92C42 41A36 62P10 PDF BibTeX XML Cite \textit{M. Ağraz} and \textit{V. Purutçuoğlu}, Cogent Math. 3, Article ID 1154706, 11 p. (2016; Zbl 1438.92028) Full Text: DOI OpenURL
Zhang, Sili; Wu, Garidi The approximation theorems for the Meyer-König-Zeller-Kantorovich type operator. (Chinese. English summary) Zbl 1363.41021 J. Inn. Mong. Norm. Univ., Nat. Sci. 45, No. 2, 178-183 (2016). MSC: 41A35 41A65 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{G. Wu}, J. Inn. Mong. Norm. Univ., Nat. Sci. 45, No. 2, 178--183 (2016; Zbl 1363.41021) OpenURL
Özarslan, Mehmet Ali New Korovkin type theorem for non-tensor Meyer-König and Zeller operators. (English) Zbl 1339.41034 Result. Math. 69, No. 3-4, 327-343 (2016). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{M. A. Özarslan}, Result. Math. 69, No. 3--4, 327--343 (2016; Zbl 1339.41034) Full Text: DOI OpenURL
Gadjev, Ivan Strong converse result for uniform approximation by Meyer-König and Zeller operator. (English) Zbl 1315.41008 J. Math. Anal. Appl. 428, No. 1, 32-42 (2015). MSC: 41A35 41A36 PDF BibTeX XML Cite \textit{I. Gadjev}, J. Math. Anal. Appl. 428, No. 1, 32--42 (2015; Zbl 1315.41008) Full Text: DOI OpenURL
Gavrea, Ioan; Ivan, Mircea On a conjecture concerning the sum of the squared Bernstein polynomials. (English) Zbl 1334.41005 Appl. Math. Comput. 241, 70-74 (2014). MSC: 41A10 41A36 PDF BibTeX XML Cite \textit{I. Gavrea} and \textit{M. Ivan}, Appl. Math. Comput. 241, 70--74 (2014; Zbl 1334.41005) Full Text: DOI OpenURL
Olgun, Ali; Gül İnce, H.; Taşdelen, Fatma Kantrovich type generalization of Meyer-König and Zeller operators via generating functions. (English) Zbl 1313.41036 An. Științ. Univ. “Ovidius” Constanța, Ser. Mat. 21, No. 3, 209-221 (2013). MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{A. Olgun} et al., An. Științ. Univ. ``Ovidius'' Constanța, Ser. Mat. 21, No. 3, 209--221 (2013; Zbl 1313.41036) OpenURL
Olgun, Ali On bivariate Meyer-König and Zeller operators. (English) Zbl 1299.41047 Miskolc Math. Notes 14, No. 3, 1021-1030 (2013). MSC: 41A36 PDF BibTeX XML Cite \textit{A. Olgun}, Miskolc Math. Notes 14, No. 3, 1021--1030 (2013; Zbl 1299.41047) OpenURL
Bustamante, Jorge; Jiménez-Pozo, Miguel A. Meyer-König and Zeller operators and some of their modifications. (English) Zbl 1303.41001 Jaen J. Approx. 5, No. 2, 101-178 (2013). Reviewer: Vladimir V. Peller (East Lansing) MSC: 41-02 41A30 41A35 PDF BibTeX XML Cite \textit{J. Bustamante} and \textit{M. A. Jiménez-Pozo}, Jaen J. Approx. 5, No. 2, 101--178 (2013; Zbl 1303.41001) OpenURL
Örkcü, Mediha Approximation properties of Stancu type Meyer-König and Zeller operators. (English) Zbl 1291.41009 Hacet. J. Math. Stat. 42, No. 2, 139-148 (2013). MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{M. Örkcü}, Hacet. J. Math. Stat. 42, No. 2, 139--148 (2013; Zbl 1291.41009) OpenURL
Gonska, Heiner; Raşa, Ioan On infinite products of positive linear operators reproducing linear functions. (English) Zbl 1271.41006 Positivity 17, No. 1, 67-79 (2013). MSC: 41A17 41A25 41A36 PDF BibTeX XML Cite \textit{H. Gonska} and \textit{I. Raşa}, Positivity 17, No. 1, 67--79 (2013; Zbl 1271.41006) Full Text: DOI OpenURL
Wagner, Martin Asymptotic expansions for a Durrmeyer variant of Baskakov and Meyer-König and Zeller operators and quasi-interpolants. (English) Zbl 1430.41017 Nikolov, Geno (ed.) et al., Constructive theory of functions. In memory of Borislav Bojanov. Papers from the international conference, Sozopol, Bulgaria, June 3–10, 2010. Sofia: Prof. Marin Drinov Academic Publishing House. 378-389 (2012). MSC: 41A36 41A10 41A25 PDF BibTeX XML Cite \textit{M. Wagner}, in: Constructive theory of functions. In memory of Borislav Bojanov. Papers from the international conference, Sozopol, Bulgaria, June 3--10, 2010. Sofia: Prof. Marin Drinov Academic Publishing House. 378--389 (2012; Zbl 1430.41017) OpenURL
Ivanov, K. G.; Parvanov, P. E. Weighted approximation by Meyer-König and Zeller-type operators. (English) Zbl 1430.41016 Nikolov, Geno (ed.) et al., Constructive theory of functions. In memory of Borislav Bojanov. Papers from the international conference, Sozopol, Bulgaria, June 3–10, 2010. Sofia: Prof. Marin Drinov Academic Publishing House. 150-160 (2012). MSC: 41A36 PDF BibTeX XML Cite \textit{K. G. Ivanov} and \textit{P. E. Parvanov}, in: Constructive theory of functions. In memory of Borislav Bojanov. Papers from the international conference, Sozopol, Bulgaria, June 3--10, 2010. Sofia: Prof. Marin Drinov Academic Publishing House. 150--160 (2012; Zbl 1430.41016) OpenURL
Trif, Tiberiu Statistical approximation by Meyer-König and Zeller operators of finite type based on the \(q\)-integers. (English) Zbl 1255.41005 Math. Comput. Modelling 55, No. 7-8, 1866-1875 (2012). MSC: 41A35 41A25 41A36 40A35 PDF BibTeX XML Cite \textit{T. Trif}, Math. Comput. Modelling 55, No. 7--8, 1866--1875 (2012; Zbl 1255.41005) Full Text: DOI OpenURL
Qi, Qiulan; Liu, Juan A strong converse inequality for the Meyer-König and Zeller-Durrmeyer operators. (English) Zbl 1265.41037 Commun. Math. Res. 28, No. 1, 1-9 (2012). MSC: 41A25 41A36 41A27 PDF BibTeX XML Cite \textit{Q. Qi} and \textit{J. Liu}, Commun. Math. Res. 28, No. 1, 1--9 (2012; Zbl 1265.41037) OpenURL
Trif, Tiberiu Approximation of functions of bounded variation by integrated Meyer-König and Zeller operators of finite type. (English) Zbl 1299.41052 Stud. Sci. Math. Hung. 49, No. 2, 254-268 (2012). Reviewer: H. P. Dikshit (Rampur) MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{T. Trif}, Stud. Sci. Math. Hung. 49, No. 2, 254--268 (2012; Zbl 1299.41052) Full Text: DOI OpenURL
Mahmudov, Nazim; Sabancigil, Pembe A \(q\)-analogue of the Meyer-König and Zeller operators. (English) Zbl 1232.41028 Bull. Malays. Math. Sci. Soc. (2) 35, No. 1, 39-51 (2012). MSC: 41A35 41A25 41A36 PDF BibTeX XML Cite \textit{N. Mahmudov} and \textit{P. Sabancigil}, Bull. Malays. Math. Sci. Soc. (2) 35, No. 1, 39--51 (2012; Zbl 1232.41028) Full Text: Link OpenURL
Başcanbaz-Tunca, Gülen; Taşdelen, Fatma On Chlodovsky form of the Meyer-König and Zeller operators. (English) Zbl 1274.41045 An. Univ. Vest Timiș., Ser. Mat.-Inform. 49, No. 2, 137-144 (2011). MSC: 41A36 41A35 PDF BibTeX XML Cite \textit{G. Başcanbaz-Tunca} and \textit{F. Taşdelen}, An. Univ. Vest Timiș., Ser. Mat.-Inform. 49, No. 2, 137--144 (2011; Zbl 1274.41045) OpenURL
Trif, Tiberiu A Voronovskaja-type formula for the \(q\)-Meyer-König and Zeller operators. (English) Zbl 1274.41052 Rev. Anal. Numér. Théor. Approx. 40, No. 1, 80-89 (2011). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{T. Trif}, Rev. Anal. Numér. Théor. Approx. 40, No. 1, 80--89 (2011; Zbl 1274.41052) OpenURL
Qi, Qiulan; Liu, Juan The pointwise approximation theorems for the Meyer-König and Zeller-Kantorovich type operators. (Chinese. English summary) Zbl 1240.41068 Numer. Math., Nanjing 33, No. 2, 97-108 (2011). MSC: 41A36 41A30 PDF BibTeX XML Cite \textit{Q. Qi} and \textit{J. Liu}, Numer. Math., Nanjing 33, No. 2, 97--108 (2011; Zbl 1240.41068) OpenURL
Verma, P.; Singh, S. P.; Ranadive, A. S.; Deo, N. On the degree of \(L_1\)-approximation by Meyer-König Zeller operators. (English) Zbl 1240.41036 Southeast Asian Bull. Math. 35, No. 3, 523-528 (2011). MSC: 41A25 41A35 PDF BibTeX XML Cite \textit{P. Verma} et al., Southeast Asian Bull. Math. 35, No. 3, 523--528 (2011; Zbl 1240.41036) OpenURL
Aktuglu, Hüseyin; Özarslan, Ali; Duman, Oktay Matrix summability methods on the approximation of multivariate \(q\)-MKZ operators. (English) Zbl 1231.41014 Bull. Malays. Math. Sci. Soc. (2) 34, No. 3, 465-474 (2011). MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{H. Aktuglu} et al., Bull. Malays. Math. Sci. Soc. (2) 34, No. 3, 465--474 (2011; Zbl 1231.41014) Full Text: Link OpenURL
Zeng, Xiao-Ming; Cheng, Fuhua (Frank) First-order absolute moment of Meyer-König and Zeller operators and their approximation for some absolutely continuous functions. (English) Zbl 1265.41059 Math. Slovaca 61, No. 4, 635-644 (2011). MSC: 41A36 41A25 41A10 PDF BibTeX XML Cite \textit{X.-M. Zeng} and \textit{F. Cheng}, Math. Slovaca 61, No. 4, 635--644 (2011; Zbl 1265.41059) Full Text: DOI OpenURL
Dirik, Fadime; Demirci, Kamil Equi-ideal convergence of positive linear operators for analytic p-ideals. (English) Zbl 1222.41020 Math. Commun. 16, No. 1, 169-178 (2011). Reviewer: Vijay Gupta (New Delhi) MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{F. Dirik} and \textit{K. Demirci}, Math. Commun. 16, No. 1, 169--178 (2011; Zbl 1222.41020) Full Text: Link OpenURL
Kivinukk, Andi; Metsmägi, Tarmo Approximation in variation by the Meyer-König and Zeller operators. (English) Zbl 1232.41025 Proc. Est. Acad. Sci. 60, No. 2, 88-97 (2011). Reviewer: N. I. Skiba (Rostov-na-Donu) MSC: 41A35 PDF BibTeX XML Cite \textit{A. Kivinukk} and \textit{T. Metsmägi}, Proc. Est. Acad. Sci. 60, No. 2, 88--97 (2011; Zbl 1232.41025) Full Text: DOI Link OpenURL
López-Moreno, Antonio-Jesús; Latorre-Palacios, José-Manuel Localization results for generalized Baskakov/Mastroianni and composite operators. (English) Zbl 1217.41027 J. Math. Anal. Appl. 380, No. 2, 425-439 (2011). Reviewer: Ioan Raşa (Cluj-Napoca) MSC: 41A36 PDF BibTeX XML Cite \textit{A.-J. López-Moreno} and \textit{J.-M. Latorre-Palacios}, J. Math. Anal. Appl. 380, No. 2, 425--439 (2011; Zbl 1217.41027) Full Text: DOI OpenURL
Dalmanoğlu, Özge; Doğru, Ogün Statistical approximation properties of Kantorovich type \(q\)-MKZ operators. (English) Zbl 1265.41051 Creat. Math. Inform. 19, No. 1, 15-24 (2010). Reviewer: Dan Barbosu (Baia Mare) MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{Ö. Dalmanoğlu} and \textit{O. Doğru}, Creat. Math. Inform. 19, No. 1, 15--24 (2010; Zbl 1265.41051) OpenURL
Pop, Ovidiu T.; Braica, Petru I. The first absolute moment for some operators. (English) Zbl 1249.41019 Rev. Anal. Numér. Théor. Approx. 39, No. 2, 156-163 (2010). MSC: 41A10 41A36 PDF BibTeX XML Cite \textit{O. T. Pop} and \textit{P. I. Braica}, Rev. Anal. Numér. Théor. Approx. 39, No. 2, 156--163 (2010; Zbl 1249.41019) OpenURL
Gupta, Vijay; Sharma, Honey Statistical approximation by \(q\)-integrated Meyer-König-Zeller-Kantorovich operators. (English) Zbl 1212.41048 Creat. Math. Inform. 19, No. 1, 45-52 (2010). MSC: 41A25 41A35 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{H. Sharma}, Creat. Math. Inform. 19, No. 1, 45--52 (2010; Zbl 1212.41048) OpenURL
Gavrea, Ioan; Ivan, Mircea On the iterates of positive linear operators preserving the affine functions. (English) Zbl 1196.41014 J. Math. Anal. Appl. 372, No. 2, 366-368 (2010). MSC: 41A36 PDF BibTeX XML Cite \textit{I. Gavrea} and \textit{M. Ivan}, J. Math. Anal. Appl. 372, No. 2, 366--368 (2010; Zbl 1196.41014) Full Text: DOI OpenURL
Guo, Shunsheng; Liu, Lixia; Chen, Hua Approximation by generalized Meyer-König and Zeller type operators. (English) Zbl 1240.41034 Stud. Sci. Math. Hung. 46, No. 2, 239-261 (2009). Reviewer: Daniel Cardenas-Morales (Jaen) MSC: 41A25 41A27 41A36 PDF BibTeX XML Cite \textit{S. Guo} et al., Stud. Sci. Math. Hung. 46, No. 2, 239--261 (2009; Zbl 1240.41034) Full Text: DOI OpenURL
Doğru, Ogün; Muraru, Carmen Statistical approximation by Stancu type bivariate generalization of Meyer-König and Zeller type operators. (English) Zbl 1156.41312 Math. Comput. Modelling 48, No. 5-6, 961-968 (2008). MSC: 41A36 41A35 PDF BibTeX XML Cite \textit{O. Doğru} and \textit{C. Muraru}, Math. Comput. Modelling 48, No. 5--6, 961--968 (2008; Zbl 1156.41312) Full Text: DOI OpenURL
Zhang, Chungou A recurrence formula of moments for the Meyer-König and Zeller operators on a simplex. (Chinese. English summary) Zbl 1174.41333 Acta Math. Sci., Ser. A, Chin. Ed. 28, No. 2, 302-307 (2008). MSC: 41A35 PDF BibTeX XML Cite \textit{C. Zhang}, Acta Math. Sci., Ser. A, Chin. Ed. 28, No. 2, 302--307 (2008; Zbl 1174.41333) OpenURL
Qi, Qiulan; Liu, Juan Pointwise approximation theorems for Meyer-König and Zeller-Durrmeyer operators. (English) Zbl 1174.41015 Publ. Math. Debr. 73, No. 1-2, 101-117 (2008). Reviewer: Zoltán Finta (Cluj-Napoca) MSC: 41A25 41A35 41A27 PDF BibTeX XML Cite \textit{Q. Qi} and \textit{J. Liu}, Publ. Math. Debr. 73, No. 1--2, 101--117 (2008; Zbl 1174.41015) OpenURL
Guo, Shunsheng; Liu, Lixia; Wang, Zhiming Pointwise approximation by Meyer-König and Zeller operators. (English) Zbl 1156.41007 Numer. Funct. Anal. Optim. 29, No. 7-8, 770-778 (2008). Reviewer: Gerlind Plonka (Duisburg) MSC: 41A35 41A25 41A27 PDF BibTeX XML Cite \textit{S. Guo} et al., Numer. Funct. Anal. Optim. 29, No. 7--8, 770--778 (2008; Zbl 1156.41007) Full Text: DOI OpenURL
Bustamante, J.; Martínez-Moreno, J.; Quesada, J. M. An application to the MKZ-operators of generalized convexity on ECT-systems. (English) Zbl 1142.41007 J. Math. Anal. Appl. 342, No. 1, 497-502 (2008). MSC: 41A35 26A51 PDF BibTeX XML Cite \textit{J. Bustamante} et al., J. Math. Anal. Appl. 342, No. 1, 497--502 (2008; Zbl 1142.41007) Full Text: DOI OpenURL
Guo, Shunsheng; Li, Cuixiang; Qi, Qiulan Strong converse inequalities for Meyer-König and Zeller operators. (English) Zbl 1138.41006 J. Math. Anal. Appl. 337, No. 2, 994-1001 (2008). Reviewer: Boris I. Golubov (Dolgoprudny) MSC: 41A25 41A35 41A36 PDF BibTeX XML Cite \textit{S. Guo} et al., J. Math. Anal. Appl. 337, No. 2, 994--1001 (2008; Zbl 1138.41006) Full Text: DOI OpenURL
Pop, Ovidiu T. About some linear operators defined by infinite sums. (English) Zbl 1212.41022 An. Științ. Univ. “Ovidius” Constanța, Ser. Mat. 15, No. 2, 45-54 (2007). MSC: 41A10 41A36 PDF BibTeX XML Cite \textit{O. T. Pop}, An. Științ. Univ. ``Ovidius'' Constanța, Ser. Mat. 15, No. 2, 45--54 (2007; Zbl 1212.41022) Full Text: EuDML OpenURL
Della Vecchia, Biancamaria; Duman, Oktay Weighted approximation by Meyer-König and Zeller type operators. (English) Zbl 1164.41016 Stud. Sci. Math. Hung. 44, No. 4, 445-467 (2007). Reviewer: Zoltan Finta (Cluj-Napoca) MSC: 41A36 PDF BibTeX XML Cite \textit{B. Della Vecchia} and \textit{O. Duman}, Stud. Sci. Math. Hung. 44, No. 4, 445--467 (2007; Zbl 1164.41016) Full Text: DOI OpenURL
Yue, Shujie; Pang, Shaoli; Zhang, Jincheng; Qi, Qiulan Fourth moment and sixth moment for Meyer-König and Zeller operators. (Chinese. English summary) Zbl 1150.41340 J. Hebei Norm. Univ., Nat. Sci. Ed. 31, No. 6, 715-717, 729 (2007). MSC: 41A35 PDF BibTeX XML Cite \textit{S. Yue} et al., J. Hebei Norm. Univ., Nat. Sci. Ed. 31, No. 6, 715--717, 729 (2007; Zbl 1150.41340) OpenURL
Lucyna, Rempulska; Mariola, Skorupka Approximation by generalized MKZ-operators in polynomial weighted spaces. (English) Zbl 1150.41343 Anal. Theory Appl. 23, No. 1, 64-75 (2007). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{R. Lucyna} and \textit{S. Mariola}, Anal. Theory Appl. 23, No. 1, 64--75 (2007; Zbl 1150.41343) Full Text: DOI OpenURL
Guo, Shunsheng; Jiang, Hongbiao; Qi, Qiulan Approximation by Bézier type of Meyer-König and Zeller operators. (English) Zbl 1131.41004 Comput. Math. Appl. 54, No. 11-12, 1387-1394 (2007). MSC: 41A25 41A35 PDF BibTeX XML Cite \textit{S. Guo} et al., Comput. Math. Appl. 54, No. 11--12, 1387--1394 (2007; Zbl 1131.41004) Full Text: DOI OpenURL
Guo, Shunsheng; Qi, Qiulan The moments for the Meyer-König and Zeller operators. (English) Zbl 1132.41324 Appl. Math. Lett. 20, No. 7, 719-722 (2007). MSC: 41A35 PDF BibTeX XML Cite \textit{S. Guo} and \textit{Q. Qi}, Appl. Math. Lett. 20, No. 7, 719--722 (2007; Zbl 1132.41324) Full Text: DOI OpenURL
Feng, Guo Rate of convergence of Meyer-Köning-Zeller operators with Jacobi-weights. (Chinese. English summary) Zbl 1165.41315 Pure Appl. Math. 23, No. 2, 221-225, 230 (2007). MSC: 41A35 PDF BibTeX XML Cite \textit{G. Feng}, Pure Appl. Math. 23, No. 2, 221--225, 230 (2007; Zbl 1165.41315) OpenURL
Feng, Guo; Li, Yuewu On convergence rate of approximation for Meyer-König-Zeller operators on a simplex. (Chinese. English summary) Zbl 1165.41311 Pure Appl. Math. 23, No. 1, 50-54 (2007). MSC: 41A25 41A35 PDF BibTeX XML Cite \textit{G. Feng} and \textit{Y. Li}, Pure Appl. Math. 23, No. 1, 50--54 (2007; Zbl 1165.41311) OpenURL
Özarslan, M. A. \(q\)-Laguerre type linear positive operators. (English) Zbl 1121.41005 Stud. Sci. Math. Hung. 44, No. 1, 65-80 (2007). Reviewer: Antonio Lopez-Carmona (Granada) MSC: 41A10 41A25 41A36 PDF BibTeX XML Cite \textit{M. A. Özarslan}, Stud. Sci. Math. Hung. 44, No. 1, 65--80 (2007; Zbl 1121.41005) Full Text: DOI OpenURL
Gupta, Vijay On bounded variation functions by general MKZD operators. (English) Zbl 1186.41013 Acta Math. Sin., Engl. Ser. 23, No. 8, 1457-1462 (2007). Reviewer: Daniel Wulbert (La Jolla) MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{V. Gupta}, Acta Math. Sin., Engl. Ser. 23, No. 8, 1457--1462 (2007; Zbl 1186.41013) Full Text: DOI OpenURL
Zeng, Xiao-Ming Pointwise approximation by Bézier variant of integrated MKZ operators. (English) Zbl 1123.41016 J. Math. Anal. Appl. 336, No. 2, 823-832 (2007). Reviewer: Ganesh Datta Dikshit (Auckland) MSC: 41A35 41A25 PDF BibTeX XML Cite \textit{X.-M. Zeng}, J. Math. Anal. Appl. 336, No. 2, 823--832 (2007; Zbl 1123.41016) Full Text: DOI OpenURL
Wang, Heping Properties of convergence for the \(q\)-Meyer-König and Zeller operators. (English) Zbl 1129.41010 J. Math. Anal. Appl. 335, No. 2, 1360-1373 (2007). Reviewer: Emil Popa (Sibiu) MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{H. Wang}, J. Math. Anal. Appl. 335, No. 2, 1360--1373 (2007; Zbl 1129.41010) Full Text: DOI OpenURL
Taşdelen, Fatma; Erençin, Ayşegül The generalization of bivariate MKZ operators by multiple generating functions. (English) Zbl 1119.41019 J. Math. Anal. Appl. 331, No. 1, 727-735 (2007). Reviewer: Zoltán Finta (Cluj-Napoca) MSC: 41A35 41A36 41A25 PDF BibTeX XML Cite \textit{F. Taşdelen} and \textit{A. Erençin}, J. Math. Anal. Appl. 331, No. 1, 727--735 (2007; Zbl 1119.41019) Full Text: DOI OpenURL
Rempulska, Lucyna; Skorupka, Mariola On the Meyer-König and Zeller operators in polynomial weighted spaces. (English) Zbl 1120.41028 Int. J. Pure Appl. Math. 32, No. 3, 305-317 (2006). Reviewer: Shun Sheng Guo (Shijiazhuang) MSC: 41A36 41A25 41A35 PDF BibTeX XML Cite \textit{L. Rempulska} and \textit{M. Skorupka}, Int. J. Pure Appl. Math. 32, No. 3, 305--317 (2006; Zbl 1120.41028) OpenURL
Rempulska, L.; Tomczak, K. On certain modified Meyer-König and Zeller operators. (English) Zbl 1107.41018 Turk. J. Math. 30, No. 2, 117-127 (2006). Reviewer: Boris I. Golubov (Dolgoprudny) MSC: 41A25 41A35 41A36 41A80 PDF BibTeX XML Cite \textit{L. Rempulska} and \textit{K. Tomczak}, Turk. J. Math. 30, No. 2, 117--127 (2006; Zbl 1107.41018) OpenURL
Pop, Ovidiu T. About some linear and positive operators defined by infinite sum. (English) Zbl 1099.41009 Demonstr. Math. 39, No. 2, 377-388 (2006). Reviewer: Włodzimierz Łenski (Poznań) MSC: 41A10 41A36 PDF BibTeX XML Cite \textit{O. T. Pop}, Demonstr. Math. 39, No. 2, 377--388 (2006; Zbl 1099.41009) Full Text: DOI OpenURL
Zhang, Chungou The second moments for Meyer-König and Zeller operators on a simplex. (Chinese. English summary) Zbl 1070.41012 Acta Math. Sci., Ser. A, Chin. Ed. 25, No. 2, 256-263 (2005). MSC: 41A35 33C65 PDF BibTeX XML Cite \textit{C. Zhang}, Acta Math. Sci., Ser. A, Chin. Ed. 25, No. 2, 256--263 (2005; Zbl 1070.41012) OpenURL
Doğru, O.; Özarslan, M. A.; Taşdelen, F. On positive operators involving a certain class of generating functions. (English) Zbl 1133.41308 Stud. Sci. Math. Hung. 41, No. 4, 415-429 (2004). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{O. Doğru} et al., Stud. Sci. Math. Hung. 41, No. 4, 415--429 (2004; Zbl 1133.41308) Full Text: DOI OpenURL
Abel, U.; Gupta, V.; Ivan, M. The complete asymptotic expansionfor a general Durrmeyer variant of the Meyer-König and Zeller operators. (English) Zbl 1072.41009 Math. Comput. Modelling 40, No. 7-8, 867-875 (2004). Reviewer: Dan Bārbosu (Baia Mare) MSC: 41A36 PDF BibTeX XML Cite \textit{U. Abel} et al., Math. Comput. Modelling 40, No. 7--8, 867--875 (2004; Zbl 1072.41009) Full Text: DOI OpenURL
Aral, Ali; Doğru, Ogün Direct estimates and \(L_p\)-approximation properties for Agratini operators and their integral form. (English) Zbl 1073.41018 Int. J. Comput. Numer. Anal. Appl. 5, No. 2, 173-187 (2004). Reviewer: Dany Leviatan (Tel Aviv) MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{A. Aral} and \textit{O. Doğru}, Int. J. Comput. Numer. Anal. Appl. 5, No. 2, 173--187 (2004; Zbl 1073.41018) OpenURL
Gupta, Vijay; Abel, Ulrich The rate of convergence by a new type of Meyer-König and Zeller operators. (English) Zbl 1073.41020 Fasc. Math. 34, 15-23 (2004). Reviewer: Ion Raşa (Cluj-Napoca) MSC: 41A36 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{U. Abel}, Fasc. Math. 34, 15--23 (2004; Zbl 1073.41020) OpenURL
Cárdenas-Morales, D.; Garrancho, P. A note on almost convex operators and saturation. (English) Zbl 1064.41012 Appl. Math. Lett. 17, No. 6, 711-715 (2004). Reviewer: Vijay Gupta (New Delhi) MSC: 41A35 41A40 PDF BibTeX XML Cite \textit{D. Cárdenas-Morales} and \textit{P. Garrancho}, Appl. Math. Lett. 17, No. 6, 711--715 (2004; Zbl 1064.41012) Full Text: DOI OpenURL
López-Moreno, Antonio-Jesús Saturation class of derivatives of linear positive operators. (English) Zbl 1061.41016 Neamtu, Marian (ed.) et al., Advances in constructive approximation: Vanderbilt 2003. Proceedings of the international conference, Nashville, TN, USA, May 14–17, 2003. Brentwood, TN: Nashboro Press (ISBN 0-9728482-2-3/hbk). Modern Methods in Mathematics, 311-324 (2004). Reviewer: Ion Raşa (Cluj-Napoca) MSC: 41A40 41A36 PDF BibTeX XML Cite \textit{A.-J. López-Moreno}, in: Advances in constructive approximation: Vanderbilt 2003. Proceedings of the international conference, Nashville, TN, USA, May 14--17, 2003. Brentwood, TN: Nashboro Press. 311--324 (2004; Zbl 1061.41016) OpenURL
Agrawal, P. N.; Mohammad, Ali J. Approximation by iterative combination of a new sequence of linear positive operators. (English) Zbl 1057.41018 Neamtu, Marian (ed.) et al., Advances in constructive approximation: Vanderbilt 2003. Proceedings of the international conference, Nashville, TN, USA, May 14–17, 2003. Brentwood, TN: Nashboro Press (ISBN 0-9728482-2-3/hbk). Modern Methods in Mathematics, 13-24 (2004). Reviewer: Dany Leviatan (Tel Aviv) MSC: 41A36 41A35 41A25 PDF BibTeX XML Cite \textit{P. N. Agrawal} and \textit{A. J. Mohammad}, in: Advances in constructive approximation: Vanderbilt 2003. Proceedings of the international conference, Nashville, TN, USA, May 14--17, 2003. Brentwood, TN: Nashboro Press. 13--24 (2004; Zbl 1057.41018) OpenURL
Gupta, Vijay Degree of approximation to function of bounded variation by Bézier variant of MKZ operators. (English) Zbl 1037.41013 J. Math. Anal. Appl. 289, No. 1, 292-300 (2004). Reviewer: Ganesh Datta Dikshit (Auckland) MSC: 41A35 41A25 PDF BibTeX XML Cite \textit{V. Gupta}, J. Math. Anal. Appl. 289, No. 1, 292--300 (2004; Zbl 1037.41013) Full Text: DOI OpenURL
Doǧru, O.; Duman, O.; Orchan, C. Statistical approximation by generalized Meyer-König and Zeller type operators. (English) Zbl 1065.41040 Stud. Sci. Math. Hung. 40, No. 3, 359-371 (2003). Reviewer: Daniela Kacso (Duisburg) MSC: 41A36 41A35 41A25 40A25 40C05 PDF BibTeX XML Cite \textit{O. Doǧru} et al., Stud. Sci. Math. Hung. 40, No. 3, 359--371 (2003; Zbl 1065.41040) Full Text: DOI OpenURL
Heilmann, Margareta Rodriguez-type representation for the eigenfunctions of Durrmeyer-type operators. (English) Zbl 1042.41015 Result. Math. 44, No. 1-2, 97-105 (2003). Reviewer: Dan Bārbosu (Baia Mare) MSC: 41A30 41A36 PDF BibTeX XML Cite \textit{M. Heilmann}, Result. Math. 44, No. 1--2, 97--105 (2003; Zbl 1042.41015) Full Text: DOI OpenURL
Heilmann, Margareta Eigenfunctions of Durrmeyer-type modifications of Meyer-König and Zeller operators. (English) Zbl 1043.41016 J. Approximation Theory 125, No. 1, 63-73 (2003). MSC: 41A35 PDF BibTeX XML Cite \textit{M. Heilmann}, J. Approx. Theory 125, No. 1, 63--73 (2003; Zbl 1043.41016) Full Text: DOI OpenURL
Heilmann, Margareta Commutativity of Durrmeyer-type modifications of Meyer-König and Zeller and Baskakov-operators. (English) Zbl 1029.41010 Bojanov, B. D., Constructive theory of functions. Proceedings of the international conference, Varna, Bulgaria, June 19-23, 2002. Sofia: DARBA. 295-301 (2003). Reviewer: Kacsó Daniela (Duisburg) MSC: 41A36 PDF BibTeX XML Cite \textit{M. Heilmann}, in: Constructive theory of functions. Proceedings of the international conference, Varna, Bulgaria, June 19--23, 2002. Sofia: DARBA. 295--301 (2003; Zbl 1029.41010) OpenURL
Abel, Ulrich; Gupta, Vijay; Ivan, Mircea On the rate of convergence of a Durrmeyer variant of the Meyer-König and Zeller operators. (English) Zbl 1026.41013 Arch. Inequal. Appl. 1, No. 1, 1-9 (2003). Reviewer: Daniela Kacsó (Duisburg) MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{U. Abel} et al., Arch. Inequal. Appl. 1, No. 1, 1--9 (2003; Zbl 1026.41013) OpenURL
Gupta, Vijay; Kumar, Niraj A note on integral modification of the Meyer-König and Zeller operators. (English) Zbl 1023.41014 Int. J. Math. Math. Sci. 2003, No. 31, 2003-2009 (2003). Reviewer: Zoltán Finta (Cluj-Napoca) MSC: 41A30 41A36 41A25 PDF BibTeX XML Cite \textit{V. Gupta} and \textit{N. Kumar}, Int. J. Math. Math. Sci. 2003, No. 31, 2003--2009 (2003; Zbl 1023.41014) Full Text: DOI EuDML OpenURL
de la Cal, Jesús; Cárcamo, Javier On uniform approximation by some classical Bernstein-type operators. (English) Zbl 1048.41013 J. Math. Anal. Appl. 279, No. 2, 625-638 (2003). MSC: 41A35 PDF BibTeX XML Cite \textit{J. de la Cal} and \textit{J. Cárcamo}, J. Math. Anal. Appl. 279, No. 2, 625--638 (2003; Zbl 1048.41013) Full Text: DOI OpenURL
Wang, Xiangqing Weighted approximation by multi-Meyer-König and Zeller-type operators. (Chinese. English summary) Zbl 1044.41012 J. Shaoxing Coll. Arts Sci., Nat. Sci. 22, No. 2, 1-2, 12 (2002). MSC: 41A25 PDF BibTeX XML Cite \textit{X. Wang}, J. Shaoxing Coll. Arts Sci., Nat. Sci. 22, No. 2, 1--2, 12 (2002; Zbl 1044.41012) OpenURL
Gupta, Vijay On a new type of Meyer-Konig and Zeller operators. (English) Zbl 1022.41011 JIPAM, J. Inequal. Pure Appl. Math. 3, No. 4, Paper No. 57, 10 p. (2002). Reviewer: Antonio López-Carmona (Granada) MSC: 41A25 41A30 PDF BibTeX XML Cite \textit{V. Gupta}, JIPAM, J. Inequal. Pure Appl. Math. 3, No. 4, Paper No. 57, 10 p. (2002; Zbl 1022.41011) Full Text: EuDML OpenURL
Zhang, Sanao; Yang, Fang On approximation by Meyer-Konig and Zeller operators and Bernstein operators in interpolation spaces. (Chinese. English summary) Zbl 1006.41010 J. Baoji Coll. Arts Sci., Nat. Sci. 22, No. 2, 102-104, 150 (2002). MSC: 41A35 41A05 41A10 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{F. Yang}, J. Baoji Coll. Arts Sci., Nat. Sci. 22, No. 2, 102--104, 150 (2002; Zbl 1006.41010) OpenURL
Doğru, Ogün; Özalp, Nuri Approximation by Kantorovich type generalization of Meyer-König and Zeller operators. (English) Zbl 1098.41017 Glas. Mat., III. Ser. 36, No. 2, 311-318 (2001). Reviewer: Dany Leviatan (Tel Aviv) MSC: 41A36 PDF BibTeX XML Cite \textit{O. Doğru} and \textit{N. Özalp}, Glas. Mat., III. Ser. 36, No. 2, 311--318 (2001; Zbl 1098.41017) OpenURL
Wang, Jianli On the convergence of modified Meyer-König and Zeller operators. (Chinese. English summary) Zbl 1022.41013 J. Shaoxing Coll. Arts Sci., Nat. Sci. 20, No. 5, 4-7 (2000). MSC: 41A25 41A30 PDF BibTeX XML Cite \textit{J. Wang}, J. Shaoxing Coll. Arts Sci., Nat. Sci. 20, No. 5, 4--7 (2000; Zbl 1022.41013) OpenURL
Agratini, Octavian More than a summing up about Meyer-König and Zeller operators. (English) Zbl 1004.41012 Gonska, H. (ed.) et al., RoGer 2000-Braşov. Proceedings of the 4th Romanian-German seminar on approximation theory and its applications, Braşov, Romania, July 3-5, 2000. Duisburg: Gerhard-Mercator-Universität Duisburg, Fachbereich Mathematik, Schr.reihe Inst. Math., Univ. Duisburg. 18-25 (2000). Reviewer: Thanh Van Nguyen (Toulouse) MSC: 41A35 PDF BibTeX XML Cite \textit{O. Agratini}, in: RoGer 2000--Braşov. Proceedings of the 4th Romanian--German seminar on approximation theory and its applications, Braşov, Romania, July 3--5, 2000. Duisburg: Gerhard-Mercator-Universität Duisburg, Fachbereich Mathematik. 18--25 (2000; Zbl 1004.41012) OpenURL
Zeng, Xiaoming; Zhao, Junning Pointwise approximation by Meyer-König and Zeller operators. (English) Zbl 0964.41012 Ann. Pol. Math. 73, No. 2, 185-196 (2000). Reviewer: I.Raşa (Cluj-Napoca) MSC: 41A36 41A25 41A10 PDF BibTeX XML Cite \textit{X. Zeng} and \textit{J. Zhao}, Ann. Pol. Math. 73, No. 2, 185--196 (2000; Zbl 0964.41012) Full Text: DOI OpenURL
Zeng, Xiaoming Rates of approximation of bounded variation functions by two generalized Meyer-König and Zeller type operators. (English) Zbl 0972.41018 Comput. Math. Appl. 39, No. 9-10, 1-13 (2000). Reviewer: Dany Leviatan (Columbia) MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{X. Zeng}, Comput. Math. Appl. 39, No. 9--10, 1--13 (2000; Zbl 0972.41018) Full Text: DOI OpenURL
He, Qinyi Approximation by multivariate integral type Meyer-König-Zeller operators in Orlicz spaces. (Chinese. English summary) Zbl 0958.41015 J. Ningxia Univ., Nat. Sci. Ed. 20, No. 1, 33-36 (1999). Reviewer: Shun Sheng Guo (Shijiazhuang) MSC: 41A36 41A25 41A63 PDF BibTeX XML Cite \textit{Q. He}, J. Ningxia Univ., Nat. Sci. Ed. 20, No. 1, 33--36 (1999; Zbl 0958.41015) OpenURL