×

Error estimates for the scaled boundary finite element method. (English) Zbl 1506.65239

Summary: The Scaled Boundary Finite Element Method (SBFEM) is a technique in which approximation spaces are constructed using a semi-analytical approach. They are based on partitions of the computational domain by polygonal/polyhedral subregions, where the shape functions approximate local Dirichlet problems with piecewise polynomial trace data. Using this operator adaptation approach, and by imposing a starlike scaling requirement on the subregions, the representation of local SBFEM shape functions in radial and surface directions is obtained from eigenvalues and eigenfunctions of an ODE system, whose coefficients are determined by the element geometry and the trace polynomial spaces. The aim of this paper is to derive a priori error estimates for SBFEM’s solutions of harmonic test problems. For that, the SBFEM spaces are characterized in the context of Duffy’s approximations for which a gradient-orthogonality constraint is imposed. As a consequence, the scaled boundary functions are gradient-orthogonal to any function in Duffy’s spaces vanishing at the mesh skeleton, a mimetic version of a well-known property valid for harmonic functions. This orthogonality property is applied to provide a priori SBFEM error estimates in terms of known finite element interpolant errors of the exact solution. Similarities with virtual harmonic approximations are also explored for the understanding of SBFEM convergence properties. Numerical experiments with 2D and 3D polytopal meshes confirm optimal SBFEM convergence rates for two test problems with smooth solutions. Attention is also paid to the approximation of a point singular solution by using SBFEM close to the singularity and finite element approximations elsewhere, revealing optimal accuracy rates of standard regular contexts.

MSC:

65N38 Boundary element methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs

Software:

PolyMesher; Neper; PZ; Gmsh
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Song, C.; Wolf, J. P., The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics, Comput. Methods Appl. Mech. Engrg., 147, 3-4, 329-355 (1997) · Zbl 0897.73069
[2] Song, C.; Wolf, J. P., The scaled boundary finite-element method: analytical solution in frequency domain, Comput. Methods Appl. Mech. Engrg., 164, 1-2, 249-264 (1998) · Zbl 0982.74072
[3] Wolf, J. P., The Scaled Boundary Finite Element Method (2003), John Wiley & Sons
[4] Song, C., The Scaled Boundary Finite Element Method: Theory and Implementation (2018), John Wiley & Sons
[5] Babuška, I.; Melenk, J. M., The partition of unity method, Internat. J. Numer. Methods Engrg., 40, 4, 727-758 (1997) · Zbl 0949.65117
[6] Melenk, J. M., Operator adapted Spectral Element Methods I: Harmonic and generalized Harmonic polynomials, Numer. Math., 1, 35-69 (1999) · Zbl 0941.65112
[7] Yang, Z., Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method, Eng. Fract. Mech., 73, 12, 1711-1731 (2006)
[8] Song, C.; Ooi, E. T.; Natarajan, S., A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics, Eng. Fract. Mech., 187, 45-73 (2018)
[9] Pramod, A. L.N.; Annabattula, R. K.; Ooi, E. T.; Song, C.; Natarajan, S., Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method, Comput. Methods Appl. Mech. Engrg., 355, 284-307 (2019) · Zbl 1441.74206
[10] Guo, H.; Ooi, E. T.; Saputra, A. A.; Yang, Z.; Natarajan, S.; Ooi, E. H.; Song, C., A quadtree-polygon-based scaled boundary finite element method for image-based mesoscale fracture modelling in concrete, Eng. Fract. Mech., 211, 420-441 (2019)
[11] Bulling, J.; Gravenkamp, H.; Birk, C., A high-order finite element technique with automatic treatment of stress singularities by semi-analytical enrichment, Comput. Methods Appl. Mech. Engrg., 355, 135-156 (2019) · Zbl 1441.74232
[12] Liu, Y.; Saputra, A. A.; Wang, J.; Tin-Loi, F.; Song, C., Automatic polyhedral mesh generation and scaled boundary finite element analysis of STL models, Comput. Methods Appl. Mech. Engrg., 313, 106-132 (2017) · Zbl 1439.74444
[13] Natarajan, S.; Dharmadhikari, P.; Annabattula, R. K.; Zhang, J.; Ooi, E. T.; Song, C., Extension of the scaled boundary finite element method to treat implicitly defined interfaces without enrichment, Comput. Struct., 229, 106-159 (2020)
[14] Saputra, A.; Talebi, H.; Tran, D.; Birk, C.; Song, C., Automatic image-based stress analysis by the scaled boundary finite element method, Internat. J. Numer. Methods Engrg., 109, 5, 697-738 (2017)
[15] Chen, K.; Zou, D.; Kong, X.; Yu, X., An efficient nonlinear octree SBFEM and its application to complicated geotechnical structures, Comput. Geotech., 96, 226-245 (2018)
[16] Gravenkamp, H.; Saputra, A. A.; Duczek, S., High-order shape functions in the scaled boundary finite element method revisited, Arch. Comput. Methods Eng., 1-22 (2019)
[17] Gravenkamp, H.; Saputra, A. A.; Eisenträger, S., Three-dimensional image-based modeling by combining SBFEM and transfinite element shape functions, Comput. Mech., 1-20 (2020) · Zbl 1466.74044
[18] Duffy, M. G., Quadrature over a pyramid or cube of integrands with a singularity at a vertex, SIAM J. Numer. Anal., 19, 6, 1260-1262 (1982) · Zbl 0493.65011
[19] Chernov, A.; Mascotto, L., The harmonic virtual element method: stabilization and exponential convergence for the Laplace problem on polygonal domains, IMA J. Numer. Anal., 33, 4, 1787-1817 (2019), 39(4), 1787-1817 · Zbl 1496.65214
[20] Lyness, J. N.; Cools, R., A Survey of Numerical Cubature over TrianglesTechnical Report (1994), Argonne National Laboratory · Zbl 0820.41026
[21] Blyth, M. G.; Pozrikidis, C., A Lobatto interpolation grid over triangle, IMA J. Appl. Math., 71, 153-169 (2006) · Zbl 1114.41001
[22] Karniadakis, G.; Sherwin, S., Spectral/hp Element Methods for Computational Fluid Dynamics (1999), Oxford University Press · Zbl 0954.76001
[23] Wu, Y.-L., Collapsed isoparametric element as a singular element for a crack normal to the bi-material interface, Comput. Struct., 47, 6, 939-943 (1993) · Zbl 0780.73088
[24] Pu, S. L.; Hussain, M.; Lorensen, W. E., The collapsed cubic isoparametric element as a ingular element for crack probblems, Internat. J. Numer. Methods Engrg., 12, 11, 1727-1742 (1978) · Zbl 0386.73075
[25] Raju, I. S., Calculation of strain-energy release rates with higher order and singular finite elements, Eng. Fract. Mech., 28, 3, 251-274 (1987)
[26] Shen, J.; Wang, L.-L.; Li, H., A triangular spectral element method using fully tensorial rational basis functions, SIAM J. Numer. Anal., 47, 3, 1619-1650 (2008) · Zbl 1197.65187
[27] Nigam, N.; Phillips, J., High-order conforming finite elements on pyramids, IMA J. Numer. Anal., 32, 448-483 (2012) · Zbl 1241.65102
[28] Babuška, I.; Suri, M., The h-p version of the finite element method with quasiuniform meshes, RAIRO - Modél. Math. Anal. Numér., 21, 2, 199-238 (1987) · Zbl 0623.65113
[29] Muñoz-Sola, R., Polynomial lifting on the tetrahedron and applications to the h-p version of the finite element method in three dimensions, SIAM J. Numer. Anal., 34, 1, 282-314 (1997) · Zbl 0871.46016
[30] Demkowicz, L., Polynomial exact sequences and projection-based interpolation with application to maxwell equations, (Boffi, D.; Gastaldi, L., Mixed Finite Elements, Compatibility Conditions, and Applications, Lecture Notes in Mathematics, Vol. 1939 (2008), Springer), 101-158 · Zbl 1143.78366
[31] Demkowicz, L.; Kurtz, J.; Pardo, D.; Paszynski, M.; Rachowicz, W.; Zdunek, A., Computing with hp-Adaptive Finite Elements, Vol. 2 (2007), Chapman and Hall · Zbl 1111.65103
[32] Melenk, J. M.; Rojik, C., On commuting p-version projection-based interpolation on tetrahedra, Math. Comp., 89, 45-87 (2020) · Zbl 1426.65181
[33] Bergot, M.; Cohen, G.; Duriflé, M., Higher-order finite elements for hybrid meshes using new nodal pyramidal elements, J. Sci. Comput., 42, 345-381 (2010) · Zbl 1203.65243
[34] Schwab, C., p-and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics (1998), Clarendon Press Oxford · Zbl 0910.73003
[35] Ern, A.; Guermond, J.-L., Theory and Practice of Finite Elements, Vol. 159 (2013), Springer Science & Business Media
[36] Devloo, P. R.B., PZ: An object oriented environment for scientific programming, Comput. Methods Appl. Mech. Engrg., 150, 1-4, 133-153 (1997) · Zbl 0907.65115
[37] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F.M., PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidiscip. Optim., 45, 3, 309-328 (2012) · Zbl 1274.74401
[38] Saputra, A. A.; Eisenträger, S.; Gravenkamp, H.; Song, C., Three-dimensional image-based numerical homogenisation using octree meshes, Comput. Struct., 237, Article 106263 pp. (2020)
[39] Quey, R.; Dawson, P. R.; Barbe, F., Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing, Comput. Methods Appl. Mech. Engrg., 200, 17-20, 1729-1745 (2011) · Zbl 1228.74093
[40] Geuzaine, C.; Remacle, J.-F., Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[41] de Siqueira, D.; Farias, A. M.; Devloo, P. R.B.; Gomes, S. M., Mixed finite element approximations of a singular elliptic problem based on some anisotropic and hp-adaptive curved quarter-point elements, Appl. Numer. Math., 158, 85-102 (2020) · Zbl 1448.35112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.