×

Linear best approximation using a class of \(k\)-major \(l_ p\) norms. (English) Zbl 0814.41025

Author’s abstract: Consideration is given to problems of linear best approximation using a variant of the usual \(l_ p\) norms referred to as \(k\)-major \(l_ p\) norms, for the cases when \(1<p <\infty\). The underlying problem is the minimization of a piecewise smoother function. Best approximations are characterized and a descent algorithm is developed.
Reviewer: E.Deeba (Houston)

MSC:

41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
65D10 Numerical smoothing, curve fitting
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Alzameh and J.M. Wolfe, Best multipoint locall p approximation, J. Approx. Theory 62 (1990) 243–256. · Zbl 0736.41030 · doi:10.1016/0021-9045(90)90037-Q
[2] R.H. Bartels, A.R. Conn and J.W. Sinclair, Minimization techniques for piecewise differentiable functions: thel 1 solution to an overdetermined linear system, SIAM J. Numer. Anal. 15 (1978) 224–241. · Zbl 0376.65018 · doi:10.1137/0715015
[3] J. Bergh and J. Löftström,Interpolation Spaces, An Introduction, (Springer, Berlin, 1976).
[4] M. Fang, The Chebyshev theory of a variation ofl p (1<p< approximation, J. Approx. Theory 62 (1990) 94–109. · Zbl 0728.41019 · doi:10.1016/0021-9045(90)90048-U
[5] R.A. Horn and C.R. Johnston,Topics in Matrix Analysis, (Cambridge University Press, Cambridge, 1991). · Zbl 0729.15001
[6] E. Lapidot and J.T. Lewis, Best approximation using a peak norm, J. Approx. Theory 67 (1991) 174–186. · Zbl 0752.41026 · doi:10.1016/0021-9045(91)90016-4
[7] C. Li and G.A. Watson, On approximation using a peak norm, J. Approx. Theory 77 (1994) 266–275. · Zbl 0808.41018 · doi:10.1006/jath.1994.1049
[8] Z. Ma and Y.-G. Shi, A variation of rationalL 1 approximation, J. Approx. Theory 62 (1990) 262–273. · Zbl 0729.41018 · doi:10.1016/0021-9045(90)90039-S
[9] J.K. Merikoski and G. De Oliveira, Onk-major norms andk-minor antinorms, Lin. Alg. Appl. 176 (1992) 197–209. · Zbl 0776.15019 · doi:10.1016/0024-3795(92)90218-Y
[10] A. Pinkus,On L 1-approximation (Cambridge University Press, Cambridge, 1989). · Zbl 0679.41022
[11] A. Pinkus and O. Shisha, Variations on the Chebyshev andL q theories of best approximation, J. Approx. Theory 35 (1982) 148–168. · Zbl 0532.41032 · doi:10.1016/0021-9045(82)90033-8
[12] R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, NJ, 1970). · Zbl 0193.18401
[13] Y.-G. Shi, The Chebyshev theory of a variation ofL approximation, J. Approx. Theory 67 (1991) 239–251. · Zbl 0745.41031 · doi:10.1016/0021-9045(91)90001-Q
[14] G.A. Watson, Linear best approximation using a class of polyhedral norms, Numer. Algor. 2 (1992) 321–336. · Zbl 0755.65011 · doi:10.1007/BF02139472
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.