×

A note on poroacoustic traveling waves under Darcy’s law: exact solutions. (English) Zbl 1224.33014

Summary: A mathematical analysis of poroacoustic traveling wave phenomena is presented. Assuming that the fluid phase satisfies the perfect gas law and that the drag offered by the porous matrix is described by Darcy’s law, exact traveling wave solutions, as well as asymptotic or approximate expressions, are derived and examined. In particular, stability issues are addressed, shock and acceleration waves are shown to arise and special or limiting cases are noted. Lastly, connections to other fields are pointed out and possible extensions of this work are briefly discussed.

MSC:

33E30 Other functions coming from differential, difference and integral equations
35L67 Shocks and singularities for hyperbolic equations
76N15 Gas dynamics (general theory)
76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI EuDML Link

References:

[1] G. S. Beavers, E.M. Sparrow: Compressible gas flow through a porous material. Int. J. Heat Mass Transfer 14 (1971), 1855–1859. · doi:10.1016/0017-9310(71)90053-6
[2] R.T. Beyer: The parameter B/A. In: Nonlinear Acoustics (M. F. Hamilton, D.T. Blackstock, eds.). Academic Press, San Diego, 1997, pp. 25–39.
[3] K. Boomsma, D. Poulikakos: The effects of compression and pore size variations on the liquid flow characteristics in metal foams. ASME J. Fluids Eng. 124 (2002), 263–272. · doi:10.1115/1.1429637
[4] I. Christov, C. I. Christov, P.M. Jordan: Modeling weakly nonlinear acoustic wave propagation. Q. J. Mech. Appl. Math. 60 (2007), 473–495. · Zbl 1125.76379 · doi:10.1093/qjmam/hbm017
[5] M. Ciarletta, B. Straughan, V. Tibullo: Anisotropic effects on poroacoustic acceleration waves. Mech. Res. Commun. 37 (2010), 137–140. · Zbl 1272.76219 · doi:10.1016/j.mechrescom.2009.11.012
[6] Z.E.A. Fellah et al.: Ultrasonic characterization of air-saturated double-layered porous media in time domain. J. Appl. Phys. 108 (2010).
[7] P.M. Jordan: Finite-amplitude acoustic traveling waves in a fluid that saturates a porous medium: Acceleration wave formation. Phys. Lett. A 355 (2006), 216–221. · doi:10.1016/j.physleta.2006.02.033
[8] P.M. Jordan: Some remarks on nonlinear poroacoustic phenomena. Math. Comput. Simul. 80 (2009), 202–211. · Zbl 1422.76173 · doi:10.1016/j.matcom.2009.06.004
[9] P.M. Jordan et al.: On the propagation of finite-amplitude acoustic waves in monorelaxing media. In: ContinuumMechanics, Fluids, Heat. Proceedings of the 5th IASME/WSEAS International Conference on Continuum Mechanics, Cambridge, UK, February 23–25, 2010 (S.H. Sohrab, H. J. Catrakis, N. Kobasko, eds.). WSEAS Press, Athens, 2010, pp. 67–72.
[10] K. Kannan, K.R. Rajagopal: Flow through porous media due to high pressure gradients. Appl. Math. Comput. 199 (2008), 748–759. · Zbl 1228.76161 · doi:10.1016/j.amc.2007.10.038
[11] S. Makarov, M. Ochmann: Nonlinear and thermoviscous phenomena in acoustics, Part I. Acta Acustica united with Acustica 82 (1996), 579–606. · Zbl 0887.76067
[12] J. Málek, K.R. Rajagopal: Mathematical issues concerning the Navier-Stokes equations and some of its generalizations. In: Handbook of Differential Equations: Evolutionary Equations, Vol. 2 (C.M. Dafermos, E. Feireisl, eds.). Elsevier/North Holland, Amsterdam, 2005, pp. 371–459. · Zbl 1095.35027
[13] P.M. Morse, K.U. Ingard: Theoretical Acoustics. McGraw-Hill, New York, 1968.
[14] D.A. Nield, A. Bejan: Convection in Porous Media, 2nd ed. Springer, New York, 1999. · Zbl 0924.76001
[15] L.E. Payne, J. F. Rodrigues, B. Straughan: Effect of anisotropic permeability on Darcy’s law. Math. Methods Appl. Sci. 24 (2001), 427–438. · Zbl 0984.76024 · doi:10.1002/mma.228
[16] A.D. Pierce: Acoustics: An Introduction to its Physical Principles and Applications. Acoustical Society of America, Woodbury, 1989, pp. 588–593.
[17] K.R. Rajagopal: On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17 (2007), 215–252. · Zbl 1123.76066 · doi:10.1142/S0218202507001899
[18] K.R. Rajagopal, G. Saccomandi, L. Vergori: A systematic approximation for the equations governing convection-diffusion in a porous medium. Nonlinear Anal., Real World Appl. 11 (2010), 2366–2375. · Zbl 1194.35336 · doi:10.1016/j.nonrwa.2009.07.010
[19] K.R. Rajagopal, L. Tao: Mechanics of Mixtures. Appendix B. World Scientific, Singapore, 1995.
[20] K.R. Rajagopal, L. Tao: On the propagation of waves through porous solids. Int. J. Non-Linear Mech. 40 (2005), 373–380. · Zbl 1349.76826 · doi:10.1016/j.ijnonlinmec.2004.07.004
[21] U. Saravanan, K.R. Rajagopal: On the role of inhomogeneities in the deformation of elastic bodies. Math. Mech. Solids 8 (2003), 349–376. · Zbl 1059.74015 · doi:10.1177/10812865030084002
[22] A.E. Scheidegger: The Physics of Flow Through Porous Media, 3rd ed. University of Toronto Press, Toronto, 1974.
[23] B. Straughan: Stability and Wave Motion in Porous Media. Springer, New York, 2008. · Zbl 1149.76002
[24] P.A. Thompson: Compressible-Fluid Dynamics. McGraw-Hill, New York, 1972. · Zbl 0251.76001
[25] C. Truesdell, K.R. Rajagopal: An Introduction to the Mechanics of Fluids. Birkhäuser, Boston, 2000. · Zbl 0942.76001
[26] G.B. Whitham: Linear and Nonlinear Waves. John Wiley & Sons, New York, 1974.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.