×

An efficient adaptive forward-backward selection method for sparse polynomial chaos expansion. (English) Zbl 1441.65011

Summary: As an efficient uncertainty quantification (UQ) methodology for moment propagation and probability analysis of quantities of interest, polynomial chaos (PC) expansions have received broad and sustained attentions. However, the exponentially increasing cost of building PC representations with increasing dimension of uncertainty, i.e., the curse of dimensionality, seriously restricts the practical application of PC at the industrial level. Some efficient strategies applying adaptive basis selection algorithm for sparse optimization (or \(\ell_1\)-minimization) of PC show great potential compared to the classical full PC. However, these strategies mainly focus on forward selection algorithms, which are incapable of correcting any error made by these algorithms. Hence, this paper develops a novel adaptive forward-backward selection (AFBS) algorithm for reconstructing sparse PC. The proposed algorithm by a reasonable combination of forward selection and adaptively backward elimination technique can efficiently correct mistakes made by earlier forward selection steps, which retains the most significant PC terms and discards redundant or insignificant ones. The accuracy of built PC metamodel is checked by a cross-validation procedure. As a consequence, the most significant PC terms are detected sequentially and corresponding PC coefficients are accurately recovered. It largely enhances the sparsity of PC and improves the prediction accuracy compared to the popular forward selection algorithms, e.g., least angle regressions (LARs). To validate the efficiency of the proposed algorithm, a complex analytical function with Gaussian distribution inputs and two challenging aerodynamic applications including a sonic boom propagation analysis considering atmospheric uncertainty and a natural-laminar-flow (NLF) airfoil computation under both geometrical and operational uncertainties are elaborated. With an in-depth comparison with some popular PC reconstruction methodologies, the performance of the devised AFBS method is assessed comprehensively. The results demonstrate that the proposed AFBS method can efficiently identify the significant PC contributions describing the problems, and reproduce sparser PC metamodel and more accurate UQ results than those classical full PC and LARs methods.

MSC:

65C20 Probabilistic models, generic numerical methods in probability and statistics
62J07 Ridge regression; shrinkage estimators (Lasso)
62P30 Applications of statistics in engineering and industry; control charts

Software:

foba; FPC_AS; SPGL1
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lee, S. H.; Chen, W. A., Comparative study of uncertainty propagation methods for black-box-type problems, Struct. Multidiscip. Optim., 37, 3, 239-253 (2008)
[2] Mukhopadhyay, T.; Chakraborty, S.; Dey, S.; Adhikari, S.; Chowdhury, R. A., Critical assessment of Kriging Model variants for high-fidelity uncertainty quantification in dynamics of composite shells, Arch. Comput. Methods Eng., 24, 3, 1-24 (2016)
[3] Zhao, H.; Gao, Z.; Xu, F.; Zhang, Y., Review of robust aerodynamic design optimization for air vehicles, Arch. Comput. Methods Eng., 26, 3, 685-732 (2019)
[4] Wiener, N., The homogeneous chaos, Amer. J. Math., 60, 4, 897-936 (1938) · JFM 64.0887.02
[5] Xiu, D.; Karniadakis, G. E., Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys., 187, 1, 137-167 (2003) · Zbl 1047.76111
[6] Wan, X.; Karniadakis, G. E., Long-term behavior of polynomial chaos in stochastic flow simulations, Comput. Methods Appl. Mech. Eng., 195, 41, 5582-5596 (2006) · Zbl 1123.76058
[7] Hou, T. Y.; Luo, W.; Rozovskii, B.; Zhou, H. M., Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics, J. Comput. Phys., 216, 2, 687-706 (2006) · Zbl 1095.76047
[8] Eldred, M.; Burkardt, J., Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification, (47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2009), American Institute of Aeronautics and Astronautics)
[9] S. Hosder, R.W. Walters, R. Perez, A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006, p. 891.; S. Hosder, R.W. Walters, R. Perez, A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations, in: 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006, p. 891.
[10] Smoljak, S. A., Quadrature and interpolation formulae on tensor products of certain function classes, Dokl. Akad. Nauk SSSR, 4, 5, 240-243 (1963)
[11] Rahman, S.; Xu, H., A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics, Internat. J. Numer. Methods Engrg., 19, 4, 393-408 (2004)
[12] Gerstner, T.; Griebel, M., Dimension – adaptive tensor – product quadrature, Computing, 71, 1, 65-87 (2003) · Zbl 1030.65015
[13] Perkó, Z.; Gilli, L.; Lathouwers, D.; Kloosterman, J. L., Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis, J. Comput. Phys., 260, 3, 54-84 (2014) · Zbl 1349.65027
[14] Perko, Z.; Lathouwers, D.; Kloosterman, J. L.; Der Hagen, T. H.J. J.V., Large scale applicability of a fully adaptive non-intrusive spectral projection technique: Sensitivity and uncertainty analysis of a transient, Ann. Nucl. Energy, 71, 272-292 (2014)
[15] Choi, S.-K.; Grandhi, R. V.; Canfield, R. A.; Pettit, C. L., Polynomial chaos expansion with latin hypercube sampling for estimating response variability, AIAA J., 42, 6, 1191-1198 (2004)
[16] Maître, O. P.L.; Knio, O. M., Spectral methods for uncertainty quantification with applications to computational fluid dynamics, (Spectral Methods for Uncertainty Quantification: With Applications To Computational Fluid Dynamics, Scientific Computation (2010), Springer Science+Business Media B.V), 2010 · Zbl 1193.76003
[17] Migliorati, G.; Nobile, F., Analysis of discrete least squares on multivariate polynomial spaces with evaluations at low-discrepancy point sets, J. Complexity, 31, 4, 517-542 (2015) · Zbl 1320.62076
[18] Hampton, J.; Doostan, A., Coherence motivated sampling and convergence analysis of least squares polynomial chaos regression, Comput. Methods Appl. Mech. Eng., 290, 73-97 (2015) · Zbl 1426.62174
[19] S. Hosder, R. Walters, M. Balch, Efficient uncertainty quantification applied to the aeroelastic analysis of a transonic wing, in: 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008, pp. 2008-729.; S. Hosder, R. Walters, M. Balch, Efficient uncertainty quantification applied to the aeroelastic analysis of a transonic wing, in: 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008, pp. 2008-729.
[20] Blatman, G.; Sudret, B., An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probab. Eng. Mech., 25, 2, 183-197 (2010)
[21] Donoho, D. L., Compressed sensing, IEEE Trans. Inform. Theory, 52, 4, 1289-1306 (2006) · Zbl 1288.94016
[22] Bruckstein, A. M.; Donoho, D. L.; Elad, M., From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev., 51, 1, 34-81 (2009) · Zbl 1178.68619
[23] Rauhut, H.; Ward, R., Sparse Legendre expansions via \(\ell 1\)-minimization, J. Approx. Theory, 164, 5, 517-533 (2012) · Zbl 1239.65018
[24] Foucart, S.; Lai, M.-J., Sparsest solutions of underdetermined linear systems via \(\ell\) q-minimization for 0<q \(\leqslant 1\), Appl. Comput. Harmon. Anal., 26, 3, 395-407 (2009) · Zbl 1171.90014
[25] Candès, E. J., The restricted isometry property and its implications for compressed sensing, Compt. R. - Math., 346, 9, 589-592 (2008) · Zbl 1153.94002
[26] Peng, J.; Hampton, J.; Doostan, A. A., Weighted \(\ell 1\)-minimization approach for sparse polynomial chaos expansions, J. Comput. Phys., 267, 92-111 (2014) · Zbl 1349.65198
[27] Peng, J.; Hampton, J.; Doostan, A., On polynomial chaos expansion via gradient-enhanced \(\ell 1\)-minimization, J. Comput. Phys., 310, 440-458 (2016) · Zbl 1349.65538
[28] Guo, L.; Narayan, A.; Zhou, T., A gradient enhanced \(\ell 1\)-minimization for sparse approximation of polynomial chaos expansions, J. Comput. Phys., 367, 49-64 (2018) · Zbl 1415.65032
[29] Salehi, S.; Raisee, M.; Cervantes, M. J.; Nourbakhsh, A., An efficient multifidelity \(\ell 1\)-minimization method for sparse polynomial chaos, Comput. Methods Appl. Mech. Eng., 334, 183-207 (2018) · Zbl 1440.94017
[30] Jakeman, J.; Narayan, A.; Zhou, T., A generalized sampling and preconditioning scheme for sparse approximation of polynomial Chaos expansions, SIAM J. Sci. Comput., 39, 3, A1114-A1144 (2017) · Zbl 1368.65025
[31] Blatman, G.; Sudret, B., Adaptive sparse polynomial chaos expansion based on least angle regression, J. Comput. Phys., 230, 6, 2345-2367 (2011) · Zbl 1210.65019
[32] Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R., Least angle regression, Ann. Stat., 32, 2, 407-499 (2004) · Zbl 1091.62054
[33] Abraham, S.; Raisee, M.; Ghorbaniasl, G.; Contino, F.; Lacor, C., A robust and efficient stepwise regression method for building sparse polynomial chaos expansions, J. Comput. Phys., 332, 461-474 (2017) · Zbl 1384.62216
[34] Tropp, J. A.; Gilbert, A. C., Signal recovery from random measurements via orthogonal matching pursuit, IEEE Trans. Inform. Theory, 53, 12, 4655-4666 (2007) · Zbl 1288.94022
[35] Wen, Z.; Yin, W.; Goldfarb, D.; Zhang, Y., A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation, SIAM J. Sci. Comput., 32, 4, 1832-1857 (2009) · Zbl 1215.49039
[36] Ewout, V. D.B.; Friedlander, M. P., Probing the pareto frontier for basis pursuit solutions, SIAM J. Sci. Comput., 31, 2, 890-912 (2008) · Zbl 1193.49033
[38] Zhang, T., Adaptive forward-backward greedy algorithm for learning sparse representations, IEEE Trans. Inform. Theory, 57, 7, 4689-4708 (2011) · Zbl 1365.62288
[39] Karahanoglu, N. B.; Erdogan, H., Compressed sensing signal recovery via forward – backward pursuit, Digit. Signal Process., 23, 5, 1539-1548 (2013)
[40] N. Rao, P. Shah, S. Wright, R. Nowak, A greedy forward-backward algorithm for atomic norm constrained minimization, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 5885-5889.; N. Rao, P. Shah, S. Wright, R. Nowak, A greedy forward-backward algorithm for atomic norm constrained minimization, in: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, pp. 5885-5889.
[41] Liu, J.; Ye, J.; Fujimaki, R., Forward-backward greedy algorithms for general convex smooth functions over a cardinality constraint, Int. Conf. Mach. Learning, 503-511 (2014)
[42] Agarwal, H.; Renaud, J. E.; Preston, E. L.; Padmanabhan, D., Uncertainty quantification using evidence theory in multidisciplinary design optimization, Reliab. Eng. Syst. Safety, 85, 1-3, 281-294 (2004)
[43] Guan, J. W.; Bell, D. A., Evidence Theory and Its Applications (1991), Elsevier Science Inc. · Zbl 0791.68133
[44] Cameron, R. H.; Martin, W. T., The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. of Math., 48, 2, 385-392 (1947) · Zbl 0029.14302
[45] Diaz, P.; Doostan, A.; Hampton, J., Sparse polynomial chaos expansions via compressed sensing and D-optimal design, Comput. Methods Appl. Mech. Engrg., 336, 640-666 (2018) · Zbl 1441.65005
[46] Hadigol, M.; Doostan, A., Least squares polynomial chaos expansion: A review of sampling strategies, Comput. Methods Appl. Mech. Engrg., 332, 382-407 (2018) · Zbl 1440.65007
[47] Yan, L.; Guo, L.; Xiu, D., Stochastic collocation algorithms using L1-minimization, Int. J. Uncertain. Quantif., 2, 3, 279-293 (2012) · Zbl 1291.65024
[48] Eldar, Y. C.; Kutyniok, G., Compressed Sensing: Theory and Applications (2012), Cambridge University Press
[51] Shimoyama, K.; Inoue, A., Uncertainty quantification by the nonintrusive polynomial chaos expansion with an adjustment strategy, AIAA J., 54, 10, 3107-3116 (2016)
[52] S.K. Rallabhandi, A. Loubeau, Propagation summary of the second AIAA Sonic Boom Prediction Workshop, in: Aiaa Applied Aerodynamics Conference, Grapevine, USA, 2017.; S.K. Rallabhandi, A. Loubeau, Propagation summary of the second AIAA Sonic Boom Prediction Workshop, in: Aiaa Applied Aerodynamics Conference, Grapevine, USA, 2017.
[53] Zhang, Y.; Huang, J.; Gao, Z., Farfield simulation and applications of sonic boom based on augmented burgers equation, Acta Aeronaut. Astronaut. Sin., 39, 7, Article 122039 pp. (2018)
[54] Cleveland, R. O., Propagation of sonic booms through a real, stratified atmosphere (1995), University of Texas at Austin, Austin, Ph.D. thesis
[55] S. Rallabhandi, Advanced sonic boom prediction using augmented Burger’s Equation, in: Aiaa Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2013.; S. Rallabhandi, Advanced sonic boom prediction using augmented Burger’s Equation, in: Aiaa Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2013.
[56] Jeong, S.; Ono, D.; Shimoyama, K.; Hashimoto, A., Sonic boom analysis under conditions of atmospheric uncertainty using polynomial chaos, Trans. Japan Soc. Aeronaut. Space Sci., 56, 56, 129-136 (2013)
[57] Stevens, S. S., Perceived level of noise by mark VII and decibels (E), J. Acoust. Soc. Am, 51, 2B, 575-601 (1972)
[58] Z. Gao, Advanced Laminar Flow aerodynamic configuration optimization design for green aviation, in: 32nd AIAA Applied Aerodynamics Conference, 2014, p. 2107.; Z. Gao, Advanced Laminar Flow aerodynamic configuration optimization design for green aviation, in: 32nd AIAA Applied Aerodynamics Conference, 2014, p. 2107.
[59] Zhao, H.; Gao, Z., Uncertainty-based design optimization of NLF airfoil for high altitude long endurance unmanned air vehicles, Eng. Comput., 36, 3, 971-996 (2019)
[60] Hicks, R. M.; Cliff, S. E., An evaluation of three two-dimensional computational fluid dynamics codes including low reynolds numbers and transonic mach numbers (1991), NASA TM-102840
[61] Langtry, R. B.; Menter, F. R., Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes, AIAA J., 47, 12, 2894-2906 (2009)
[63] Ghanem, R. G.; Spanos, P. D., Representation of Stochastic Processes, Stochastic Finite Elements: A Spectral Approach, 17-41 (1991), Springer · Zbl 0722.73080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.