×

A domain decomposition approach to solve dynamic optimal power flow problems in parallel. (English) Zbl 1447.93134

Bertsch, Valentin (ed.) et al., Advances in energy system optimization. Proceedings of the 2nd international symposium on energy system optimization, ISESO 2018, Karlsruhe, Germany, October 10–11, 2018. Cham: Birkhäuser. Trends Math., 41-64 (2020).
Summary: We propose a parallel solver for linear systems of equations arising from the application of primal dual interior point methods to dynamic optimal power flow problems. Our solver is based on the Generalised Minimal Residual method in combination with an additive Schwarz domain decomposition method as preconditioner. This preconditioner exploits the structure of dynamic optimal power flow problems which, after linearization, is given as a matrix with large diagonal blocks and only a few off-diagonal elements. These elements correspond to intertemporal couplings due to ramping and energy storage constraints and are partially neglected in order to solve the problem in parallel. We test our method on a large-scale optimisation problem and show that a parallel speedup can be obtained.
For the entire collection see [Zbl 1432.93005].

MSC:

93B70 Networked control
93A15 Large-scale systems
93C05 Linear systems in control theory

Software:

PETSc; SLEPc; MATPOWER
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] N. Alguacil, A.J. Conejo, Multiperiod optimal power flow using benders decomposition. IEEE Trans. Power Syst. 15(1), 196-201 (2000) · doi:10.1109/59.852121
[2] S. Balay, W.D. Gropp, L. Curfman McInnes, B.F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in Modern software tools in scientific computing, ed. by E. Arge, A.M. Bruaset, H.P. Langtangen (Birkhäuser Press, Boston 1997), pp. 163-202 · Zbl 0882.65154 · doi:10.1007/978-1-4612-1986-6_8
[3] S. Bellavia, Inexact interior-point method. J. Optim. Theory Appl. 96(1), 109-121 (1998) · Zbl 0897.90182 · doi:10.1023/A:1022663100715
[4] X.-C. Cai, M. Sarkis, A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21(2), 792-797 (1999) · Zbl 0944.65031 · doi:10.1137/S106482759732678X
[5] F. Capitanescu, M. Glavic, D. Ernst, L. Wehenkel, Interior-point based algorithms for the solution of optimal power flow problems. Electr. Power Syst. Res. 77(5-6), 508-517 (2007) · doi:10.1016/j.epsr.2006.05.003
[6] C.Y. Chung, W. Yan, F. Liu, Decomposed predictor-corrector interior point method for dynamic optimal power flow. IEEE Trans. Power Syst. 26(3), 1030-1039 (2011) · doi:10.1109/TPWRS.2010.2080326
[7] F.E. Curtis, J. Huber, O. Schenk, A. Wächter, A note on the implementation of an interior-point algorithm for nonlinear optimization with inexact step computations. Math. Program. 136(1), 209-227 (2012) · Zbl 1255.49043 · doi:10.1007/s10107-012-0557-4
[8] P. Gerstner, V. Heuveline, M. Schick, A multilevel domain decomposition approach for solving time constrained optimal power flow problems. Preprint Ser. Eng. Math. Comput. Lab (EMCL) 4, 1-30 (2015)
[9] V. Hernandez, J.E. Roman, V. Vidal, SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 31(3), 351-362 (2005) · Zbl 1136.65315 · doi:10.1145/1089014.1089019
[10] C. Keller, N.I.M. Gould, A.J. Wathen, Constraint preconditioning for indefinite linear systems. SIAM J. Matrix Anal. Appl. 21(4), 1300-1317 (2000) · Zbl 0960.65052 · doi:10.1137/S0895479899351805
[11] A. Meister, Numerik linearer Gleichungssysteme. Eine Einführung in moderne Verfahren. Mit MATLAB-Implementierungen von C. Vömel, 5th revised edn. (Springer Spektrum, Heidelberg, 2015) · Zbl 1310.65001
[12] N. Meyer-Hübner, M. Suriyah, T. Leibfried, V. Slednev, V. Bertsch, W. Fichtner, P. Gerstner, M. Schick, V. Heuveline, Time constrained optimal power flow calculations on the German power grid, in International ETG Congress 2015; Die Energiewende - Blueprints for the new energy age, Bonn, 2015, pp. 1-7
[13] N. Meyer-Hübner, F. Gielnik, M. Suriyah, T. Leibfried, Dynamic optimal power flow in AC networks with multi-terminal HVDC and energy storage, in 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), Nov 2016
[14] J. Nocedal, S.J. Wright, Numerical optimization. Springer Series in Operations Research and Financial Engineering (Springer, Berlin, 2006) · Zbl 1104.65059
[15] Y. Saad, M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856-869 (1986) · Zbl 0599.65018 · doi:10.1137/0907058
[16] M. Schönfelder, A. Eßer-Frey, M. Schick, W. Fichtner, V. Heuveline, T. Leibfried, New developments in modeling network constraints in techno-economic energy system expansion planning models. Zeitschrift für Energiewirtschaft 36(1), 27-35 (2012) · doi:10.1007/s12398-011-0067-8
[17] H.A. Schwarz, Ueber einen Grenzübergang durch alternirendes Verfahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich. Zürcher u. Furrer, 1870
[18] B.F. Smith, P.E. Bjørstad, W.D. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations (Cambridge University Press, Cambridge, 1996) · Zbl 0857.65126
[19] E.M. Soler, V.A. de Sousa, G.R.M. da Costa, A modified primal-dual logarithmic-barrier method for solving the optimal power flow problem with discrete and continuous control variables. Eur. J. Oper. Res. 222(3), 616-622 (2012) · doi:10.1016/j.ejor.2012.05.021
[20] K. Xie, Y.H. Song, Dynamic optimal power flow by interior point methods. IEE Proc. Gener. Transm. Distrib. 148(1), 76-84 (2001) · doi:10.1049/ip-gtd:20010026
[21] R.D. Zimmerman, C.E. Murillo-Sánchez, R.J. Thomas, Matpower: steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12-19 (2011) · doi:10.1109/TPWRS.2010.2051168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.