Zhang, Baifeng; Zhang, Guohong; Wang, Xiaoli Threshold dynamics of a reaction-diffusion-advection Leslie-Gower predator-prey system. (English) Zbl 07569513 Discrete Contin. Dyn. Syst., Ser. B 27, No. 9, 4969-4993 (2022). MSC: 35K57 35B32 35B35 35B36 37L15 92C15 PDF BibTeX XML Cite \textit{B. Zhang} et al., Discrete Contin. Dyn. Syst., Ser. B 27, No. 9, 4969--4993 (2022; Zbl 07569513) Full Text: DOI OpenURL
Kayenat, Sheerin; Verma, Amit K. On the convergence of NSFD schemes for a new class of advection-diffusion-reaction equations. (English) Zbl 07569071 J. Difference Equ. Appl. 28, No. 7, 946-970 (2022). MSC: 35K61 65M06 PDF BibTeX XML Cite \textit{S. Kayenat} and \textit{A. K. Verma}, J. Difference Equ. Appl. 28, No. 7, 946--970 (2022; Zbl 07569071) Full Text: DOI OpenURL
Schoutrop, Chris; ten Thije Boonkkamp, Jan; van Dijk, Jan Reliability investigation of BiCGStab and IDR solvers for the advection-diffusion-reaction equation. (English) Zbl 07569000 Commun. Comput. Phys. 32, No. 1, 156-188 (2022). MSC: 65F10 15A06 15A18 15B05 PDF BibTeX XML Cite \textit{C. Schoutrop} et al., Commun. Comput. Phys. 32, No. 1, 156--188 (2022; Zbl 07569000) Full Text: DOI OpenURL
Tran, Minh-Phuong; Nguyen, Thanh-Nhan; Huynh, Phuoc-Toan; Ly, Nhu-Binh; Nguyen, Minh-Dang; Ho, Quoc-Anh Convergence results for non-overlap Schwarz waveform relaxation algorithm with changing transmission conditions. (English) Zbl 07560238 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 105-126 (2022). MSC: 65N55 65M12 65M60 35K57 PDF BibTeX XML Cite \textit{M.-P. Tran} et al., Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 1, 105--126 (2022; Zbl 07560238) Full Text: DOI OpenURL
Guidolin, P. L.; Schütz, L.; Ziebell, J. S.; Zingano, J. P. Global existence results for solutions of general conservative advection-diffusion equations in \(\mathbb{R}\). (English) Zbl 07559879 J. Math. Anal. Appl. 515, No. 1, Article ID 126361, 16 p. (2022). MSC: 35Bxx 35Kxx 35Qxx PDF BibTeX XML Cite \textit{P. L. Guidolin} et al., J. Math. Anal. Appl. 515, No. 1, Article ID 126361, 16 p. (2022; Zbl 07559879) Full Text: DOI OpenURL
Giunta, Valeria; Hillen, Thomas; Lewis, Mark; Potts, Jonathan R. Local and global existence for nonlocal multispecies advection-diffusion models. (English) Zbl 07558083 SIAM J. Appl. Dyn. Syst. 21, No. 3, 1686-1708 (2022). MSC: 35A01 35B09 35B65 35R09 92-10 92D40 PDF BibTeX XML Cite \textit{V. Giunta} et al., SIAM J. Appl. Dyn. Syst. 21, No. 3, 1686--1708 (2022; Zbl 07558083) Full Text: DOI OpenURL
He, Xiaoqing; Liu, Liu On the conjecture of the role of advection in a two-species competition-diffusion model. (English) Zbl 07558082 SIAM J. Appl. Dyn. Syst. 21, No. 3, 1663-1685 (2022). MSC: 35J57 35B30 35B35 92D25 PDF BibTeX XML Cite \textit{X. He} and \textit{L. Liu}, SIAM J. Appl. Dyn. Syst. 21, No. 3, 1663--1685 (2022; Zbl 07558082) Full Text: DOI OpenURL
Haugerud, Ivar Svalheim; Linga, Gaute; Flekkøy, Eirik Grude Solute dispersion in channels with periodic square boundary roughness. (English) Zbl 07557109 J. Fluid Mech. 944, Paper No. A53, 16 p. (2022). MSC: 76R50 76M10 PDF BibTeX XML Cite \textit{I. S. Haugerud} et al., J. Fluid Mech. 944, Paper No. A53, 16 p. (2022; Zbl 07557109) Full Text: DOI OpenURL
Kohl, Nils; Mohr, Marcus; Eibl, Sebastian; Rüde, Ulrich A massively parallel Eulerian-Lagrangian method for advection-dominated transport in viscous fluids. (English) Zbl 07556262 SIAM J. Sci. Comput. 44, No. 3, C260-C285 (2022). Reviewer: Sebastian Franz (Dresden) MSC: 65M60 65M06 65N30 65L07 65M25 65Y05 76D07 76R10 76M10 76M20 PDF BibTeX XML Cite \textit{N. Kohl} et al., SIAM J. Sci. Comput. 44, No. 3, C260--C285 (2022; Zbl 07556262) Full Text: DOI OpenURL
Botsas, Themistoklis; Mason, Lachlan R.; Pan, Indranil Rule-based Bayesian regression. (English) Zbl 07554533 Stat. Comput. 32, No. 3, Paper No. 44, 17 p. (2022). MSC: 62-08 62F15 PDF BibTeX XML Cite \textit{T. Botsas} et al., Stat. Comput. 32, No. 3, Paper No. 44, 17 p. (2022; Zbl 07554533) Full Text: DOI OpenURL
Preuss, Adam; Lipoth, Jessica; Spiteri, Raymond J. When and how to split? A comparison of two IMEX splitting techniques for solving advection-diffusion-reaction equations. (English) Zbl 07553111 J. Comput. Appl. Math. 414, Article ID 114418, 18 p. (2022). MSC: 65L04 65L05 65L06 65M20 65Y20 PDF BibTeX XML Cite \textit{A. Preuss} et al., J. Comput. Appl. Math. 414, Article ID 114418, 18 p. (2022; Zbl 07553111) Full Text: DOI OpenURL
Auricchio, Ferdinando A continuous model for the simulation of manufacturing swarm robotics. (English) Zbl 07548524 Comput. Mech. 70, No. 1, 155-162 (2022). MSC: 74-XX PDF BibTeX XML Cite \textit{F. Auricchio}, Comput. Mech. 70, No. 1, 155--162 (2022; Zbl 07548524) Full Text: DOI OpenURL
Hoang, Thi-Thao-Phuong Fully implicit local time-stepping methods for advection-diffusion problems in mixed formulations. (English) Zbl 07546714 Comput. Math. Appl. 118, 248-264 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{T.-T.-P. Hoang}, Comput. Math. Appl. 118, 248--264 (2022; Zbl 07546714) Full Text: DOI OpenURL
Savović, Svetislav; Drljača, Branko; Djordjevich, Alexandar A comparative study of two different finite difference methods for solving advection-diffusion reaction equation for modeling exponential traveling wave in heat and mass transfer processes. (English) Zbl 07545273 Ric. Mat. 71, No. 1, 245-252 (2022). MSC: 65M06 35K57 80A19 65L12 PDF BibTeX XML Cite \textit{S. Savović} et al., Ric. Mat. 71, No. 1, 245--252 (2022; Zbl 07545273) Full Text: DOI OpenURL
Macià, F.; Merino-Alonso, P. E.; Souto-Iglesias, A. On the convergence of the solutions to the integral SPH heat and advection-diffusion equations: theoretical analysis and numerical verification. (English) Zbl 07543703 Comput. Methods Appl. Mech. Eng. 397, Article ID 115045, 25 p. (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{F. Macià} et al., Comput. Methods Appl. Mech. Eng. 397, Article ID 115045, 25 p. (2022; Zbl 07543703) Full Text: DOI OpenURL
Yan, Yawen; Zhang, Jimin; Wang, Hao Algae-bacteria interactions with nutrients and light: a reaction-diffusion-advection model. (English) Zbl 07542705 J. Nonlinear Sci. 32, No. 4, Paper No. 56, 36 p. (2022). MSC: 92D25 92D40 92C70 35K57 PDF BibTeX XML Cite \textit{Y. Yan} et al., J. Nonlinear Sci. 32, No. 4, Paper No. 56, 36 p. (2022; Zbl 07542705) Full Text: DOI OpenURL
Garshasbi, Morteza; Bagomghaleh, Shadi Malek Investigation of a drug release moving boundary problem in a swelling polymeric device. (English) Zbl 07541683 Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 73, 12 p. (2022). MSC: 92C50 35Q92 PDF BibTeX XML Cite \textit{M. Garshasbi} and \textit{S. M. Bagomghaleh}, Int. J. Appl. Comput. Math. 8, No. 2, Paper No. 73, 12 p. (2022; Zbl 07541683) Full Text: DOI OpenURL
Qu, Anqi; Wang, Jinfeng Asymptotic profiles of a diffusive mussel-algae system in closed advective environments. (English) Zbl 07540978 Appl. Math. Lett. 132, Article ID 108199, 8 p. (2022). MSC: 35K57 35K51 35Q92 PDF BibTeX XML Cite \textit{A. Qu} and \textit{J. Wang}, Appl. Math. Lett. 132, Article ID 108199, 8 p. (2022; Zbl 07540978) Full Text: DOI OpenURL
Gatsonis, Nikolaos A.; Tian, Xin; Demetriou, Michael A.; Burns, John A. A heterogeneous non-overlapping domain decomposition explicit finite volume method for a real-time hybrid process-state estimator of 3D unsteady advection-diffusion fields. (English) Zbl 07540349 J. Comput. Phys. 464, Article ID 111257, 19 p. (2022). MSC: 65Mxx 35Kxx 65Nxx PDF BibTeX XML Cite \textit{N. A. Gatsonis} et al., J. Comput. Phys. 464, Article ID 111257, 19 p. (2022; Zbl 07540349) Full Text: DOI OpenURL
Lei, Chengxia; Zhou, Xinhui Concentration phenomenon of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with spontaneous infection. (English) Zbl 07536439 Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 3077-3100 (2022). MSC: 35B32 35K51 35K57 92D30 PDF BibTeX XML Cite \textit{C. Lei} and \textit{X. Zhou}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 6, 3077--3100 (2022; Zbl 07536439) Full Text: DOI OpenURL
Dedner, Andreas; Klöfkorn, Robert Extendible and efficient Python framework for solving evolution equations with stabilized discontinuous Galerkin methods. (English) Zbl 07534235 Commun. Appl. Math. Comput. 4, No. 2, 657-696 (2022). MSC: 65M08 65M60 35Q31 35Q90 68N99 PDF BibTeX XML Cite \textit{A. Dedner} and \textit{R. Klöfkorn}, Commun. Appl. Math. Comput. 4, No. 2, 657--696 (2022; Zbl 07534235) Full Text: DOI OpenURL
Zhang, Yun; Wei, Ting; Yan, Xiongbin Recovery of advection coefficient and fractional order in a time-fractional reaction-advection-diffusion-wave equation. (English) Zbl 07531709 J. Comput. Appl. Math. 411, Article ID 114254, 20 p. (2022). MSC: 35R30 35K20 35K57 35L20 35R11 65M32 PDF BibTeX XML Cite \textit{Y. Zhang} et al., J. Comput. Appl. Math. 411, Article ID 114254, 20 p. (2022; Zbl 07531709) Full Text: DOI OpenURL
Halim, Omar Abdul; El Smaily, Mohammad The optimal initial datum for a class of reaction-advection-diffusion equations. (English) Zbl 07531074 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 221, Article ID 112877, 13 p. (2022). MSC: 35K20 35K57 35K58 35Q93 PDF BibTeX XML Cite \textit{O. A. Halim} and \textit{M. El Smaily}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 221, Article ID 112877, 13 p. (2022; Zbl 07531074) Full Text: DOI OpenURL
Tijani, Yusuf O.; Appadu, Appanah R. Unconditionally positive NSFD and classical finite difference schemes for biofilm formation on medical implant using Allen-Cahn equation. (English) Zbl 07530390 Demonstr. Math. 55, 40-60 (2022). MSC: 92C50 92C70 65M06 PDF BibTeX XML Cite \textit{Y. O. Tijani} and \textit{A. R. Appadu}, Demonstr. Math. 55, 40--60 (2022; Zbl 07530390) Full Text: DOI OpenURL
Albritton, Dallas; Beekie, Rajendra; Novack, Matthew Enhanced dissipation and Hörmander’s hypoellipticity. (English) Zbl 07528103 J. Funct. Anal. 283, No. 3, Article ID 109522, 38 p. (2022). MSC: 35B45 35B40 35H10 35Q35 PDF BibTeX XML Cite \textit{D. Albritton} et al., J. Funct. Anal. 283, No. 3, Article ID 109522, 38 p. (2022; Zbl 07528103) Full Text: DOI OpenURL
Mockary, Siavash; Vahidi, Alireza; Babolian, Esmail An efficient approximate solution of Riesz fractional advection-diffusion equation. (English) Zbl 07527945 Comput. Methods Differ. Equ. 10, No. 2, 307-319 (2022). MSC: 65M70 35K57 PDF BibTeX XML Cite \textit{S. Mockary} et al., Comput. Methods Differ. Equ. 10, No. 2, 307--319 (2022; Zbl 07527945) Full Text: DOI OpenURL
Glowinski, Roland; Song, Yongcun; Yuan, Xiaoming; Yue, Hangrui Bilinear optimal control of an advection-reaction-diffusion system. (English) Zbl 1487.49038 SIAM Rev. 64, No. 2, 392-421 (2022). MSC: 49M41 35Q93 49J20 35K57 PDF BibTeX XML Cite \textit{R. Glowinski} et al., SIAM Rev. 64, No. 2, 392--421 (2022; Zbl 1487.49038) Full Text: DOI OpenURL
Lou, Yuan; Nie, Hua Global dynamics of a generalist predator-prey model in open advective environments. (English) Zbl 1487.35059 J. Math. Biol. 84, No. 6, Paper No. 46, 40 p. (2022). MSC: 35B35 35B40 35K51 35K57 92D25 PDF BibTeX XML Cite \textit{Y. Lou} and \textit{H. Nie}, J. Math. Biol. 84, No. 6, Paper No. 46, 40 p. (2022; Zbl 1487.35059) Full Text: DOI OpenURL
Ataei, Mohammadmehdi; Pirmorad, Erfan; Costa, Franco; Han, Sejin; Park, Chul B.; Bussmann, Markus A hybrid lattice Boltzmann-molecular dynamics-immersed boundary method model for the simulation of composite foams. (English) Zbl 07518257 Comput. Mech. 69, No. 5, 1177-1190 (2022). MSC: 76M28 76P05 76S05 74F10 74E30 74A25 PDF BibTeX XML Cite \textit{M. Ataei} et al., Comput. Mech. 69, No. 5, 1177--1190 (2022; Zbl 07518257) Full Text: DOI OpenURL
Abbaszadeh, Mostafa; Dehghan, Mehdi; Khodadadian, Amirreza; Wick, Thomas Legendre spectral element method (LSEM) to simulate the two-dimensional system of nonlinear stochastic advection-reaction-diffusion models. (English) Zbl 1487.65160 Appl. Anal. 101, No. 6, 2279-2294 (2022). MSC: 65M70 65M06 65N35 65M12 65M15 86A05 35R60 PDF BibTeX XML Cite \textit{M. Abbaszadeh} et al., Appl. Anal. 101, No. 6, 2279--2294 (2022; Zbl 1487.65160) Full Text: DOI OpenURL
Wong, Anika O. K.; Atwal, Harpreet K.; Boutilier, Michael S. H. Molecular advection-diffusion through graphene nanopores. (English) Zbl 1487.76083 Eur. J. Mech., B, Fluids 94, 366-374 (2022). MSC: 76R50 76S05 76D07 PDF BibTeX XML Cite \textit{A. O. K. Wong} et al., Eur. J. Mech., B, Fluids 94, 366--374 (2022; Zbl 1487.76083) Full Text: DOI OpenURL
Argun, R. L.; Gorbachev, A. V.; Lukyanenko, D. V.; Shishlenin, M. A. Features of numerical reconstruction of a boundary condition in an inverse problem for a reaction-diffusion-advection equation with data on the position of a reaction front. (English. Russian original) Zbl 07514282 Comput. Math. Math. Phys. 62, No. 3, 441-451 (2022); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 3, 451-461 (2022). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{R. L. Argun} et al., Comput. Math. Math. Phys. 62, No. 3, 441--451 (2022; Zbl 07514282); translation from Zh. Vychisl. Mat. Mat. Fiz. 62, No. 3, 451--461 (2022) Full Text: DOI OpenURL
Bonament, Alexi; Prel, Alexis; Sallese, Jean-Michel; Lallement, Christophe; Madec, Morgan Analytic modelling of passive microfluidic mixers. (English) Zbl 07513333 Math. Biosci. Eng. 19, No. 4, 3892-3908 (2022). MSC: 76R99 76V05 76M10 PDF BibTeX XML Cite \textit{A. Bonament} et al., Math. Biosci. Eng. 19, No. 4, 3892--3908 (2022; Zbl 07513333) Full Text: DOI OpenURL
Abbaszadeh, Mostafa; Dehghan, Mehdi A class of moving Kriging interpolation-based DQ methods to simulate multi-dimensional space Galilei invariant fractional advection-diffusion equation. (English) Zbl 07512665 Numer. Algorithms 90, No. 1, 271-299 (2022). MSC: 65Mxx PDF BibTeX XML Cite \textit{M. Abbaszadeh} and \textit{M. Dehghan}, Numer. Algorithms 90, No. 1, 271--299 (2022; Zbl 07512665) Full Text: DOI OpenURL
Liu, Can; Yu, Zhe; Zhang, Xinming; Wu, Boying An implicit wavelet collocation method for variable coefficients space fractional advection-diffusion equations. (English) Zbl 1484.65264 Appl. Numer. Math. 177, 93-110 (2022). MSC: 65M70 65T60 35R11 65M12 PDF BibTeX XML Cite \textit{C. Liu} et al., Appl. Numer. Math. 177, 93--110 (2022; Zbl 1484.65264) Full Text: DOI OpenURL
Iyer, Gautam; Van, Truong-Son Bounds on the heat transfer rate via passive advection. (English) Zbl 07504990 SIAM J. Math. Anal. 54, No. 2, 1927-1965 (2022). MSC: 76R05 60J60 PDF BibTeX XML Cite \textit{G. Iyer} and \textit{T.-S. Van}, SIAM J. Math. Anal. 54, No. 2, 1927--1965 (2022; Zbl 07504990) Full Text: DOI OpenURL
Liu, Jie; Chen, Shanshan Delay-induced instability in a reaction-diffusion model with a general advection term. (English) Zbl 1486.35040 J. Math. Anal. Appl. 512, No. 2, Article ID 126160, 20 p. (2022). MSC: 35B35 35B32 35K20 35K57 35R10 PDF BibTeX XML Cite \textit{J. Liu} and \textit{S. Chen}, J. Math. Anal. Appl. 512, No. 2, Article ID 126160, 20 p. (2022; Zbl 1486.35040) Full Text: DOI OpenURL
Sebu, Cristiana Identification of a space- and time-dependent source in a variable coefficient advection-diffusion equation from Dirichlet and Neumann boundary measured outputs. (English) Zbl 1486.35472 J. Inverse Ill-Posed Probl. 30, No. 2, 239-250 (2022). MSC: 35R30 35K20 65M32 PDF BibTeX XML Cite \textit{C. Sebu}, J. Inverse Ill-Posed Probl. 30, No. 2, 239--250 (2022; Zbl 1486.35472) Full Text: DOI OpenURL
Li, Yulong Integral representation bound of the true solution to the BVP of double-sided fractional diffusion advection reaction equation. (English) Zbl 07501047 Rend. Circ. Mat. Palermo (2) 71, No. 1, 407-428 (2022). MSC: 26A33 34A08 46N20 PDF BibTeX XML Cite \textit{Y. Li}, Rend. Circ. Mat. Palermo (2) 71, No. 1, 407--428 (2022; Zbl 07501047) Full Text: DOI OpenURL
Gan, Wenzhen; Shao, Yuan; Wang, Jinbao; Xu, Fangfang Global dynamics of a general competitive reaction-diffusion-advection system in one dimensional environments. (English) Zbl 1486.92157 Nonlinear Anal., Real World Appl. 66, Article ID 103523, 9 p. (2022). MSC: 92D25 35K57 92D40 35B35 35K61 PDF BibTeX XML Cite \textit{W. Gan} et al., Nonlinear Anal., Real World Appl. 66, Article ID 103523, 9 p. (2022; Zbl 1486.92157) Full Text: DOI OpenURL
Saeedmonir, Saeed; Khoei, Amir R. Multiscale modeling of coupled thermo-hydro-mechanical analysis of heterogeneous porous media. (English) Zbl 07487663 Comput. Methods Appl. Mech. Eng. 391, Article ID 114518, 34 p. (2022). MSC: 76-XX 80-XX PDF BibTeX XML Cite \textit{S. Saeedmonir} and \textit{A. R. Khoei}, Comput. Methods Appl. Mech. Eng. 391, Article ID 114518, 34 p. (2022; Zbl 07487663) Full Text: DOI OpenURL
Sharrock, Louis; Kantas, Nikolas Joint online parameter estimation and optimal sensor placement for the partially observed stochastic advection-diffusion equation. (English) Zbl 1484.35423 SIAM/ASA J. Uncertain. Quantif. 10, 55-95 (2022). MSC: 35R60 35K57 60-08 60G35 60H15 62M20 93E12 93E20 PDF BibTeX XML Cite \textit{L. Sharrock} and \textit{N. Kantas}, SIAM/ASA J. Uncertain. Quantif. 10, 55--95 (2022; Zbl 1484.35423) Full Text: DOI arXiv OpenURL
Yan, Xiao; Nie, Hua; Zhou, Peng On a competition-diffusion-advection system from river ecology: mathematical analysis and numerical study. (English) Zbl 1484.35034 SIAM J. Appl. Dyn. Syst. 21, No. 1, 438-469 (2022). MSC: 35B32 35B36 35K51 35K58 92D25 PDF BibTeX XML Cite \textit{X. Yan} et al., SIAM J. Appl. Dyn. Syst. 21, No. 1, 438--469 (2022; Zbl 1484.35034) Full Text: DOI OpenURL
Dong, W. B.; Tang, H. S.; Liu, Y. J. Convergence analysis on computation of coupled advection-diffusion-reaction problems. (English) Zbl 07483718 Appl. Math. Comput. 420, Article ID 126876, 18 p. (2022). MSC: 65Mxx 76Mxx 65Nxx PDF BibTeX XML Cite \textit{W. B. Dong} et al., Appl. Math. Comput. 420, Article ID 126876, 18 p. (2022; Zbl 07483718) Full Text: DOI arXiv OpenURL
Bergmann, Michel; Carlino, Michele Giuliano; Iollo, Angelo Second order ADER scheme for unsteady advection-diffusion on moving overset grids with a compact transmission condition. (English) Zbl 07482215 SIAM J. Sci. Comput. 44, No. 1, A524-A553 (2022). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65M60 65M55 65M50 65Y99 35K20 35K55 PDF BibTeX XML Cite \textit{M. Bergmann} et al., SIAM J. Sci. Comput. 44, No. 1, A524--A553 (2022; Zbl 07482215) Full Text: DOI OpenURL
Feng, Yuanyuan; Mazzucato, Anna L. Global existence for the two-dimensional Kuramoto-Sivashinsky equation with advection. (English) Zbl 1484.35255 Commun. Partial Differ. Equations 47, No. 2, 279-306 (2022). MSC: 35K35 35K58 76E06 76F25 PDF BibTeX XML Cite \textit{Y. Feng} and \textit{A. L. Mazzucato}, Commun. Partial Differ. Equations 47, No. 2, 279--306 (2022; Zbl 1484.35255) Full Text: DOI arXiv OpenURL
Nobili, Camilla; Pottel, Steffen Lower bounds on mixing norms for the advection diffusion equation in \(\mathbb{R}^d\). (English) Zbl 07474283 NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 2, Paper No. 12, 32 p. (2022). MSC: 35Qxx 35K08 35K15 35Q35 76R99 PDF BibTeX XML Cite \textit{C. Nobili} and \textit{S. Pottel}, NoDEA, Nonlinear Differ. Equ. Appl. 29, No. 2, Paper No. 12, 32 p. (2022; Zbl 07474283) Full Text: DOI arXiv OpenURL
Li, Shengyue; Cao, Wanrong; Wang, Yibo On spectral Petrov-Galerkin method for solving optimal control problem governed by a two-sided fractional diffusion equation. (English) Zbl 07469200 Comput. Math. Appl. 107, 104-116 (2022). MSC: 65-XX 93-XX PDF BibTeX XML Cite \textit{S. Li} et al., Comput. Math. Appl. 107, 104--116 (2022; Zbl 07469200) Full Text: DOI arXiv OpenURL
Chen, Jing; Wang, Feng; Chen, Huanzhen Probability-conservative simulation for Lévy financial model by a mixed finite element method. (English) Zbl 07469189 Comput. Math. Appl. 106, 92-105 (2022). MSC: 65-XX 91-XX PDF BibTeX XML Cite \textit{J. Chen} et al., Comput. Math. Appl. 106, 92--105 (2022; Zbl 07469189) Full Text: DOI OpenURL
Li, Can; Wang, Haihong; Yue, Hongyun; Guo, Shimin Fast difference scheme for the reaction-diffusion-advection equation with exact artificial boundary conditions. (English) Zbl 1486.65113 Appl. Numer. Math. 173, 395-417 (2022). MSC: 65M06 65M12 65M15 44A10 35K57 26A33 35R11 PDF BibTeX XML Cite \textit{C. Li} et al., Appl. Numer. Math. 173, 395--417 (2022; Zbl 1486.65113) Full Text: DOI OpenURL
Zhou, Peng; Huang, Qihua A spatiotemporal model for the effects of toxicants on populations in a polluted river. (English) Zbl 1481.92187 SIAM J. Appl. Math. 82, No. 1, 95-118 (2022). MSC: 92D40 92D25 35K57 35K55 PDF BibTeX XML Cite \textit{P. Zhou} and \textit{Q. Huang}, SIAM J. Appl. Math. 82, No. 1, 95--118 (2022; Zbl 1481.92187) Full Text: DOI OpenURL
Duan, Bo; Zhang, Zhengce A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. (English) Zbl 1481.35409 Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 837-861 (2022). MSC: 35R35 35B40 35K51 35K57 92B05 PDF BibTeX XML Cite \textit{B. Duan} and \textit{Z. Zhang}, Discrete Contin. Dyn. Syst., Ser. B 27, No. 2, 837--861 (2022; Zbl 1481.35409) Full Text: DOI OpenURL
Hsieh, Dai-Ni; Arguillère, Sylvain; Charon, Nicolas; Younes, Laurent Diffeomorphic shape evolution coupled with a reaction-diffusion PDE on a growth potential. (English) Zbl 1481.35413 Q. Appl. Math. 80, No. 1, 23-52 (2022). MSC: 35R37 35K51 35K57 35Q92 PDF BibTeX XML Cite \textit{D.-N. Hsieh} et al., Q. Appl. Math. 80, No. 1, 23--52 (2022; Zbl 1481.35413) Full Text: DOI arXiv OpenURL
Du, Li-Jun; Bao, Xiongxiong On the existence and monotonicity of pulsating traveling waves for reaction-diffusion-advection systems in high dimensional and periodic media. (English) Zbl 1480.92222 Nonlinear Anal., Real World Appl. 64, Article ID 103452, 20 p. (2022). MSC: 92D40 35K57 35C07 PDF BibTeX XML Cite \textit{L.-J. Du} and \textit{X. Bao}, Nonlinear Anal., Real World Appl. 64, Article ID 103452, 20 p. (2022; Zbl 1480.92222) Full Text: DOI OpenURL
Bu, Zhen-Hui; He, Jun-Feng Qualitative properties of pulsating fronts for reaction-advection-diffusion equations in periodic excitable media. (English) Zbl 1487.35165 Nonlinear Anal., Real World Appl. 63, Article ID 103418, 19 p. (2022). Reviewer: Bastian Hilder (Lund) MSC: 35C07 35B40 35K20 35K58 PDF BibTeX XML Cite \textit{Z.-H. Bu} and \textit{J.-F. He}, Nonlinear Anal., Real World Appl. 63, Article ID 103418, 19 p. (2022; Zbl 1487.35165) Full Text: DOI OpenURL
Jannelli, Alessandra Adaptive numerical solutions of time-fractional advection-diffusion-reaction equations. (English) Zbl 07443082 Commun. Nonlinear Sci. Numer. Simul. 105, Article ID 106073, 14 p. (2022). MSC: 65Mxx 34Axx 65Lxx PDF BibTeX XML Cite \textit{A. Jannelli}, Commun. Nonlinear Sci. Numer. Simul. 105, Article ID 106073, 14 p. (2022; Zbl 07443082) Full Text: DOI OpenURL
Rathish Kumar, B. V.; Chowdhury, Manisha Variational multiscale stabilized finite element analysis of non-Newtonian Casson fluid flow model fully coupled with transport equation with variable diffusion coefficients. (English) Zbl 07442812 Comput. Methods Appl. Mech. Eng. 388, Article ID 114272, 28 p. (2022). MSC: 76-XX 35-XX PDF BibTeX XML Cite \textit{B. V. Rathish Kumar} and \textit{M. Chowdhury}, Comput. Methods Appl. Mech. Eng. 388, Article ID 114272, 28 p. (2022; Zbl 07442812) Full Text: DOI OpenURL
Stoter, Stein K. F.; Cockburn, Bernardo; Hughes, Thomas J. R.; Schillinger, Dominik Discontinuous Galerkin methods through the Lens of variational multiscale analysis. (English) Zbl 07442790 Comput. Methods Appl. Mech. Eng. 388, Article ID 114220, 26 p. (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{S. K. F. Stoter} et al., Comput. Methods Appl. Mech. Eng. 388, Article ID 114220, 26 p. (2022; Zbl 07442790) Full Text: DOI OpenURL
Park, Jeungeun; Aminzare, Zahra A mathematical description of bacterial chemotaxis in response to two stimuli. (English) Zbl 1476.92011 Bull. Math. Biol. 84, No. 1, Paper No. 9, 35 p. (2022). MSC: 92C17 92C70 92D25 35Q84 PDF BibTeX XML Cite \textit{J. Park} and \textit{Z. Aminzare}, Bull. Math. Biol. 84, No. 1, Paper No. 9, 35 p. (2022; Zbl 1476.92011) Full Text: DOI arXiv OpenURL
Tang, S. L.; Antonia, R. A.; Djenidi, L. Transport equations for the normalized \(n\)th-order moments of velocity derivatives in grid turbulence. (English) Zbl 1477.76046 J. Fluid Mech. 930, Paper No. A31, 22 p. (2022). MSC: 76F25 76F05 76R99 PDF BibTeX XML Cite \textit{S. L. Tang} et al., J. Fluid Mech. 930, Paper No. A31, 22 p. (2022; Zbl 1477.76046) Full Text: DOI OpenURL
Cajas Guaca, Denis; Catapani Poletti, Elaine Cristina Modeling and numerical simulation of dissolved oxygen and biochemical oxygen demand concentrations with Holling type III kinetic relationships. (English) Zbl 07428246 Appl. Math. Comput. 415, Article ID 126690, 13 p. (2022). MSC: 65Nxx 65Mxx 35Kxx PDF BibTeX XML Cite \textit{D. Cajas Guaca} and \textit{E. C. Catapani Poletti}, Appl. Math. Comput. 415, Article ID 126690, 13 p. (2022; Zbl 07428246) Full Text: DOI OpenURL
Davydova, M. A.; Zakharova, S. A. Multidimensional thermal structures in the singularly perturbed stationary models of heat and mass transfer with a nonlinear thermal diffusion coefficient. (English) Zbl 1473.35023 J. Comput. Appl. Math. 400, Article ID 113731, 18 p. (2022). MSC: 35B25 35J25 35J62 35R30 PDF BibTeX XML Cite \textit{M. A. Davydova} and \textit{S. A. Zakharova}, J. Comput. Appl. Math. 400, Article ID 113731, 18 p. (2022; Zbl 1473.35023) Full Text: DOI OpenURL
Zhong, Shihong; Xia, Juandi; Liu, Biao Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion Mussel-Algae system with advection. (English) Zbl 07568965 Chaos Solitons Fractals 151, Article ID 111282, 12 p. (2021). MSC: 35K57 37N25 37M20 PDF BibTeX XML Cite \textit{S. Zhong} et al., Chaos Solitons Fractals 151, Article ID 111282, 12 p. (2021; Zbl 07568965) Full Text: DOI OpenURL
Zhao, Xiao; Zhang, Xiaofeng; Yuan, Rong The principal eigenvalue for a time-space periodic reaction-diffusion-advection equation with delay nutrient recycling. (English) Zbl 07544057 Chaos Solitons Fractals 150, Article ID 111134, 4 p. (2021). MSC: 34-XX 35-XX PDF BibTeX XML Cite \textit{X. Zhao} et al., Chaos Solitons Fractals 150, Article ID 111134, 4 p. (2021; Zbl 07544057) Full Text: DOI OpenURL
Sene, Ndolane Fractional advection-dispersion equation described by the Caputo left generalized fractional derivative. (English) Zbl 07532326 Palest. J. Math. 10, No. 2, 562-579 (2021). MSC: 35R11 35A22 35K57 76R50 PDF BibTeX XML Cite \textit{N. Sene}, Palest. J. Math. 10, No. 2, 562--579 (2021; Zbl 07532326) Full Text: Link OpenURL
Brugiapaglia, S.; Micheletti, S.; Nobile, F.; Perotto, S. Wavelet-Fourier CORSING techniques for multidimensional advection-diffusion-reaction equations. (English) Zbl 07528319 IMA J. Numer. Anal. 41, No. 4, 2744-2781 (2021). MSC: 65-XX PDF BibTeX XML Cite \textit{S. Brugiapaglia} et al., IMA J. Numer. Anal. 41, No. 4, 2744--2781 (2021; Zbl 07528319) Full Text: DOI OpenURL
Elliott, C. M.; Ranner, T. A unified theory for continuous-in-time evolving finite element space approximations to partial differential equations in evolving domains. (English) Zbl 07528292 IMA J. Numer. Anal. 41, No. 3, 1696-1845 (2021). MSC: 65-XX PDF BibTeX XML Cite \textit{C. M. Elliott} and \textit{T. Ranner}, IMA J. Numer. Anal. 41, No. 3, 1696--1845 (2021; Zbl 07528292) Full Text: DOI OpenURL
Liu, Zhi-bin; Liu, Shu-tang; Tian, Da-dong; Wang, Da Stability analysis of the plankton community with advection. (English) Zbl 07526735 Chaos Solitons Fractals 146, Article ID 110836, 10 p. (2021). MSC: 76-XX 37-XX PDF BibTeX XML Cite \textit{Z.-b. Liu} et al., Chaos Solitons Fractals 146, Article ID 110836, 10 p. (2021; Zbl 07526735) Full Text: DOI OpenURL
Shankar, Varun; Wright, Grady B.; Fogelson, Aaron L. An efficient high-order meshless method for advection-diffusion equations on time-varying irregular domains. (English) Zbl 07515874 J. Comput. Phys. 445, Article ID 110633, 24 p. (2021). MSC: 65Mxx 76Mxx 65Dxx PDF BibTeX XML Cite \textit{V. Shankar} et al., J. Comput. Phys. 445, Article ID 110633, 24 p. (2021; Zbl 07515874) Full Text: DOI OpenURL
Shahid, Naveed; Rehman, Muhammad Aziz-ur; Ahmed, Nauman; Baleanu, Dumitru; Iqbal, Muhammad Sajid; Rafiq, Muhammad Numerical investigation for the nonlinear model of hepatitis-B virus with the existence of optimal solution. (English) Zbl 1484.92004 AIMS Math. 6, No. 8, 8294-8314 (2021). MSC: 92-08 65N06 92D30 PDF BibTeX XML Cite \textit{N. Shahid} et al., AIMS Math. 6, No. 8, 8294--8314 (2021; Zbl 1484.92004) Full Text: DOI OpenURL
Shojaeizadeh, T.; Mahmoudi, M.; Darehmiraki, M. Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials. (English) Zbl 07512465 Chaos Solitons Fractals 143, Article ID 110568, 14 p. (2021). MSC: 65-XX 93-XX PDF BibTeX XML Cite \textit{T. Shojaeizadeh} et al., Chaos Solitons Fractals 143, Article ID 110568, 14 p. (2021; Zbl 07512465) Full Text: DOI OpenURL
Bachini, Elena; Farthing, Matthew W.; Putti, Mario Intrinsic finite element method for advection-diffusion-reaction equations on surfaces. (English) Zbl 07508442 J. Comput. Phys. 424, Article ID 109827, 18 p. (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{E. Bachini} et al., J. Comput. Phys. 424, Article ID 109827, 18 p. (2021; Zbl 07508442) Full Text: DOI OpenURL
Louison, Loïc; Omrane, Abdennebi Optimal control of advection-diffusion problems for cropping systems in polluted soils. (English) Zbl 1486.92343 Control Cybern. 50, No. 2, 253-268 (2021). MSC: 92F05 35Q92 49N90 PDF BibTeX XML Cite \textit{L. Louison} and \textit{A. Omrane}, Control Cybern. 50, No. 2, 253--268 (2021; Zbl 1486.92343) OpenURL
Soori, Z.; Aminataei, A. Two new approximations to Caputo-Fabrizio fractional equation on non-uniform meshes and its applications. (English) Zbl 07498487 Iran. J. Numer. Anal. Optim. 11, No. 2, 365-383 (2021). MSC: 65-XX 26A33 35K57 PDF BibTeX XML Cite \textit{Z. Soori} and \textit{A. Aminataei}, Iran. J. Numer. Anal. Optim. 11, No. 2, 365--383 (2021; Zbl 07498487) Full Text: DOI OpenURL
Kovářík, Karel; Mužík, Juraj The local singular boundary method for solution of two-dimensional advection-diffusion equation. (English) Zbl 07488881 Int. J. Comput. Methods 18, No. 10, Article ID 2150041, 24 p. (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{K. Kovářík} and \textit{J. Mužík}, Int. J. Comput. Methods 18, No. 10, Article ID 2150041, 24 p. (2021; Zbl 07488881) Full Text: DOI OpenURL
Zahri, M. Numerical solution of stochastic partial differential systems with additive noise on overlapping subdomains. (English) Zbl 07477955 J. Numer. Math. Stoch. 12, No. 1, 55-74 (2021). MSC: 35K57 35R60 60H15 60H35 PDF BibTeX XML Cite \textit{M. Zahri}, J. Numer. Math. Stoch. 12, No. 1, 55--74 (2021; Zbl 07477955) Full Text: Link OpenURL
Pirozzoli, Sergio; De Paoli, Marco; Zonta, Francesco; Soldati, Alfredo Towards the ultimate regime in Rayleigh-Darcy convection. (English) Zbl 07461618 J. Fluid Mech. 911, Paper No. R4, 13 p. (2021). MSC: 76R10 76S05 76M20 80A19 PDF BibTeX XML Cite \textit{S. Pirozzoli} et al., J. Fluid Mech. 911, Paper No. R4, 13 p. (2021; Zbl 07461618) Full Text: DOI OpenURL
Cantin, Guillaume; Ducrot, Arnaud; Funatsu, Beatriz M. Mathematical modeling of forest ecosystems by a reaction-diffusion-advection system: impacts of climate change and deforestation. (English) Zbl 1480.92219 J. Math. Biol. 83, No. 6-7, Paper No. 66, 45 p. (2021). MSC: 92D40 35K57 35B35 PDF BibTeX XML Cite \textit{G. Cantin} et al., J. Math. Biol. 83, No. 6--7, Paper No. 66, 45 p. (2021; Zbl 1480.92219) Full Text: DOI OpenURL
Yan, Xiao; Li, Yanling; Nie, Hua Dynamical behaviors of a classical Lotka-Volterra competition-diffusion-advection system. (English) Zbl 1486.92190 Nonlinear Anal., Real World Appl. 61, Article ID 103344, 17 p. (2021). Reviewer: Chay Paterson (Manchester) MSC: 92D25 34D23 PDF BibTeX XML Cite \textit{X. Yan} et al., Nonlinear Anal., Real World Appl. 61, Article ID 103344, 17 p. (2021; Zbl 1486.92190) Full Text: DOI OpenURL
Nefedov, N. N. Development of methods of asymptotic analysis of transition layers in reaction-diffusion-advection equations: theory and applications. (English. Russian original) Zbl 1481.35009 Comput. Math. Math. Phys. 61, No. 12, 2068-2087 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 12, 2074-2094 (2021). MSC: 35-02 35B25 35K20 35K57 35R30 PDF BibTeX XML Cite \textit{N. N. Nefedov}, Comput. Math. Math. Phys. 61, No. 12, 2068--2087 (2021; Zbl 1481.35009); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 12, 2074--2094 (2021) Full Text: DOI OpenURL
Chatterjee, Avipsita; Panja, M. M.; Basu, U.; Datta, D.; Mandal, B. N. Solving one-dimensional advection diffusion transport equation by using CDV wavelet basis. (English) Zbl 07453750 Indian J. Pure Appl. Math. 52, No. 3, 872-896 (2021). MSC: 65-XX 35K57 47F05 58J35 65T60 PDF BibTeX XML Cite \textit{A. Chatterjee} et al., Indian J. Pure Appl. Math. 52, No. 3, 872--896 (2021; Zbl 07453750) Full Text: DOI OpenURL
Coti Zelati, Michele; Dolce, Michele; Feng, Yuanyuan; Mazzucato, Anna L. Global existence for the two-dimensional Kuramoto-Sivashinsky equation with a shear flow. (English) Zbl 1481.35250 J. Evol. Equ. 21, No. 4, 5079-5099 (2021). MSC: 35K35 35K58 76E06 76F25 PDF BibTeX XML Cite \textit{M. Coti Zelati} et al., J. Evol. Equ. 21, No. 4, 5079--5099 (2021; Zbl 1481.35250) Full Text: DOI arXiv OpenURL
Wang, Qi On a Lotka-Volterra competition diffusion model with advection. (English) Zbl 1480.92181 Chin. Ann. Math., Ser. B 42, No. 6, 891-908 (2021). MSC: 92D25 92D40 35K51 35K57 35B35 PDF BibTeX XML Cite \textit{Q. Wang}, Chin. Ann. Math., Ser. B 42, No. 6, 891--908 (2021; Zbl 1480.92181) Full Text: DOI OpenURL
Weissen, Jennifer; Göttlich, Simone; Armbruster, Dieter Density dependent diffusion models for the interaction of particle ensembles with boundaries. (English) Zbl 07450821 Kinet. Relat. Models 14, No. 4, 681-704 (2021). MSC: 35Qxx 35M10 35K65 35L65 PDF BibTeX XML Cite \textit{J. Weissen} et al., Kinet. Relat. Models 14, No. 4, 681--704 (2021; Zbl 07450821) Full Text: DOI arXiv OpenURL
Phosri, Piyada; Phochai, Nopparat Numerical computation of a water-quality model with advection-diffusion-reaction equation using an upwind implicit scheme. (English) Zbl 07450763 Thai J. Math. 19, No. 1, 187-196 (2021). MSC: 65-XX 35K57 65M06 76R99 PDF BibTeX XML Cite \textit{P. Phosri} and \textit{N. Phochai}, Thai J. Math. 19, No. 1, 187--196 (2021; Zbl 07450763) Full Text: Link OpenURL
Chen, Hui; Xu, Xuelian Convective instability in a diffusive predator-prey system. (English) Zbl 07444231 Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 74, 9 p. (2021). MSC: 92D25 35K57 35B40 35B35 PDF BibTeX XML Cite \textit{H. Chen} and \textit{X. Xu}, Electron. J. Qual. Theory Differ. Equ. 2021, Paper No. 74, 9 p. (2021; Zbl 07444231) Full Text: DOI OpenURL
Dave, Devanshi D.; Jha, Brajesh Kumar On finite element estimation of calcium advection diffusion in a multipolar neuron. (English) Zbl 1487.76118 J. Eng. Math. 128, Paper No. 11, 15 p. (2021). MSC: 76Z05 76R99 76M10 92C35 92C20 PDF BibTeX XML Cite \textit{D. D. Dave} and \textit{B. K. Jha}, J. Eng. Math. 128, Paper No. 11, 15 p. (2021; Zbl 1487.76118) Full Text: DOI OpenURL
Gazori, Fereshte; Hesaaraki, Mahmoud Three-dimensional spread analysis of a Dengue disease model with numerical season control. (English) Zbl 1479.35882 Int. J. Biomath. 14, No. 8, Article ID 2150066, 57 p. (2021). MSC: 35Q92 35K51 92D30 92D25 35A01 35A02 35B45 35B09 92-08 65M06 65N06 49N90 PDF BibTeX XML Cite \textit{F. Gazori} and \textit{M. Hesaaraki}, Int. J. Biomath. 14, No. 8, Article ID 2150066, 57 p. (2021; Zbl 1479.35882) Full Text: DOI OpenURL
Guan, Wenhui; Cao, Xuenian A numerical algorithm for the Caputo tempered fractional advection-diffusion equation. (English) Zbl 1476.34166 Commun. Appl. Math. Comput. 3, No. 1, 41-59 (2021). MSC: 34K40 65C30 93E15 PDF BibTeX XML Cite \textit{W. Guan} and \textit{X. Cao}, Commun. Appl. Math. Comput. 3, No. 1, 41--59 (2021; Zbl 1476.34166) Full Text: DOI OpenURL
Wei, Xiaodong; Marussig, Benjamin; Antolin, Pablo; Buffa, Annalisa Immersed boundary-conformal isogeometric method for linear elliptic problems. (English) Zbl 1479.74130 Comput. Mech. 68, No. 6, 1385-1405 (2021). MSC: 74S22 76M99 74E30 76R99 65N99 65D07 PDF BibTeX XML Cite \textit{X. Wei} et al., Comput. Mech. 68, No. 6, 1385--1405 (2021; Zbl 1479.74130) Full Text: DOI arXiv OpenURL
Vukadinovic, Jesenko The limit of vanishing diffusivity for passive scalars in Hamiltonian flows. (English) Zbl 1478.35017 Arch. Ration. Mech. Anal. 242, No. 3, 1395-1444 (2021). MSC: 35B25 35H10 35K20 PDF BibTeX XML Cite \textit{J. Vukadinovic}, Arch. Ration. Mech. Anal. 242, No. 3, 1395--1444 (2021; Zbl 1478.35017) Full Text: DOI OpenURL
Ersoy Hepson, Ozlem; Yigit, Gulsemay Quartic-trigonometric tension B-spline Galerkin method for the solution of the advection-diffusion equation. (English) Zbl 1476.65239 Comput. Appl. Math. 40, No. 4, Paper No. 141, 15 p. (2021). MSC: 65M60 65M22 37L65 76R50 PDF BibTeX XML Cite \textit{O. Ersoy Hepson} and \textit{G. Yigit}, Comput. Appl. Math. 40, No. 4, Paper No. 141, 15 p. (2021; Zbl 1476.65239) Full Text: DOI OpenURL
Nguyen, Thanh-Hieu; Trong, Dang Duc; Vo, Hoang-Hung Spreading of two competing species in advective environment governed by free boundaries with a given moving boundary. (English) Zbl 1477.35031 Vietnam J. Math. 49, No. 4, 1199-1225 (2021). MSC: 35B40 35B50 35K51 35K57 35R35 47G20 PDF BibTeX XML Cite \textit{T.-H. Nguyen} et al., Vietnam J. Math. 49, No. 4, 1199--1225 (2021; Zbl 1477.35031) Full Text: DOI OpenURL
Davydova, M. A.; Elansky, N. F.; Zakharova, S. A.; Postylyakov, O. V. Application of a numerical-asymptotic approach to the problem of restoring the parameters of a local stationary source of anthropogenic pollution. (English. Russian original) Zbl 1477.35015 Dokl. Math. 103, No. 1, 26-31 (2021); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 496, 34-39 (2021). MSC: 35B25 35K57 35R30 PDF BibTeX XML Cite \textit{M. A. Davydova} et al., Dokl. Math. 103, No. 1, 26--31 (2021; Zbl 1477.35015); translation from Dokl. Ross. Akad. Nauk, Mat. Inform. Protsessy Upr. 496, 34--39 (2021) Full Text: DOI OpenURL
Kundu, Snehasis; Ghoshal, Koeli Effects of non-locality on unsteady nonequilibrium sediment transport in turbulent flows: a study using space fractional ADE with fractional divergence. (English) Zbl 1481.76126 Appl. Math. Modelling 96, 617-644 (2021). MSC: 76F99 35Q35 76T20 PDF BibTeX XML Cite \textit{S. Kundu} and \textit{K. Ghoshal}, Appl. Math. Modelling 96, 617--644 (2021; Zbl 1481.76126) Full Text: DOI OpenURL
Chen, Juan; Tepljakov, Aleksei; Petlenkov, Eduard; Chen, YangQuan; Zhuang, Bo Boundary Mittag-Leffler stabilization of coupled time fractional order reaction-advection-diffusion systems with non-constant coefficients. (English) Zbl 1478.93499 Syst. Control Lett. 149, Article ID 104875, 10 p. (2021). MSC: 93D15 93C20 35K57 35R11 PDF BibTeX XML Cite \textit{J. Chen} et al., Syst. Control Lett. 149, Article ID 104875, 10 p. (2021; Zbl 1478.93499) Full Text: DOI OpenURL
Lou, Bendong; Suo, Jinzhe; Tan, Kaiyuan Entire solutions to advective Fisher-KPP equation on the half line. (English) Zbl 1477.35011 J. Differ. Equations 305, 103-120 (2021). MSC: 35B08 35B40 35C07 35K20 35K57 PDF BibTeX XML Cite \textit{B. Lou} et al., J. Differ. Equations 305, 103--120 (2021; Zbl 1477.35011) Full Text: DOI OpenURL
Lin, Ji; Zhang, Yuhui; Reutskiy, Sergiy; Feng, Wenjie A novel meshless space-time backward substitution method and its application to nonhomogeneous advection-diffusion problems. (English) Zbl 07422830 Appl. Math. Comput. 398, Article ID 125964, 9 p. (2021). MSC: 65Lxx PDF BibTeX XML Cite \textit{J. Lin} et al., Appl. Math. Comput. 398, Article ID 125964, 9 p. (2021; Zbl 07422830) Full Text: DOI OpenURL
Tunc, Huseyin; Sari, Murat A stabilized discontinuous Galerkin method for the nonlinear advection-diffusion processes. (English) Zbl 1473.65214 Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 47, No. 1, 24-45 (2021). MSC: 65M60 65N30 35L67 PDF BibTeX XML Cite \textit{H. Tunc} and \textit{M. Sari}, Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 47, No. 1, 24--45 (2021; Zbl 1473.65214) Full Text: DOI OpenURL
Tu, Xuemin; Zhang, Jinjin BDDC algorithms for advection-diffusion problems with HDG discretizations. (English) Zbl 1486.65265 Comput. Math. Appl. 101, 74-106 (2021). MSC: 65N30 65N55 65F08 65F10 35J15 PDF BibTeX XML Cite \textit{X. Tu} and \textit{J. Zhang}, Comput. Math. Appl. 101, 74--106 (2021; Zbl 1486.65265) Full Text: DOI arXiv OpenURL