Chi, Baotao; Jia, Zhichao; Li, Can; Guo, Qianjian; Yuan, Wei; Ju, Chuanming An adaptive element subdivision method based on the affine transformations and partitioning techniques for evaluating the weakly singular integrals. (English) Zbl 07738624 J. Comput. Appl. Math. 436, Article ID 115320, 18 p. (2024). MSC: 65N38 65N50 65D30 65D32 PDF BibTeX XML Cite \textit{B. Chi} et al., J. Comput. Appl. Math. 436, Article ID 115320, 18 p. (2024; Zbl 07738624) Full Text: DOI
Haque, Sabina J.; Satriano, Matthew; Sorea, Miruna-Ştefana; Yu, Polly Y. The disguised toric locus and affine equivalence of reaction networks. (English) Zbl 07713383 SIAM J. Appl. Dyn. Syst. 22, No. 2, 1423-1444 (2023). MSC: 37E25 37N25 34B45 92C42 PDF BibTeX XML Cite \textit{S. J. Haque} et al., SIAM J. Appl. Dyn. Syst. 22, No. 2, 1423--1444 (2023; Zbl 07713383) Full Text: DOI arXiv
Loboda, A. V.; Kaverina, V. K. On linear homogeneous hypersurfaces in \(\mathbb{R}^4\). (English. Russian original) Zbl 07712832 Russ. Math. 67, No. 1, 43-63 (2023); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 1, 51-74 (2023). MSC: 17B05 17B08 PDF BibTeX XML Cite \textit{A. V. Loboda} and \textit{V. K. Kaverina}, Russ. Math. 67, No. 1, 43--63 (2023; Zbl 07712832); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2023, No. 1, 51--74 (2023) Full Text: DOI
Sendov, Hristo; Xiao, Junquan Complex multi-affine polynomials and invariant circles. (English) Zbl 07668617 J. Math. Anal. Appl. 523, No. 2, Article ID 127076, 30 p. (2023). Reviewer: Luis Salinas (Valparaíso) MSC: 30C10 30C15 PDF BibTeX XML Cite \textit{H. Sendov} and \textit{J. Xiao}, J. Math. Anal. Appl. 523, No. 2, Article ID 127076, 30 p. (2023; Zbl 07668617) Full Text: DOI
Zhou, Zixiang Darboux transformation and exact solutions for two dimensional \(A_{2n -1}^{(2)}\) Toda equations. (English) Zbl 1502.35142 Chin. Ann. Math., Ser. B 43, No. 5, 833-844 (2022). MSC: 35Q51 35Q53 37K10 37K35 17B67 PDF BibTeX XML Cite \textit{Z. Zhou}, Chin. Ann. Math., Ser. B 43, No. 5, 833--844 (2022; Zbl 1502.35142) Full Text: DOI
Zha, Juan; Xie, Tian Similarity limits of orientation changes in affine transformations with applications to planar pattern matching. (English) Zbl 07612021 Image Anal. Stereol. 41, No. 2, 145-160 (2022). MSC: 68U10 68Txx 94A08 PDF BibTeX XML Cite \textit{J. Zha} and \textit{T. Xie}, Image Anal. Stereol. 41, No. 2, 145--160 (2022; Zbl 07612021) Full Text: DOI
Wu, Chengran; Li, Hongbo Affine spinor decomposition in three-dimensional affine geometry. (English) Zbl 1502.14148 Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 6, 2301-2335 (2022). Reviewer: Hans-Peter Schröcker (Innsbruck) MSC: 14R20 15A66 14L17 51M30 PDF BibTeX XML Cite \textit{C. Wu} and \textit{H. Li}, Acta Math. Sci., Ser. B, Engl. Ed. 42, No. 6, 2301--2335 (2022; Zbl 1502.14148) Full Text: DOI
Öztürk, İskender; Özdemir, Mustafa Affine transformations of hyperbolic number plane. (English) Zbl 1497.15003 Bol. Soc. Mat. Mex., III. Ser. 28, No. 3, Paper No. 61, 20 p. (2022). MSC: 15A04 28A80 30D05 PDF BibTeX XML Cite \textit{İ. Öztürk} and \textit{M. Özdemir}, Bol. Soc. Mat. Mex., III. Ser. 28, No. 3, Paper No. 61, 20 p. (2022; Zbl 1497.15003) Full Text: DOI
Alexandrov, Victor How to decide whether two convex octahedra are affinely equivalent using their natural developments only. (English) Zbl 1497.52017 J. Geom. Graph. 26, No. 1, 29-38 (2022). Reviewer: Luis Ferroni (Stockholm) MSC: 52B10 68U05 52C25 PDF BibTeX XML Cite \textit{V. Alexandrov}, J. Geom. Graph. 26, No. 1, 29--38 (2022; Zbl 1497.52017) Full Text: arXiv Link
Pamfilos, Paris The conic of intersections of an affinity. (English) Zbl 1513.51068 Int. J. Geom. 11, No. 3, 16-40 (2022). MSC: 51N10 51N15 51N20 51N25 PDF BibTeX XML Cite \textit{P. Pamfilos}, Int. J. Geom. 11, No. 3, 16--40 (2022; Zbl 1513.51068) Full Text: Link
Morales-Salgado, Vicente Said An affine Weyl group characterization of polynomial Heisenberg algebras. (English) Zbl 1502.81038 Ann. Phys. 444, Article ID 169037, 11 p. (2022). MSC: 81Q60 81S05 35R03 11F68 34M55 37K35 81R05 PDF BibTeX XML Cite \textit{V. S. Morales-Salgado}, Ann. Phys. 444, Article ID 169037, 11 p. (2022; Zbl 1502.81038) Full Text: DOI arXiv
Makovetskii, A. Yu.; Voronin, S. M.; Voronin, A. S.; Makavetskaya, T. Algorithms to solve absolute orientation problem for \(\operatorname{GL}(3)\), \(\operatorname{O}(3)\), and \(\operatorname{SO}(3)\) groups. (English) Zbl 07556917 Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 97-112 (2022). MSC: 65-XX 68-XX PDF BibTeX XML Cite \textit{A. Yu. Makovetskii} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 7, No. 1, 97--112 (2022; Zbl 07556917) Full Text: DOI MNR
Biswas, Debapriya; Dutta, Sandipan Möbius action of \(\mathrm{SL}(2; \mathbb{R})\) on different homogeneous spaces. (English) Zbl 1490.22014 Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 92, No. 1, 23-29 (2022). MSC: 22F30 57S17 57S25 51H20 14R20 PDF BibTeX XML Cite \textit{D. Biswas} and \textit{S. Dutta}, Proc. Natl. Acad. Sci. India, Sect. A, Phys. Sci. 92, No. 1, 23--29 (2022; Zbl 1490.22014) Full Text: DOI
Başoğlu Kabran, Fatma; Sezer, Ali Devin Approximation of the exit probability of a stable Markov modulated constrained random walk. (English) Zbl 1492.60120 Ann. Oper. Res. 310, No. 2, 431-475 (2022). MSC: 60G50 60G40 60F10 60J45 PDF BibTeX XML Cite \textit{F. Başoğlu Kabran} and \textit{A. D. Sezer}, Ann. Oper. Res. 310, No. 2, 431--475 (2022; Zbl 1492.60120) Full Text: DOI arXiv
Dekel, Shai Pointwise variable anisotropic function spaces on \(\mathbb{R}^n\). (English) Zbl 1494.46002 De Gruyter Studies in Mathematics 85. Berlin: De Gruyter (ISBN 978-3-11-076176-4/hbk; 978-3-11-076179-5/ebook). x, 238 p. (2022). Reviewer: Dongyong Yang (Xiamen) MSC: 46-01 42-01 43A85 46E35 42C15 42C40 42B20 42B25 42B30 42B35 41A15 PDF BibTeX XML Cite \textit{S. Dekel}, Pointwise variable anisotropic function spaces on \(\mathbb{R}^n\). Berlin: De Gruyter (2022; Zbl 1494.46002) Full Text: DOI
Scealy, Janice L.; Wood, Andrew T. A. Analogues on the sphere of the affine-equivariant spatial median. (English) Zbl 1510.62236 J. Am. Stat. Assoc. 116, No. 535, 1457-1471 (2021). MSC: 62H11 62R10 62F35 62G20 62P35 PDF BibTeX XML Cite \textit{J. L. Scealy} and \textit{A. T. A. Wood}, J. Am. Stat. Assoc. 116, No. 535, 1457--1471 (2021; Zbl 1510.62236) Full Text: DOI
Sultanov, A. Ya.; Sultanova, G. A.; Sadovnikov, N. V. Affine transformations of the tangent bundle with a complete lift connection over a manifold with a linear connection of special type. (Russian. English summary) Zbl 1489.53023 Differ. Geom. Mnogoobr. Figur 52, 137-143 (2021). MSC: 53B05 PDF BibTeX XML Cite \textit{A. Ya. Sultanov} et al., Differ. Geom. Mnogoobr. Figur 52, 137--143 (2021; Zbl 1489.53023) Full Text: DOI
Biswas, Debapriya; Dutta, Sandipan Geometric invariants under the Möbius action of the group \(SL(2;\mathbb{R})\). (English) Zbl 1499.57023 Kragujevac J. Math. 45, No. 6, 925-941 (2021). MSC: 57S20 57S25 51H20 14R20 22F30 54H11 PDF BibTeX XML Cite \textit{D. Biswas} and \textit{S. Dutta}, Kragujevac J. Math. 45, No. 6, 925--941 (2021; Zbl 1499.57023) Full Text: DOI Link
Mikula, Karol; Ambroz, Martin; Mokošová, Renáta What was the river Ister in the time of Strabo? A mathematical approach. (English) Zbl 1478.86001 Tatra Mt. Math. Publ. 80, 71-118 (2021). MSC: 86-03 86A30 01A20 35J05 65N06 65K10 68U10 PDF BibTeX XML Cite \textit{K. Mikula} et al., Tatra Mt. Math. Publ. 80, 71--118 (2021; Zbl 1478.86001) Full Text: DOI arXiv
Dehghan, O. R. Affine and convex fuzzy subsets of hypervector spaces. (English) Zbl 1513.15001 Comput. Appl. Math. 40, No. 8, Paper No. 303, 14 p. (2021). MSC: 15A03 PDF BibTeX XML Cite \textit{O. R. Dehghan}, Comput. Appl. Math. 40, No. 8, Paper No. 303, 14 p. (2021; Zbl 1513.15001) Full Text: DOI
Crombez, Loïc Digital convex + unimodular mapping = 8-connected (all points but one 4-connected). (English) Zbl 1484.68274 Lindblad, Joakim (ed.) et al., Discrete geometry and mathematical morphology. First international joint conference, DGMM 2021, Uppsala, Sweden, May 24–27, 2021. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 12708, 164-176 (2021). MSC: 68U05 PDF BibTeX XML Cite \textit{L. Crombez}, Lect. Notes Comput. Sci. 12708, 164--176 (2021; Zbl 1484.68274) Full Text: DOI arXiv
Saldarriaga, O.; Flórez, A. Transformation groups of certain flat affine manifolds. (English) Zbl 1485.57030 São Paulo J. Math. Sci. 15, No. 2, 744-753 (2021). Reviewer: Andrzej Szczepański (Gdańsk) MSC: 57S20 54H15 53C07 17D25 PDF BibTeX XML Cite \textit{O. Saldarriaga} and \textit{A. Flórez}, São Paulo J. Math. Sci. 15, No. 2, 744--753 (2021; Zbl 1485.57030) Full Text: DOI arXiv
Medina, A.; Saldarriaga, O.; Villabon, A. Flat affine manifolds and their transformations. (English) Zbl 07428813 Manuscr. Math. 166, No. 3-4, 469-487 (2021). Reviewer: Andrzej Szczepański (Gdańsk) MSC: 57S20 54H15 53C07 17D25 PDF BibTeX XML Cite \textit{A. Medina} et al., Manuscr. Math. 166, No. 3--4, 469--487 (2021; Zbl 07428813) Full Text: DOI arXiv
Blondin, Michael; Raskin, Mikhail The complexity of reachability in affine vector addition systems with states. (English) Zbl 07407775 Log. Methods Comput. Sci. 17, No. 3, Paper No. 3, 31 p. (2021). MSC: 03B70 68-XX PDF BibTeX XML Cite \textit{M. Blondin} and \textit{M. Raskin}, Log. Methods Comput. Sci. 17, No. 3, Paper No. 3, 31 p. (2021; Zbl 07407775) Full Text: arXiv Link
Mozheĭ, Natal’ya Pavlovna Non-reductive spaces with equiaffine connections of nonzero curvature. (Russian. English summary) Zbl 1480.53011 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 21, No. 3, 305-316 (2021). MSC: 53B05 53C30 PDF BibTeX XML Cite \textit{N. P. Mozheĭ}, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 21, No. 3, 305--316 (2021; Zbl 1480.53011) Full Text: DOI MNR
Mozhey, Natalya Torsion free equiaffine connections on three-dimensional spaces. (English) Zbl 1477.53023 Art Discrete Appl. Math. 4, No. 2, Paper No. P2.03, 10 p. (2021). MSC: 53B05 PDF BibTeX XML Cite \textit{N. Mozhey}, Art Discrete Appl. Math. 4, No. 2, Paper No. P2.03, 10 p. (2021; Zbl 1477.53023) Full Text: DOI
Mashevitzky, G. Topologies of pointwise convergence in the first order languages and in affine spaces. (English) Zbl 1509.20128 Algebra Univers. 82, No. 3, Paper No. 49, 13 p. (2021). MSC: 20M20 03C60 06A15 PDF BibTeX XML Cite \textit{G. Mashevitzky}, Algebra Univers. 82, No. 3, Paper No. 49, 13 p. (2021; Zbl 1509.20128) Full Text: DOI
Huang, Wen; Xu, Leiye; Xu, Shengnan Ergodic measures of intermediate entropy for affine transformations of nilmanifolds. (English) Zbl 1477.37012 Electron Res. Arch. 29, No. 4, 2819-2827 (2021). MSC: 37B02 37A35 37B40 PDF BibTeX XML Cite \textit{W. Huang} et al., Electron Res. Arch. 29, No. 4, 2819--2827 (2021; Zbl 1477.37012) Full Text: DOI
Juneja, Januj Amar How do invariant transformations affect the calibration and optimization of the Kalman filtering algorithm used in the estimation of continuous-time affine term structure models? (English) Zbl 07360555 Comput. Manag. Sci. 18, No. 1, 73-97 (2021). MSC: 90Bxx PDF BibTeX XML Cite \textit{J. A. Juneja}, Comput. Manag. Sci. 18, No. 1, 73--97 (2021; Zbl 07360555) Full Text: DOI
Feng, Runhuan; Jiang, Pingping; Volkmer, Hans Geometric Brownian motion with affine drift and its time-integral. (English) Zbl 1508.60087 Appl. Math. Comput. 395, Article ID 125874, 17 p. (2021). MSC: 60J65 34M03 PDF BibTeX XML Cite \textit{R. Feng} et al., Appl. Math. Comput. 395, Article ID 125874, 17 p. (2021; Zbl 1508.60087) Full Text: DOI arXiv
Yu, Chengjie; Zhao, Feifei Affine self-similar solutions of the affine curve shortening flow. I: The degenerate case. (English) Zbl 1464.53118 J. Differ. Equations 285, 686-713 (2021). MSC: 53E99 35K05 PDF BibTeX XML Cite \textit{C. Yu} and \textit{F. Zhao}, J. Differ. Equations 285, 686--713 (2021; Zbl 1464.53118) Full Text: DOI arXiv
Velimirović, Ana Conformal curvature tensors in a generalized Riemannian space in Eisenhart sense. (English) Zbl 1499.53052 Appl. Anal. Discrete Math. 14, No. 2, 459-471 (2020). MSC: 53A45 53B05 53C18 PDF BibTeX XML Cite \textit{A. Velimirović}, Appl. Anal. Discrete Math. 14, No. 2, 459--471 (2020; Zbl 1499.53052) Full Text: DOI
Blaga, Adara M. Conformal and paracontactly geodesic transformations of almost paracontact metric structures. (English) Zbl 1488.53031 Facta Univ., Ser. Math. Inf. 35, No. 1, 121-130 (2020). MSC: 53B05 53D35 70G45 53D15 PDF BibTeX XML Cite \textit{A. M. Blaga}, Facta Univ., Ser. Math. Inf. 35, No. 1, 121--130 (2020; Zbl 1488.53031) Full Text: DOI
Blondin, Michael; Raskin, Mikhail The complexity of reachability in affine vector addition systems with states. (English) Zbl 1507.68210 Proceedings of the 2020 35th annual ACM/IEEE symposium on logic in computer science, LICS 2020, virtual event, July 8–11, 2020. New York, NY: Association for Computing Machinery (ACM). 224-236 (2020). MSC: 68Q85 68Q17 68Q25 PDF BibTeX XML Cite \textit{M. Blondin} and \textit{M. Raskin}, in: Proceedings of the 2020 35th annual ACM/IEEE symposium on logic in computer science, LICS 2020, virtual event, July 8--11, 2020. New York, NY: Association for Computing Machinery (ACM). 224--236 (2020; Zbl 1507.68210) Full Text: DOI arXiv
Okock, Polycarp Omondi; Urbán, Jozef; Mikula, Karol Efficient 3D shape registration by using distance maps and stochastic gradient descent method. (English) Zbl 1475.65045 Tatra Mt. Math. Publ. 75, 81-102 (2020). MSC: 65K10 65Y05 65Y20 PDF BibTeX XML Cite \textit{P. O. Okock} et al., Tatra Mt. Math. Publ. 75, 81--102 (2020; Zbl 1475.65045) Full Text: DOI
Pan, Xuezai; Wang, Minggang; Shang, Xudong Fourier series representation of fractal interpolation function. (English) Zbl 1441.28011 Fractals 28, No. 4, Article ID 2050063, 7 p. (2020). MSC: 28A80 42A16 PDF BibTeX XML Cite \textit{X. Pan} et al., Fractals 28, No. 4, Article ID 2050063, 7 p. (2020; Zbl 1441.28011) Full Text: DOI
Sultanov, A. Ya.; Monakhova, O. A. Affine transformations in bundles. (English. Russian original) Zbl 1509.53004 J. Math. Sci., New York 245, No. 5, 601-643 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 146, 48-88 (2018). MSC: 53-02 53B05 53B15 PDF BibTeX XML Cite \textit{A. Ya. Sultanov} and \textit{O. A. Monakhova}, J. Math. Sci., New York 245, No. 5, 601--643 (2020; Zbl 1509.53004); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 146, 48--88 (2018) Full Text: DOI
Shah, Dawood; Shah, Tariq; Jamal, Sajjad Shaukat A novel efficient image encryption algorithm based on affine transformation combine with linear fractional transformation. (English) Zbl 1458.94278 Multidimensional Syst. Signal Process. 31, No. 3, 885-905 (2020). MSC: 94A60 94A08 PDF BibTeX XML Cite \textit{D. Shah} et al., Multidimensional Syst. Signal Process. 31, No. 3, 885--905 (2020; Zbl 1458.94278) Full Text: DOI
Xu, Yang; Zhao, Shiyu; Luo, Delin; You, Yancheng Affine formation maneuver control of high-order multi-agent systems over directed networks. (English) Zbl 1447.93010 Automatica 118, Article ID 109004, 7 p. (2020). MSC: 93A16 93B70 05C20 PDF BibTeX XML Cite \textit{Y. Xu} et al., Automatica 118, Article ID 109004, 7 p. (2020; Zbl 1447.93010) Full Text: DOI
Wilkinson, Amie; Xue, Jinxin Rigidity of some abelian-by-cyclic solvable group actions on \({\mathbb{T}}^N\). (English) Zbl 1448.37037 Commun. Math. Phys. 376, No. 2, 1223-1259 (2020). Reviewer: Marta Macho Stadler (Leioa) MSC: 37C85 37C15 37E10 37J40 54H15 PDF BibTeX XML Cite \textit{A. Wilkinson} and \textit{J. Xue}, Commun. Math. Phys. 376, No. 2, 1223--1259 (2020; Zbl 1448.37037) Full Text: DOI arXiv
Tupan, Alexandru A generalization of the Steiner inellipse. (English) Zbl 1448.51016 Am. Math. Mon. 127, No. 5, 428-436 (2020). Reviewer: Hiroshi Okumura (Maebashi) MSC: 51N20 PDF BibTeX XML Cite \textit{A. Tupan}, Am. Math. Mon. 127, No. 5, 428--436 (2020; Zbl 1448.51016) Full Text: DOI
Guo, Yang Homography estimation from ellipse correspondences based on the common self-polar triangle. (English) Zbl 1435.68346 J. Math. Imaging Vis. 62, No. 2, 169-188 (2020). MSC: 68U05 51N20 68T45 PDF BibTeX XML Cite \textit{Y. Guo}, J. Math. Imaging Vis. 62, No. 2, 169--188 (2020; Zbl 1435.68346) Full Text: DOI
Morshed, Muhammad Sarowar; Noor-E-Alam, Muhammad Generalized affine scaling algorithms for linear programming problems. (English) Zbl 1458.90472 Comput. Oper. Res. 114, Article ID 104807, 17 p. (2020). MSC: 90C05 90-08 65K05 90C51 PDF BibTeX XML Cite \textit{M. S. Morshed} and \textit{M. Noor-E-Alam}, Comput. Oper. Res. 114, Article ID 104807, 17 p. (2020; Zbl 1458.90472) Full Text: DOI arXiv
Neagu, Natalia; Orlov, Victor; Popa, Mihail Invariant conditions of stability of unperturbed motion governed by critical differential systems \(s(1, 2, 3)\). (English) Zbl 1474.34385 Bul. Acad. Științe Repub. Mold., Mat. 2019, No. 2(90), 137-153 (2019). MSC: 34D20 34C14 34C20 PDF BibTeX XML Cite \textit{N. Neagu} et al., Bul. Acad. Științe Repub. Mold., Mat. 2019, No. 2(90), 137--153 (2019; Zbl 1474.34385) Full Text: Link
Farhan, Erez Highly accurate matching of weakly localized features. (English) Zbl 1434.68586 SIAM J. Imaging Sci. 12, No. 4, 1833-1863 (2019). MSC: 68T45 68U05 68U10 PDF BibTeX XML Cite \textit{E. Farhan}, SIAM J. Imaging Sci. 12, No. 4, 1833--1863 (2019; Zbl 1434.68586) Full Text: DOI
Gomes-Gonçalves, Erika; Gzyl, Henryk; Nielsen, Frank Geometry and fixed-rate quantization in Riemannian metric spaces induced by separable Bregman divergences. (English) Zbl 1458.53020 Nielsen, Frank (ed.) et al., Geometric science of information. 4th international conference, GSI 2019, Toulouse, France, August 27–29, 2019. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 11712, 351-358 (2019). MSC: 53B05 60D05 62B99 62E17 94A17 PDF BibTeX XML Cite \textit{E. Gomes-Gonçalves} et al., Lect. Notes Comput. Sci. 11712, 351--358 (2019; Zbl 1458.53020) Full Text: DOI
Robaszewska, Maria On analogues of Bäcklund theorem in affine differential geometry of surfaces. (English) Zbl 1444.53014 J. Geom. Symmetry Phys. 54, 79-110 (2019). Reviewer: Friedrich Manhart (Wien) MSC: 53A15 53B05 58J72 PDF BibTeX XML Cite \textit{M. Robaszewska}, J. Geom. Symmetry Phys. 54, 79--110 (2019; Zbl 1444.53014) Full Text: DOI arXiv Euclid
Zakharova, T. V. Asymptotically optimum arrangements for a special class of normed spaces. (English. Russian original) Zbl 1430.90208 Mosc. Univ. Comput. Math. Cybern. 43, No. 3, 89-94 (2019); translation from Vestn. Mosk. Univ., Ser. XV 2019, No. 3, 6-10 (2019). MSC: 90B22 PDF BibTeX XML Cite \textit{T. V. Zakharova}, Mosc. Univ. Comput. Math. Cybern. 43, No. 3, 89--94 (2019; Zbl 1430.90208); translation from Vestn. Mosk. Univ., Ser. XV 2019, No. 3, 6--10 (2019) Full Text: DOI
Malyshev, Fedor M. On affine classification of permutations on the space \(\mathrm{GF}(2)^3\). (English. Russian original) Zbl 1440.05008 Discrete Math. Appl. 29, No. 6, 363-371 (2019); translation from Diskretn. Mat. 30, No. 3, 77-87 (2018). MSC: 05A05 PDF BibTeX XML Cite \textit{F. M. Malyshev}, Discrete Math. Appl. 29, No. 6, 363--371 (2019; Zbl 1440.05008); translation from Diskretn. Mat. 30, No. 3, 77--87 (2018) Full Text: DOI
Hui, Shyamal Kumar; Mandal, Yadab Chandra Yamabe solitons on Kenmotsu manifolds. (English) Zbl 1426.53044 Commun. Korean Math. Soc. 34, No. 1, 321-331 (2019). MSC: 53C15 53C25 53B05 PDF BibTeX XML Cite \textit{S. K. Hui} and \textit{Y. C. Mandal}, Commun. Korean Math. Soc. 34, No. 1, 321--331 (2019; Zbl 1426.53044) Full Text: DOI
Petrović, Miloš Z.; Stanković, Mića S. A note on \(F\)-planar mappings of manifolds with non-symmetric linear connection. (English) Zbl 1422.53013 Int. J. Geom. Methods Mod. Phys. 16, No. 5, Article ID 1950078, 11 p. (2019). MSC: 53B05 53B20 53C15 PDF BibTeX XML Cite \textit{M. Z. Petrović} and \textit{M. S. Stanković}, Int. J. Geom. Methods Mod. Phys. 16, No. 5, Article ID 1950078, 11 p. (2019; Zbl 1422.53013) Full Text: DOI
Petrović, Miloš Z.; Velimirović, Ljubica S. A new type of generalized para-Kähler spaces and holomorphically projective transformations. (English) Zbl 1421.53036 Bull. Iran. Math. Soc. 45, No. 4, 1021-1043 (2019). MSC: 53C15 53B05 53B20 53B35 PDF BibTeX XML Cite \textit{M. Z. Petrović} and \textit{L. S. Velimirović}, Bull. Iran. Math. Soc. 45, No. 4, 1021--1043 (2019; Zbl 1421.53036) Full Text: DOI
Peng, Xiuhui; Sun, Junyong; Geng, Zhiyong A specified-time control framework for control-affine systems and rigid bodies: a time-rescaling approach. (English) Zbl 1418.93205 Int. J. Robust Nonlinear Control 29, No. 10, 3163-3182 (2019). MSC: 93D05 93B17 93C05 PDF BibTeX XML Cite \textit{X. Peng} et al., Int. J. Robust Nonlinear Control 29, No. 10, 3163--3182 (2019; Zbl 1418.93205) Full Text: DOI
da Silva, Luiz C. B. The geometry of Gauss map and shape operator in simply isotropic and pseudo-isotropic spaces. (English) Zbl 1418.51012 J. Geom. 110, No. 2, Paper No. 31, 18 p. (2019). MSC: 51N25 53A35 53A55 53B05 PDF BibTeX XML Cite \textit{L. C. B. da Silva}, J. Geom. 110, No. 2, Paper No. 31, 18 p. (2019; Zbl 1418.51012) Full Text: DOI arXiv
Diao, Luhong; Zhang, Zhenmeng; Liu, Yujie; Nan, Dong Necessary condition of affine moment invariants. (English) Zbl 1492.68123 J. Math. Imaging Vis. 61, No. 5, 602-606 (2019). MSC: 68T10 68T45 68U10 PDF BibTeX XML Cite \textit{L. Diao} et al., J. Math. Imaging Vis. 61, No. 5, 602--606 (2019; Zbl 1492.68123) Full Text: DOI
Mazo, Loïc Multi-scale arithmetization of linear transformations. (English) Zbl 1444.03189 J. Math. Imaging Vis. 61, No. 4, 432-442 (2019). MSC: 03H05 68U05 PDF BibTeX XML Cite \textit{L. Mazo}, J. Math. Imaging Vis. 61, No. 4, 432--442 (2019; Zbl 1444.03189) Full Text: DOI HAL
Choi, Dongsoon; Shin, Joonkook Corrigendum to: “Free actions of finite abelian groups on 3-dimensional nilmanifolds”. (English) Zbl 1406.57031 J. Korean Math. Soc. 56, No. 1, 285-287 (2019). MSC: 57S25 57M05 57S17 PDF BibTeX XML Cite \textit{D. Choi} and \textit{J. Shin}, J. Korean Math. Soc. 56, No. 1, 285--287 (2019; Zbl 1406.57031) Full Text: Link
Caldero, Philippe; Germoni, Jérôme New hedonistic stories of groups and geometries. Vol. 2. 2nd edition. (Nouvelles histoires hédonistes de groupes et de géométries. Tome 2.) (French) Zbl 1485.51002 Mathématiques en Devenir 122. Paris: Calvage et Mounet (ISBN 978-2-9163-5267-1/pbk). xix, 404 p. (2018). MSC: 51-01 51N10 51N15 51N30 51M35 51N20 51N25 51A05 20C30 20B25 14Hxx 14H20 PDF BibTeX XML Cite \textit{P. Caldero} and \textit{J. Germoni}, Nouvelles histoires hédonistes de groupes et de géométries. Tome 2. 2nd edition. Paris: Calvage et Mounet (2018; Zbl 1485.51002)
Zhou, Zixiang Darboux transformations for the Lax pairs related to two dimensional affine Toda equations. (Chinese. English summary) Zbl 1499.37114 Sci. Sin., Math. 48, No. 6, 869-878 (2018). MSC: 37K35 37K10 PDF BibTeX XML Cite \textit{Z. Zhou}, Sci. Sin., Math. 48, No. 6, 869--878 (2018; Zbl 1499.37114) Full Text: DOI
Mozhey, N. P. Canonical connections on three-dimensional reductive spaces solvable Lie groups. (Russian. English summary) Zbl 1466.53016 Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2018, No. 4, 141-151 (2018). MSC: 53B05 53C30 22E25 PDF BibTeX XML Cite \textit{N. P. Mozhey}, Vestn. Voronezh. Gos. Univ., Ser. Fiz. Mat. 2018, No. 4, 141--151 (2018; Zbl 1466.53016) Full Text: Link
Sultanov, A.; Sultanova, G. Affine transformations of the tangent bundle with a complete lift connection over a manifold with a linear connection of special type. (Russian. English summary) Zbl 1450.53026 Differ. Geom. Mnogoobr. Figur 49, 157-170 (2018). MSC: 53B05 53B15 PDF BibTeX XML Cite \textit{A. Sultanov} and \textit{G. Sultanova}, Differ. Geom. Mnogoobr. Figur 49, 157--170 (2018; Zbl 1450.53026) Full Text: Link
Tabachnikov, Serge On centro-affine curves and Bäcklund transformations of the KdV equation. (English) Zbl 1455.37058 Arnold Math. J. 4, No. 3-4, 445-458 (2018). Reviewer: Ivan C. Sterling (St. Mary’s City) MSC: 37K25 37K10 37K35 PDF BibTeX XML Cite \textit{S. Tabachnikov}, Arnold Math. J. 4, No. 3--4, 445--458 (2018; Zbl 1455.37058) Full Text: DOI arXiv
Weiss, Gunter The Three reflections Theorem revisited. (English) Zbl 1421.51010 KoG 22, 41-48 (2018). MSC: 51N10 51N15 51N20 51M05 51M10 51N25 PDF BibTeX XML Cite \textit{G. Weiss}, KoG 22, 41--48 (2018; Zbl 1421.51010) Full Text: DOI
Mozheĭ, N. P. Nonzero holonomy algebras of trivial connections on homogeneous spaces with unsolvable transformation groups. (Russian. English summary) Zbl 1418.53057 Izv. Gomel. Gos. Univ. Im. F. Skoriny 2018, No. 6(111), 81-87 (2018). MSC: 53C29 53C30 PDF BibTeX XML Cite \textit{N. P. Mozheĭ}, Izv. Gomel. Gos. Univ. Im. F. Skoriny 2018, No. 6(111), 81--87 (2018; Zbl 1418.53057)
Stokes, Alexander Full-parameter discrete Painlevé systems from non-translational Cremona isometries. (English) Zbl 1411.34116 J. Phys. A, Math. Theor. 51, No. 49, Article ID 495206, 31 p. (2018). MSC: 34M55 14H70 14E07 33D52 39A12 39A10 37K10 37K35 PDF BibTeX XML Cite \textit{A. Stokes}, J. Phys. A, Math. Theor. 51, No. 49, Article ID 495206, 31 p. (2018; Zbl 1411.34116) Full Text: DOI arXiv
Foissy, Loïc Extension of the product of a post-Lie algebra and application to the SISO feedback transformation group. (English) Zbl 1446.17003 Celledoni, Elena (ed.) et al., Computation and combinatorics in dynamics, stochastics and control. The Abel symposium, Rosendal, Norway, August 16–19, 2016. Selected papers. Cham: Springer. Abel Symp. 13, 369-399 (2018). MSC: 17A30 17B30 17B99 PDF BibTeX XML Cite \textit{L. Foissy}, Abel Symp. 13, 369--399 (2018; Zbl 1446.17003) Full Text: DOI arXiv
Burstall, F.; Hertrich-Jeromin, U.; Rossman, W. Discrete linear Weingarten surfaces. (English) Zbl 1411.53007 Nagoya Math. J. 231, 55-88 (2018). Reviewer: Victor Alexandrov (Novosibirsk) MSC: 53A05 52B70 51K10 52A39 53A10 53A40 PDF BibTeX XML Cite \textit{F. Burstall} et al., Nagoya Math. J. 231, 55--88 (2018; Zbl 1411.53007) Full Text: DOI arXiv Link
Aaronson, Jon; Bromberg, Michael; Chandgotia, Nishant Rational ergodicity of step function skew products. (English) Zbl 1407.37060 J. Mod. Dyn. 13, 1-42 (2018). MSC: 37E10 37A40 11K38 60F05 37A50 37A25 PDF BibTeX XML Cite \textit{J. Aaronson} et al., J. Mod. Dyn. 13, 1--42 (2018; Zbl 1407.37060) Full Text: DOI arXiv
Vaz, Jayme jun.; Mann, Stephen Paravectors and the geometry of 3D Euclidean space. (English) Zbl 1403.15016 Adv. Appl. Clifford Algebr. 28, No. 5, Paper No. 99, 40 p. (2018). MSC: 15A66 15A75 68U05 51N25 PDF BibTeX XML Cite \textit{J. Vaz jun.} and \textit{S. Mann}, Adv. Appl. Clifford Algebr. 28, No. 5, Paper No. 99, 40 p. (2018; Zbl 1403.15016) Full Text: DOI arXiv
Vieira, Evilson; Garcia, Ronaldo Asymptotic behavior of the shape of planar polygons by linear flows. (English) Zbl 1415.51018 Linear Algebra Appl. 557, 508-528 (2018). Reviewer: Mowaffaq Hajja (Amman) MSC: 51M04 37N99 34A30 PDF BibTeX XML Cite \textit{E. Vieira} and \textit{R. Garcia}, Linear Algebra Appl. 557, 508--528 (2018; Zbl 1415.51018) Full Text: DOI
Mozheĭ, Natal’ya Pavlovna Connections of nonzero curvature on homogeneous spaces of unsolvable transformations groups. (Russian. English summary) Zbl 1396.53027 Sib. Èlektron. Mat. Izv. 15, 773-785 (2018). MSC: 53B05 PDF BibTeX XML Cite \textit{N. P. Mozheĭ}, Sib. Èlektron. Mat. Izv. 15, 773--785 (2018; Zbl 1396.53027)
Liu, Yongqiang; Maxim, Laurentiu; Wang, Botong Mellin transformation, propagation, and abelian duality spaces. (English) Zbl 1400.32017 Adv. Math. 335, 231-260 (2018). MSC: 32S60 14F17 55N25 55U30 PDF BibTeX XML Cite \textit{Y. Liu} et al., Adv. Math. 335, 231--260 (2018; Zbl 1400.32017) Full Text: DOI arXiv
Yang, Yun; Yu, Yanhua Centroaffine geometry of ruled surfaces and centered cyclic surfaces in \(\mathbb R^4\). (English) Zbl 1404.53007 J. Korean Math. Soc. 55, No. 4, 987-1004 (2018). Reviewer: Friedrich Manhart (Wien) MSC: 53A15 53C42 58E30 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{Y. Yu}, J. Korean Math. Soc. 55, No. 4, 987--1004 (2018; Zbl 1404.53007) Full Text: Link
Aiger, Dror; Sharir, Micha Homotheties and incidences. (English) Zbl 1393.51015 Discrete Math. 341, No. 7, 2011-2017 (2018). MSC: 51N10 52C10 05B25 PDF BibTeX XML Cite \textit{D. Aiger} and \textit{M. Sharir}, Discrete Math. 341, No. 7, 2011--2017 (2018; Zbl 1393.51015) Full Text: DOI arXiv
Johnson, Norman W. Geometries and transformations. (English) Zbl 1396.51001 Cambridge: Cambridge University Press (ISBN 978-1-107-10340-5/hbk; 978-1-316-21647-7/ebook). xv, 438 p. (2018). Reviewer: Erich W. Ellers (Toronto) MSC: 51-01 51F15 51N10 51N15 51N20 51N25 51M10 20F55 PDF BibTeX XML Cite \textit{N. W. Johnson}, Geometries and transformations. Cambridge: Cambridge University Press (2018; Zbl 1396.51001) Full Text: DOI
Mozheĭ, Natal’ya Pavlovna Connections on nonreductive homogeneous spaces with an unsolvable group of transformations. (Russian. English summary) Zbl 1489.53077 Dokl. Nats. Akad. Nauk Belarusi 61, No. 5, 7-15 (2017). MSC: 53C30 53B05 PDF BibTeX XML Cite \textit{N. P. Mozheĭ}, Dokl. Nats. Akad. Nauk Belarusi 61, No. 5, 7--15 (2017; Zbl 1489.53077) Full Text: Link
Caldero, Philippe; Germoni, Jérôme New hedonistic stories of groups and geometries. Vol. 1. 2nd edition. (Nouvelles histoires hédonistes de groupes et de géométries. Tome 1.) (French) Zbl 1485.51001 Mathématiques en Devenir 117. Paris: Calvage et Mounet (ISBN 978-2-916352-61-9/pbk). xxii, 392 p. (2017). MSC: 51-01 51N10 51N15 51N30 51M35 51N20 51N25 51A05 20C30 20B25 PDF BibTeX XML Cite \textit{P. Caldero} and \textit{J. Germoni}, Nouvelles histoires hédonistes de groupes et de géométries. Tome 1. 2nd edition. Paris: Calvage et Mounet (2017; Zbl 1485.51001)
Morita, Katsumi Generating geometric patterns using periodic functions. (English) Zbl 1475.51016 Forma 32, No. 1, 29-41 (2017). MSC: 51N20 00A66 PDF BibTeX XML Cite \textit{K. Morita}, Forma 32, No. 1, 29--41 (2017; Zbl 1475.51016)
Makovetskiĭ, Artëm Yur’evich; Voronin, Sergeĭ Mikhaĭlovich; Tikhon’kikh, Dmitriĭ Vadimovich; Alekseev, Mikhail Nikolaevich Closed form solution of ICP error minimization problem for affine transformations. (Russian. English summary) Zbl 1467.68200 Chelyabinskiĭ Fiz.-Mat. Zh. 2, No. 3, 282-294 (2017). MSC: 68U05 49Q10 90C90 PDF BibTeX XML Cite \textit{A. Y. Makovetskiĭ} et al., Chelyabinskiĭ Fiz.-Mat. Zh. 2, No. 3, 282--294 (2017; Zbl 1467.68200) Full Text: MNR
Neagu, Natalia; Victor, Orlov; Mihail, Popa Invariant conditions of stability of unperturbed motion governed by some differential systems in the plane. (English) Zbl 1400.34092 Bul. Acad. Ştiinţe Repub. Mold., Mat. 2017, No. 3(85), 88-106 (2017). MSC: 34D20 34C14 34C20 34D10 PDF BibTeX XML Cite \textit{N. Neagu} et al., Bul. Acad. Științe Repub. Mold., Mat. 2017, No. 3(85), 88--106 (2017; Zbl 1400.34092) Full Text: Link
Ghioca, Dragos; Nguyen, Khoa Dang The orbit intersection problem for linear spaces and semiabelian varieties. (English) Zbl 1393.37114 Math. Res. Lett. 24, No. 5, 1263-1283 (2017). MSC: 37P55 11D61 14L10 11B37 14K15 PDF BibTeX XML Cite \textit{D. Ghioca} and \textit{K. D. Nguyen}, Math. Res. Lett. 24, No. 5, 1263--1283 (2017; Zbl 1393.37114) Full Text: DOI arXiv
Bejan, Cornelia-Livia; Kowalski, Oldrich On a generalization of geodesic and magnetic curves. (English) Zbl 1396.53066 Note Mat. 37, Suppl. 1, 49-57 (2017). Reviewer: Bożena Piątek (Gliwice) MSC: 53C22 53B05 53C15 PDF BibTeX XML Cite \textit{C.-L. Bejan} and \textit{O. Kowalski}, Note Mat. 37, 49--57 (2017; Zbl 1396.53066) Full Text: DOI
Mozheĭ, Natal’ya Pavlovna Connections of nonzero curvature on three-dimensional non-reductive spaces. (Russian. English summary) Zbl 1432.53076 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 17, No. 4, 381-393 (2017). MSC: 53C30 53B05 53C15 PDF BibTeX XML Cite \textit{N. P. Mozheĭ}, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 17, No. 4, 381--393 (2017; Zbl 1432.53076) Full Text: DOI MNR
Mozhey, N. Three-dimensional non-reductive homogeneous spaces of solvable groups Lie, admitting affine connections. (English) Zbl 1383.53039 Lobachevskii J. Math. 38, No. 6, 1042-1049 (2017). MSC: 53C30 53B05 22E25 PDF BibTeX XML Cite \textit{N. Mozhey}, Lobachevskii J. Math. 38, No. 6, 1042--1049 (2017; Zbl 1383.53039) Full Text: DOI
Zhou, You; Wang, Pengfei; Zha, Fusheng; Guo, Wei; Li, Mantian Affine transformation-based life signal filtering algorithm for two-order differential equation. (Chinese. English summary) Zbl 1389.92026 J. Harbin Eng. Univ. 38, No. 5, 752-758 (2017). MSC: 92C55 60G35 94A12 62M20 PDF BibTeX XML Cite \textit{Y. Zhou} et al., J. Harbin Eng. Univ. 38, No. 5, 752--758 (2017; Zbl 1389.92026) Full Text: DOI
Zhu, Linli; Pan, Yu; Wang, Jiangtao Affine transformation based ontology sparse vector learning algorithm. (English) Zbl 1423.68494 Appl. Math. Nonlinear Sci. 2, No. 1, 111-122 (2017). MSC: 68T30 68T05 PDF BibTeX XML Cite \textit{L. Zhu} et al., Appl. Math. Nonlinear Sci. 2, No. 1, 111--122 (2017; Zbl 1423.68494) Full Text: DOI
Ge, Ruiling; Li, Chuanzhong Darboux transformations of new supersymmetric CKP and BKP hierarchies. (English) Zbl 1379.37120 Int. J. Math. 28, No. 11, Article ID 1750084, 14 p. (2017). MSC: 37K10 37K05 37K20 17B65 17B67 37K30 PDF BibTeX XML Cite \textit{R. Ge} and \textit{C. Li}, Int. J. Math. 28, No. 11, Article ID 1750084, 14 p. (2017; Zbl 1379.37120) Full Text: DOI
Domokos, Gábor; Lángi, Zsolt; Mezei, Márk A shape evolution model under affine transformations. (English) Zbl 1377.37070 Mediterr. J. Math. 14, No. 5, Paper No. 210, 15 p. (2017). MSC: 37E15 52A10 PDF BibTeX XML Cite \textit{G. Domokos} et al., Mediterr. J. Math. 14, No. 5, Paper No. 210, 15 p. (2017; Zbl 1377.37070) Full Text: DOI arXiv
Yang, Yun; Feng, Yuting; Yu, Yanhua The generalization of Sierpinski carpet and Menger Sponge in \(n\)-dimensional space. (English) Zbl 1375.28021 Fractals 25, No. 5, Article ID 1750040, 13 p. (2017). MSC: 28A80 PDF BibTeX XML Cite \textit{Y. Yang} et al., Fractals 25, No. 5, Article ID 1750040, 13 p. (2017; Zbl 1375.28021) Full Text: DOI arXiv
Mozhey, N. P. Three-dimensional non-reductive homogeneous spaces of unsolvable Lie groups. (Russian. English summary) Zbl 1372.53015 Dokl. Nats. Akad. Nauk Belarusi 61, No. 4, 20-25 (2017). MSC: 53B05 53C30 PDF BibTeX XML Cite \textit{N. P. Mozhey}, Dokl. Nats. Akad. Nauk Belarusi 61, No. 4, 20--25 (2017; Zbl 1372.53015) Full Text: Link
Mozhey, N. P. Three-dimensional reductive homogeneous spaces of unsolvable Lie groups. (Russian. English summary) Zbl 1372.53014 Dokl. Nats. Akad. Nauk Belarusi 61, No. 1, 7-17 (2017). MSC: 53B05 53C30 PDF BibTeX XML Cite \textit{N. P. Mozhey}, Dokl. Nats. Akad. Nauk Belarusi 61, No. 1, 7--17 (2017; Zbl 1372.53014) Full Text: Link
Popov, V. On closedness of stationary subgroup of affine transformations group. (English) Zbl 1376.53034 Lobachevskii J. Math. 38, No. 4, 724-729 (2017). MSC: 53B05 PDF BibTeX XML Cite \textit{V. Popov}, Lobachevskii J. Math. 38, No. 4, 724--729 (2017; Zbl 1376.53034) Full Text: DOI
Mozhey, Natalya Pavlovna Torsion free affine connections on three-dimensional homogeneous spaces. (English) Zbl 1375.53067 Sib. Èlektron. Mat. Izv. 14, 280-295 (2017). Reviewer: V. V. Gorbatsevich (Moskva) MSC: 53C30 53B05 PDF BibTeX XML Cite \textit{N. P. Mozhey}, Sib. Èlektron. Mat. Izv. 14, 280--295 (2017; Zbl 1375.53067) Full Text: DOI
Lian, Zhengxing Affine transformation with zero entropy and nilsystems. (English) Zbl 1378.37018 Topology Appl. 229, 126-140 (2017). MSC: 37B05 37A35 37B10 PDF BibTeX XML Cite \textit{Z. Lian}, Topology Appl. 229, 126--140 (2017; Zbl 1378.37018) Full Text: DOI arXiv
Arakawa, Tomoyuki; Molev, Alexander Explicit generators in rectangular affine \(\mathcal {W}\)-algebras of type \(A\). (English) Zbl 1415.17027 Lett. Math. Phys. 107, No. 1, 47-59 (2017). Reviewer: Sven Möller (Piscataway) MSC: 17B69 17B67 PDF BibTeX XML Cite \textit{T. Arakawa} and \textit{A. Molev}, Lett. Math. Phys. 107, No. 1, 47--59 (2017; Zbl 1415.17027) Full Text: DOI arXiv
Clelland, Jeanne N. From Frenet to Cartan. The method of moving frames. (English) Zbl 1365.53001 Graduate Studies in Mathematics 178. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2952-2/hbk; 978-1-4704-3747-3/ebook). xvi, 414 p. (2017). Reviewer: Mircea Crâşmăreanu (Iaşi) MSC: 53-02 53A04 53C30 58A15 58J72 53B25 53A05 53A07 PDF BibTeX XML Cite \textit{J. N. Clelland}, From Frenet to Cartan. The method of moving frames. Providence, RI: American Mathematical Society (AMS) (2017; Zbl 1365.53001) Full Text: DOI
Egorov, A. I. Trends for the development of Egorov’s method in the theory of movements. (Russian. English summary) Zbl 1397.53023 Differ. Geom. Mnogoobr. Figur 47, 62-68 (2016). MSC: 53B05 PDF BibTeX XML Cite \textit{A. I. Egorov}, Differ. Geom. Mnogoobr. Figur 47, 62--68 (2016; Zbl 1397.53023)
Mozhey, N. P. Normal connections on reductive homogeneous spaces with an unsolvable transformation group. (Russian. English summary) Zbl 1372.53013 Dokl. Nats. Akad. Nauk Belarusi 60, No. 6, 28-36 (2016). MSC: 53B05 53C30 PDF BibTeX XML Cite \textit{N. P. Mozhey}, Dokl. Nats. Akad. Nauk Belarusi 60, No. 6, 28--36 (2016; Zbl 1372.53013) Full Text: Link
Mozhey, Natalya P. Three-dimensional homogeneous spaces, not admitting invariant connections. (Russian. English summary) Zbl 1375.53066 Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 16, No. 4, 413-421 (2016). MSC: 53C30 53B05 PDF BibTeX XML Cite \textit{N. P. Mozhey}, Izv. Sarat. Univ. (N.S.), Ser. Mat. Mekh. Inform. 16, No. 4, 413--421 (2016; Zbl 1375.53066) Full Text: DOI
Sultanova, G. A. The dimensions of the Lie algebra of automorphisms in tangent bundles with a complete lift connection with projective-Euclidean base. (Russian. English summary) Zbl 1375.53026 Dal’nevost. Mat. Zh. 16, No. 1, 83-95 (2016). MSC: 53B05 53A17 53C15 PDF BibTeX XML Cite \textit{G. A. Sultanova}, Dal'nevost. Mat. Zh. 16, No. 1, 83--95 (2016; Zbl 1375.53026) Full Text: MNR